Contact

**Name**

Jan Govaerts

**Position**

Professor

**Address**

Centre for Cosmology, Particle Physics and Phenomenology - CP3

Université catholique de Louvain

2, Chemin du Cyclotron - Box L7.01.05

B-1348 Louvain-la-Neuve

Belgium

Université catholique de Louvain

2, Chemin du Cyclotron - Box L7.01.05

B-1348 Louvain-la-Neuve

Belgium

**Phone**

+32 10 4

**7 3226****Office**

**UCL member card**

Teaching

**Physique générale 1**

Formation aux principes de base de la mécanique de Newton et de la relativité restreinte

LPHY1111 (45h + 45h; shared with V. Lemaître)

LPHY1111 (45h + 45h; shared with V. Lemaître)

**Physique générale 2**

Formation aux principes de base des lois de l'électricité et du magnétisme

LPHY1112 (45h + 45h; shared with V. Lemaître)

LPHY1112 (45h + 45h; shared with V. Lemaître)

**Physique générale 3**

Poursuit la formation en physique générale des cours LPHY1111 et LPHY1112,

pour la physique des ondes, les phénomènes ondulatoires classiques et l'optique

LPHY1211 (30h + 30h; shared with V. Lemaître)

pour la physique des ondes, les phénomènes ondulatoires classiques et l'optique

LPHY1211 (30h + 30h; shared with V. Lemaître)

**Electromagnétisme classique**

Cours approfondi portant sur l'électromagnétisme, les équations de Maxwell et leurs méthodes mathématiques

LPHY1311 (37.5h + 15h)

LPHY1311 (37.5h + 15h)

**Quantum Field Theory II**

Introduction to quantisation, perturbation theory and renormalisation in relativistic quantum field theories

LPHY2122 (30h)

LPHY2122 (30h)

**Electroweak Interactions**

Introduction to the Standard Model of the Electroweak interactions

LPHY2224 (22.5h; shared with F. Maltoni)

LPHY2224 (22.5h; shared with F. Maltoni)

**Thesis Tutorial**

PHY2998 (15h; in collaboration with Mrs Annick Mercier-Sonck)

People responsibilities

**Visitors**

**Daddy Balondo Iyela**(UCL) (member since January 2011)

Integrable quantum dynamics, Klauder-Daubechies deformations and noncommutative geometric structures.

**PhD students**

**Master students**

**Gaël Van Dieren**

Exploring the Cartan formulation of de Sitter geometry: from topological gauge field theory to gravity.

**Former members**

People Responsibilities outside CP3

Ph.D. Students

Research statement

- Nonperturbative gauge dynamics, geometry and topology

- Noncommutative, fuzzy and quantum geometries, and quantum gravitation

- Particle physics and the unifications of all fundamental quantum interactions inclusive of gravity

- Collective quantum phenomena in condensed matter physics (superconductivity)

- Theoretical and mathematical physics

As a driving motivation, our research activities aim to address some of the basic issues remaining open in the present day gauge theories of the fundamental quantum interactions and their matter couplings.

On the one hand, for well accepted theories a solid understanding of their nonperturbative dynamics remains largely wanting. Undoubtedly, topological and geometrical properties in field space in relation to large gauge symmetries play crucial roles in this respect, to which perturbative gauge fixing procedures remain totally oblivious. A significant component of our research efforts addresses such issues within lower dimensional gauge theories or abelian gauge theories from complementary nonperturbative points of view, also unravelling dualities between apparently disconnected theories.

On the other hand, present day gauge theories of the fundamental quantum interactions present their own challenges pointing towards new fundamental conceptual paradigms beyond quantum physics and gravity. Some of the exploratory paths being trodden are deformations of quantum mechanics, noncommutative or fuzzy spacetime geometries, and topological theories for pure quantum gravity, being applied in a variety of physical circumstances.

Yet in relation to the above, some interests in particle phenomenology are also being pursued, mostly centered on the electromagnetic properties of neutrinos in as many varied physical contexts as possible.

Finally, progress in nonperturbative dynamics of gauge theories has often exploited advances made in condensed matter physics.Collective phenomena in lower dimensional fermionic systems display a variety of behaviours, remaining also largely not yet understood, which may well prove relevant to nonperturbative gauge dynamics alike. Hence a modest part of research activities addresses such issues as well, in particular within the context of the different phenomena of superconductivity.

On the one hand, for well accepted theories a solid understanding of their nonperturbative dynamics remains largely wanting. Undoubtedly, topological and geometrical properties in field space in relation to large gauge symmetries play crucial roles in this respect, to which perturbative gauge fixing procedures remain totally oblivious. A significant component of our research efforts addresses such issues within lower dimensional gauge theories or abelian gauge theories from complementary nonperturbative points of view, also unravelling dualities between apparently disconnected theories.

On the other hand, present day gauge theories of the fundamental quantum interactions present their own challenges pointing towards new fundamental conceptual paradigms beyond quantum physics and gravity. Some of the exploratory paths being trodden are deformations of quantum mechanics, noncommutative or fuzzy spacetime geometries, and topological theories for pure quantum gravity, being applied in a variety of physical circumstances.

Yet in relation to the above, some interests in particle phenomenology are also being pursued, mostly centered on the electromagnetic properties of neutrinos in as many varied physical contexts as possible.

Finally, progress in nonperturbative dynamics of gauge theories has often exploited advances made in condensed matter physics.Collective phenomena in lower dimensional fermionic systems display a variety of behaviours, remaining also largely not yet understood, which may well prove relevant to nonperturbative gauge dynamics alike. Hence a modest part of research activities addresses such issues as well, in particular within the context of the different phenomena of superconductivity.

Projects

**Research directions:**

Cosmology and General Relativity

Theories of the fundamental interactions

Data analysis in HEP experiments

Detector commissioning, operation and data processing

Theories of the fundamental interactions

Data analysis in HEP experiments

Detector commissioning, operation and data processing

**Experiments and collaborations:**

**Active projects**

**Gravitational Wave Physics with Virgo**

*Diego Bardiaux, Giacomo Bruno, Jan Govaerts, Jean-Marc Gérard, Vincent Lemaitre, Krzysztof Piotrzkowski, Andres Tanasijczuk*

In July 2018 CP3 members have joined the Virgo Collaboration at the European Gravitational Observatory (EGO) near Pisa in Italy. Virgo is the European laser interferometer for gravitational wave detection. After several years of instrument upgrades, Virgo went in observation mode in August 2017, about one year and half after the two LIGO interferometers in the US had detected for the first time gravitational waves. Virgo and LIGO work in close collaboration, sharing data, analysing data and publishing together. Fundamental research in gravitational wave experimental physics was funded for the first time in Belgium at the end of 2018 with a project led by UCLouvain and ULiege. On the data analysis side the plan is on one side to investigate the properties of binary black hole coalescence events, possibly relating them to theoretical models of dark matter and/or primordial black holes, and on the other to search for a stochastic gravitational wave background originating from the very early moments of the life of the Universe, a discovery that would be foundational for cosmology. On the instrumentation side, contributions to computing and the optical system of the Virgo interferometer are planned.

CP3 members are also actively supporting the Einstein Telescope project, a proposed underground laser interferometer project for gravitational wave detection that is expected to take over from LIGO and Virgo around 2030.

*Daddy Balondo Iyela, Jan Govaerts*

Combining complementary approaches to quantisation, exploration of integrability issues in quantum dynamics and noncommutative geometric structures

__External collaborators__: M. Norbert Hounkonnou (ICMPA-UNESCO Chair, UAC, Benin) Calvin Matondo Bwayi (UNIKIN, DRC).

**Non-commutative quantum dynamics and supersymmetry**

*Jan Govaerts*

Extensions to the supersymmetric context of the Moyal non-commutative plane are being considered from different perspectives.

**Non-perturbative dynamics of QED in low dimensions**

*Jan Govaerts*

By emphasizing the relevance of topology in nonperturbative gauge dynamics in the presence of nontrivial space(time) topology, develop gauge invariant physical tools to approach the nonperturbative dynamics of such systems in approximation schemes. In an initial study, QED in lower dimensions is considered in detail.

*Jan Govaerts*

Development of nonperturbative quantisation techniques of gauge theories (Yang-Mills, topological, gravity) and their application to particle physics and quantum field theory at finite temperature (in particular, within the context of superconductivity).

Exploration of the consequences of noncommutative geometry in the search for the unification of the fundamental interactions (M-theory and superstrings, quantum gravity).

__External collaborators__: Frederik Scholtz (National Institute for Theoretical Physics, NITheP, South Africa); Hendrik Geyer (Stellenbosch Institute for Advanced Study, STIAS; University of Stellenbosch, South Africa); M. Norbert Hounkonnou (International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair, Benin); Calvin Matondo Bwayi (University of Kinshasa, Kinshasa, Democratic Republic of Congo); Habatwa Mweene (University of Zambia, Lusaka, Zambia); John R. Klauder (University of Florida, Gainesville, USA); Peter Jarvis (University of Tasmania, Hobart, Australia).

**Quantum Gravity and the Cosmological Constant**

*Jan Govaerts*

Quantum diffeomorphic gauge invariance and the total cosmological constant, inclusive of the quantum fluctuations of the gravitational field

**Topology and Non-Perturbative Gauge Dynamics**

*Jan Govaerts*

The connections between topology in space(time) and in field configuration space and the non-perturbative dynamics of general gauge theories, inclusive of mass generating mechanims, are being studied.

**Non-active projects**

Internatonial Collaborations

- National Institute for Theoretical Physics (NITheP, South Africa)

- Stellenbosch Institute for Advanced Study (STIAS, South Africa), Fellow

- University of Stellenbosch (South Africa)

- African Institute for Mathematical Sciences (AIMS, South Africa)

- International Chair in Mathematical Physics and Applications (ICMPA-UNESCO, Benin), ICTP Visiting Professor

- University of Kinshasa (Kinshasa, Democratic Republic of Congo)

- University of Zambia (Lusaka, Zambia)

- University of Florida (Gainesville, USA)

- University of New South Wales (Sydney, Australia)

- University of Tasmania (Hobart, Australia)

Publications in CP3

All my publications on Inspire

Number of publications as CP3 member: 43 Download BibTeX

[Abstract] [PDF] [Full text]

In "Mathematical Structures and Applications", Proceedings of the International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH), October 2016 (Cotonou, Republic of Benin), eds. Toka Diagana and Bourama Toni (Springer, Switzerland, 2018) pp. 235-273.

Refereed paper. Contribution to proceedings. June 27.
CP3-14-60:

Number of publications as CP3 member: 43 Download BibTeX

**Last 5 publications****2018**

CP3-18-39:

**Towards the Quantum Geometry of Saturated Quantum Uncertainty Relations: The Case of the (Q,P) Heisenberg Observables***Jan Govaerts*

[Abstract] [PDF] [Full text]

In "Mathematical Structures and Applications", Proceedings of the International Workshop on Contemporary Problems in Mathematical Physics (COPROMAPH), October 2016 (Cotonou, Republic of Benin), eds. Toka Diagana and Bourama Toni (Springer, Switzerland, 2018) pp. 235-273.

Refereed paper. Contribution to proceedings. June 27.

**2014**

**Measurement of the Parameter xi" in Polarized Muon Decay and Implications on Exotic Couplings of the Leptonic Weak Interaction**

CP3-14-21:

**The N = 1 Supersymmetric Wong Equations and the Non-Abelian Landau Problem****More publications**