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Abstract

The gravimagnetic dipole spacetime consists of two counter-rotating black holes
of equal mass connected by a Misner string. For a particular distance in between
them, the string is tensionless with the black holes at equilibrium with each other.

The geodesics of relativistic massive, or massless particles are considered, leading
to the identification of circular rotation trajectories. The velocities of these traject-
ories are computed.



1 Introduction
General relativity admits a wide range of exact solutions, many of which display non-
trivial structures even in the absence of matter. Among these, the gravimagnetic dipole
spacetime, a recently described [1, 2, 3, 4] axisymmetric, asymptotically flat and stationary
metric, consists of two counter-rotating NUT (Newman-Unti-Tamburino) black holes, of
equal mass but opposite NUT charges, and connected by a Misner string. When the
separation between the black holes is tuned precisely, the string becomes tensionless and
the configuration is at equilibrium. By adimensionalising the system, the mass scale is
removed and the gravimagnetic dipole spacetime is characterised by only one parameter,
the NUT charge.

In this work, the motion of massive and massless test particles is studied in the equat-
orial plane, making full use of the available symmetries. Using a Hamiltonian formalism,
an effective potential[5] is defined, leading to a condition for the existence of circular
orbits. The rotation velocities associated with these orbits are then computed, thereby
obtaining the velocity rotation curves for various values of the NUT parameter.

The recent study of the gravito-electromagnetic approximation to the gravimagnetic
dipole [6] derived an approximate velocity rotation curve for circular orbits within the
weak-field regime of the gravimagnetic dipole spacetime, identifying conditions under
which a roughly flat rotation curve emerges without invoking dark matter. The present
exact results are compared with these approximate analytic expressions, in the relevant
domain of parameters.

In the following, Section 2 reviews the gravimagnetic dipole metric. The conditions
used to obtain a tensionless Misner string are described, allowing for the full character-
isation of the spacetime with only one parameter, the NUT charge.

In Section 3, the Hamiltonian for massive and massless particles in this spacetime is
presented and then used to define an effective potential for circular orbits. The number
of circular orbits depends on the particle’s energy and the value of the NUT parameter.

Section 4 finally presents the calculation of the velocity rotation curves along with
the corresponding figures. Comparison is made with the results from [6], showing good
agreement in the relevant domain of parameters.

2 The gravimagnetic dipole spacetime
Let us consider the gravimagnetic dipole spacetime metric. This configuration [1, 4]
consists of the nonlinear superposition of two counter-rotating NUT objects of equal
masses m > 0 and opposite NUT charges ±ν (ν ≥ 0), separated by a total distance
2k ≥ 2m > 0, and positioned symmetrically on the z-axis relative to z = 0.

In Weyl coordinates (x0, xi) = (ct, ρ, ϕ, z), the metric can be written as

ds2 = −f(cdt− ωdϕ)2 + f−1[e2γ(dρ2 + dz2) + ρ2dϕ2]. (2.1)

The functions f , ω and e2γ depend only on (ρ, z) and are written as follows:

f =
|A|2 − |B|2

|A+B|2
, e2γ =

|A|2 − |B|2

64d4α2
+α

2
−R+R−r+r−

, ω = −4
ℑ[G(Ā+ B̄)]

|A|2 − |B|2
, (2.2)

given the following definitions (with m ≡ Gm/c2):

R±(ρ, z) =
√
ρ2 + (z ± α+)2, r±(ρ, z) =

√
ρ2 + (z ± α−)2,

α± =
√
m2 + k2 − ν2 ± 2d, d =

√
m2k2 + ν2(k2 −m2).

(2.3)
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Finally, the functions A, B and G (which also depend only on (ρ, z)) are given by the
following expressions:

A =
1

2

[
(d−m2)2α2

+ + (d+m2)2α2
−

]
(R+ −R−)(r+ − r−)

− α+α−

[
2(d2 −m4)(R+R− + r+r−) + (d2 +m4)(R+ +R−)(r+ + r−)

]
− 2imkνd

[
(α+ − α−)(R+r+ −R−r−)− (α+ + α−)(R+r− −R−r+)

]
,

B =− 4d
{
(d−m2)α−[mα+(R+ +R−) + ikν(R+ −R−)]

+ (d+m2)α+[mα−(r+ + r−) + ikν(r+ − r−)]
}
,

(2.4)

G =d
[
− (d−m2)2α+ + (d+m2)2α− − 2ikνm2(α+ − α−)

]
(R+r+ −R−r−)

+ d
[
(d−m2)2α+ + (d+m2)2α− + 2ikνm2(α+ + α−)

]
(R+r− −R−r+)

−m(d2 +m4)α+α−(R+ +R−)(r+ + r−)

+
m

2

[
(d−m2)2α2

+ + (d+m2)2α2
− + 8ikνd2

]
(R+ −R−)(r+ − r−)

− 2m(d2 −m4)α+α−(R+R− + r+r−)

− 2d(d−m2)α−
[
(α+ + 2m− z)(mα+ + ikν)R+ − (α+ − 2m+ z)(mα+ − ikν)R−

]
− 2d(d+m2)α+

[
(α− + 2m− z)(mα− + ikν)r+ − (α− − 2m+ z)(mα− − ikν)r−

]
.

(2.5)

The functions f and e2γ are dimensionless; ω has a dimension of length, ensuring that
every term in eq. (2.1) has proper dimensions.

For ease of use, here are the non-vanishing entries of the metric and its inverse:

gtt = −f, gtϕ = fω, gϕϕ =
ρ2

f
− fω2, gρρ = gzz = f−1e2γ;

gtt = −f−1 +
fω2

ρ2
, gtϕ =

fω

ρ2
, gϕϕ =

f

ρ2
, gρρ = gzz = fe−2γ.

(2.6)

This metric is asymptotically flat, with total mass M = 2m and total angular momentum
J = 2kν.

2.1 The values of m, k and ν

For ν = 0, α± = k±m and d = km are real, and the metric, which is then static, describes
a system of two non-rotating black holes each of mass m with a cosmic string of length
2(k − m). When k = m, the two black holes coalesce back into a single Schwarzschild
one.

On the condition that α± and d are real, the system defined by the gravimagnetic
dipole spacetime consists of two black holes separated by a distance 2k and connected by
a spinning cosmic string – called Misner string – of length 2α−. These correspond to three
sections of the z axis; the two black holes horizons for α− < z < α+ and −α+ < z < −α−,
and the Misner string for −α− < z < α−. The masses of the black holes MH± and their
angular momenta, JH± are functions of the three parameters m, k and ν [4].

The conditions for α± and d to be real and non zero are given[4] by

k > k+ or k < k−, k±(m, ν) =
√
m2 + 2ν2 ± |ν| . (2.7)
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Figure 1: This graph shows a cut in the XZ plane of the spacetime. The plain blue lines
represent the static limit and the orange dots the black holes. The dashed grey lines
represent the horizons. Various quantities (α±, the limits of the horizons on the vertical
axis) as well as the separation of the black holes 2kT

+ are also shown, for a gravimagnetic
dipole spacetime with NUT parameter ν = 0.4.

Figure 2: Cut of the spacetime along the
XZ plane for ν = 0.1. The orange dots
represent the black holes. The blue lines
represent the static limit. The dashed grey
lines represent the horizon rods.

Figure 3: Cut of the spacetime along the
XZ plane for ν = 0.8. The orange dots
represent the black holes. The blue lines
represent the static limit. The dashed grey
line represent the horizon rods.
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For the black holes to be at equilibrium with each other, the spinning cosmic string
that joins them should be tensionless. The string tension per unit length (1− e−γS)/4 is
related to the value of the metric function at its center e2γS ≡ e2γ(ρ = 0, z = 0).

This last conditions translates to(
α+ − α−

2m

)2

= 2−
(

2m

α+ + α−

)2

. (2.8)

This equation gives, as allowed values for k,

k(m, ν) = ±

√
m6 + 3m4ν2 ±m2ν

√
4vm6 + 9m4ν2 + 2m2ν4 + ν6

m4 − ν4
. (2.9)

Assembling eqs. (2.7) and (2.9) gives rise to a unique solution for k in the tensionless case:

kT
+(m, ν) =

√
mν6 + 3m4ν2 +m2ν

√
4m6 + 9m4ν2 + 2m2ν4 + ν6

m4 − ν4
. (2.10)

Lastly, for k = m, it was shown[1] that the system describes a Kerr black hole of mass 2m
and Kerr parameter ν = a, provided that ν < 2m. In this case, d = mk, α+ is real and α−
is imaginary, but α− will not appear in any of the expressions of the metric, preserving
its reality.

Since the system studied hereafter is the one corresponding to two rotating black
holes at equilibrium at a fixed distance, the value k = kT

+ will be used. The system is
thus characterized by only two variables, ν and m.

Finally, when the parameters ν, k and m, as well as the coordinates ρ, ϕ, z and ct are
divided by m, the metric is fully dimensionless. The symbols will be kept the same for
readability’s sake, but keep in mind now that every quantity is adimensional; only m will
be replaced by 1.

2.2 Horizons and ergoregions

The static limits of the black holes (gtt = 0) can be determined and plotted on a XZ slice
of the space since it is axisymmetric. The general shape would be of two symmetric pears,
or two halves of a peanut shell, that grow further apart as ν increases. The separation of
the black holes 2k diverges when ν → 1. The horizons are in the shape of rods, for ρ = 0,
−α+ < z < −α− and α− < z < α+. The two horizons touch only in the extreme case
ν = 0, at the singularity point of coordinates ρ = 0 = z, which will not be studied here.

Fig. 1 shows a cut in the XZ plane of the ergoregions and horizons, as well as the
quantities α± (the extremities of the horizons, as well as the intersection between the static
limits and the vertical axis) and k (half the black holes separation) for a gravimagnetic
dipole spacetime with NUT parameter ν = 0.4.

Figs. 2 and 3 show the horizons and ergoregions for spacetimes with NUT parameters
ν = 0.1 and ν = 0.8.

2.3 The metric functions in the equatorial plane

Before proceeding let us point out that at z = 0 the quantities in terms of which the
metric components are defined now take the following values:

R = R±(ρ, z = 0) =
√

ρ2 + α2
+, r = r±(ρ, z = 0) =

√
ρ2 + α2

−, (2.11)
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allowing the following definitions

A0 ≡
A(ρ, z = 0)

2α+α−
= −

[
(d2 − 1)(R2 + r2) + (d2 + 1)Rr

]
,

B0 ≡
B(ρ, z = 0)

2α+α−
= −2d

[
(d− 1)R + (d+ 1)r

]
,

G0 ≡
G(ρ, z = 0)

2α+α−
= Gr + iGi,

Gi ≡ ℑ
[
G(ρ, z = 0)

2α+α−

]
= −kνd [(d− 1)R + (d+ 1)r] ,

Gr ≡ ℜ
[
G(ρ, z = 0)

2α+α−

]
= − [((1 + d)r + (−1 + d)R)(−r +R + d(4 + r +R))] .

(2.12)

With these redefinitions, it is ensured that A0, B0, and Gr and Gi are all real functions.
They allow for the functions f , ω and e2γ to be written as

f ≡ f(ρ, z = 0) =
A0 −B0

A0 +B0

= − 8d

(d− 1)r + (d+ 1)R + 4d
,

ω = ω(ρ, z = 0) =
−4Gi

A0 −B0

=
8dkν

(1− d)r − (d+ 1)R + 4d
,

e2γ = e2γ(ρ, z = 0) =
A2

0 −B2
0

4d4R2r2
=

[(d+ 1)r + (d− 1)R]2
[
{R(d+ 1) + r(d− 1)}2 − 16d2

]
16d4r2R2

.

(2.13)
Every metric function is thus real for any value of ρ ≥ 0 and ν ∈ ]0, 1[.

3 The effective potential for geodesics
Consider the general case of a free point particle — be it massive or massless — propagat-
ing in a spacetime whose geometry in coordinates (x0, xi) is characterised by the following
metric and line element:

ds2 = gµνdx
µdxν . (3.1)

From the outset, herein the metric gµν is taken to be stationary (and asymptotically flat).
Let us note that x0 = ct is the time coordinate with a dimension of length, and the xi are
spacelike (in general, curvilinear) coordinates of that same physical dimension.

As is well known[7, 8, 9], the particle’s dynamics is derived from the Hamiltonian
first-order action:

S[xµ, pµ; e] =

∫
du(ẋµpµ −H), H =

1

2
e(u)(gµνpµpν + (µ0c)

2), (3.2)

with u ∈ R being an arbitrary worldline parametrisation (the dot standing for a derivative
relative to u), µ0 the mass of the particle (µ0 > 0 for a massive particle and µ0 = 0 for a
massless one) and H the first-class Hamiltonian.

The conjugate momentum p0 is constant due to the stationarity of the metric, and
satisfies p0 = −E/c, where E is the particle’s energy. Additionally, when the metric is
axisymmetric or spherically symmetric, pϕ is conserved and such that pϕ = L with L its
(orbital) angular momentum. The positive definite einbein field e(u) is playing the role of
the Lagrange multiplier (and pure gauge degree of freedom) for the first-class constraint:

gµνpµpν + (µ0c)
2 = 0, c2gµνpµpν + (µ0c

2)2 = 0. (3.3)
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The geodesic equations then read,

dxµ

du
= egµνpν ,

dpµ
du

= −1

2
e
∂gρσ

∂xµ
pρpσ, (3.4)

while being subjected as well to the first-class constraint eq. (3.3) to ensure invariance
under orientation preserving worldline diffeomorphisms. Additionally, in the massive case
the einbein is determined from the constraint as,

e = ± 1

µ0c

√
−gµν ẋµẋν , (3.5)

the upper sign corresponding to the standard square-root action for a relativistic massive
particle, such that in a Minkowski spacetime solutions of positive energy propagate to the
future.

3.1 The Hamiltonian equations of motion

Given the gravimagnetic dipole metric components, the general relation between coordin-
ate time and proper time is expressed as,

dt

dτ
=

1√
−gtt

=
1√
f
,

dτ

dt
=
√

f. (3.6)

Furthermore, in Hamiltonian form, the geodesic equations of motion read as follows, for
the spacetime coordinates,

c
dt

du
= e

(
gttpt + gtϕpϕ

)
,

dϕ

du
= e

(
gtϕpt + gϕϕpϕ

)
,

dρ

du
= e gρρpρ,

dz

du
= e gzzpz,

(3.7)
and for the conjugate momenta,

dpt
du

= 0,
dpϕ
du

= 0,
dpρ
du

= −1

2
e
∂gµν

∂ρ
pµpν ,

dpz
du

= −1

2
e
∂gµν

∂z
pµpν , (3.8)

subjected to the following constraint,

gttp2t + 2gtϕptpϕ + gϕϕp2ϕ + gρρp2ρ + gzzp2z + (µ0c)
2 = 0, (3.9)

with the conserved conjugate momenta pt and pϕ,

pt = −E

c
, pϕ = L, (3.10)

where E is the particle’s relativistic energy and L its angular momentum (component
along the axial symmetry axis), both taking constant and real values.

3.2 The effective potential

In the equatorial plane, pz = 0 = z1 and the Hamiltonian of a particle can be expressed,
be it massive (µ0 > 0) or massless (µ0 = 0), as

H =
e

2

1

c2
(
gttE2 − 2gtϕE(cL) + gϕϕ(cL)2 + gρρp2ρ + (µ0c

2)2
)
. (3.11)

1See Appendix A for the verification of dpz/du = 0, which is a non-trivial property.
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This expression will now be used to define an effective potential to study circular orbits.
From the definition of the conjugate momenta, pρ is expressed in terms of dρ/dϕ as

pρ = gρρ
dρ

dϕ

dϕ

du
= gρρ

(
gtϕpt + gϕϕpϕ

) dρ
dϕ

. (3.12)

The constraint in eq. (3.9) can then be reexpressed as(
dρ

dϕ

)2

+ V (ρ, b) = 0, (3.13)

where

V (ρ, b) =
ρ2

e2γ

[
1− ρ2

f 2

1

(b− ω)2

(
1− f

(
µ0c

2

E

)2
)]

, (3.14)

and b = cL/E is the impact parameter[10].
Circular orbits correspond to the double condition that V (ρ) = 0 and V ′(ρ) = 0 (the

′ here denoting the derivative taken with respect to ρ). These equations are nontrivial
but the first one can be used to define a critical impact parameter b±, which allows to
simplify the expression of the second one:

b± = ω ± ρ

f

√
1− f

(
µ0c2

E

)2

, V (ρ, b = b±) = 0. (3.15)

The ± sign factor corresponds to the direction of rotation of the particle on its orbit,
prograde or retrograde respectively. Again, this expression is valid for massive (µ0 > 0)
or massless (µ0 = 0) particles.

The derivative of the potential with respect to ρ can be written as the sum of two
terms:

V ′(ρ, b)
∣∣∣
b=b±

=

(
ρ2

e2γ

)′
[
...

]
︸︷︷︸

=0 for b=b±

+
ρ2

e2γ

[
...

]′
︸ ︷︷ ︸
=g(ρ)

. (3.16)

The first is automatically zero by choice of b = b±; the second term needs a bit more
work. Since e2γ ̸= 0 for any value of (ν, ρ) such that (ν > 0, ρ > 0), the expression of
interest will be only the large parenthesis that will be called g(ρ) in the following.

3.3 Massive particules

Writing out the complete expression of g(ρ) gives:

g(ρ) =
ρ [(b± − ω)(ρf ′(2E2 − c4µ2

0f) + 2f(c4µ2
0f − E2)) + 2ρfω′(c4µ2

0f − E2)]

E2f 3(b± − ω)3

=
2f 2(c4µ2

0 ∓ βE2ω′)− f(c4µ2
0ρf

′ + 2E2) + 2E2ρf ′

β2E2ρf
,

with β =

√
1− f

(
µ0c2

E

)2

, b± = ω ± ρ

f
β.

(3.17)

The radii ρ± of the circular orbits are then given by the solutions of g(ρ) = 0, the
sign factor corresponding to the one of b± and thus either a prograde or retrograde orbit.
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Figure 4: The left column has a NUT parameter ν = 0.2 and the right column ν = 0.8.
The first (resp. second) row presents the first (resp. second) derivative V ′ (resp. V ′′)
of the potential as functions of ρ and evaluated at b = b±. Two values of the energy
are represented (E = 2 and E = 500) for the prograde and retrograde directions. The
zeroes of the first derivative of the potential indicate the radii at which circular orbits are
possible, and the value of the second derivative at these radii indicate if the corresponding
orbit is stable or unstable. For example, for ν = 0.2, with an energy of E = 2 (green
dashdotted line on the left column), there is a stable prograde orbit at ρ ≈ 0.5.

According to the value of the the second derivative in ρ of the potential, V ′′, this orbit
will be either stable (V ′′ < 0) or unstable (V ′′ > 0). Depending on the values of the NUT
parameter ν and of the energy E, eq. (3.17) will have between four and zero possible
solutions.

In Fig. 4, the left column has a NUT parameter ν = 0.2 and the right column ν = 0.8.
The first (resp. second) row presents the first (resp. second) derivative of the potential,
as function of ρ and evaluated at b = b±. For each graph, two values of the energy
are represented (E = 2 and E = 500) for the prograde and retrograde directions. The
zeroes of the first derivative of the potential indicate the radii at which circular orbits are
possible, and the value of the second derivative at these radii indicate if the corresponding
orbit is stable or unstable. For example, for ν = 0.2, with an energy of E = 2, (green
dashdotted line on the left column) there is a stable prograde orbit at ρ ≈ 0.5.

Eq. (3.17) can also be used to construct a bifurcation diagram, providing a visualisation
of how the number of solutions (i.e. the number of possible circular orbits) varies with
the value of ν. This is done in Fig. 5 for two different values of the energy. As the value of
ν grows, the number of circular orbits decreases. The prograde (resp. retrograde) orbits
coalesce into one prograde (resp. retrograde) orbit, then disappear.
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Figure 5: For different values of the energy E, as functions of the parameter ν, the radii
of the possible circular orbits ρ± for massive particles. Depending on the value of the
NUT parameter ν and the energy E, there is from 0 to 4 possible orbits.

3.4 Massless particles

In the case of massless particles, b± = ω ± ρ
f

and β = 1, and eq. (3.17) can be simplified
to

g(ρ) = −2(±f 2ω′ + f − f ′ρ)

fρ
. (3.18)

The radii ρ± of the photon orbits are then given by the solutions of g(ρ) = 0, the
sign factor corresponding to the one of b± and thus either a prograde or retrograde orbit.
According to the value of the the second derivative in ρ of the potential, V ′′, this orbit
will be either stable (V ′′ < 0) or unstable (V ′′ > 0). Depending on the values of the NUT
parameter ν and of the energy E, eq. (3.18) will have between four and zero possible
solutions.

In Fig. 6, the top (resp. bottom) graph presents the first (resp. second) derivative
of the potential for a massless particle as function of ρ and evaluated at b = b±. For
each graph, two values of the NUT parameter (ν = 0.2, ν = 0.8) are represented for the
prograde and retrograde directions. The zeroes of the first derivative of the potential
indicate the radii of the photon orbits, and the value of the second derivative at these
radii indicate if the corresponding orbit is stable or unstable. For example, for ν = 0.2
(orange dotted line) there is a unstable retrograde orbit at ρ ≈ 0.3.

Like in the massive case, eq. (3.18) can be used to construct the same kind of bi-
furcation diagram, providing a visualisation of how the number of solutions varies with
the value of ν. This is done in Fig. 7. As the value of ν grows, the number of photon
orbits decreases. The prograde (resp. retrograde) orbits coalesce into one prograde (resp.
retrograde) orbit, then disappear. The coordinates of the saddle-node bifurcation can be
numerically computed: for the prograde orbit, ν = 0.27, ρ = 1.78, and for the retrograde
orbit ν = 0.79, ρ = 2.30.

9



Figure 6: The top (resp. bottom) graph represents the first (resp. second) derivative of
the potential as a function of ρ for massless particles, for two different rotation directions
(prograde and retrograde) and two different values of ν. The number of possible circular
orbits (from 0 to 4) depends on this parameter.

Figure 7: As functions of the parameter ν for massless particles, the radii of the possible
circular orbits ρ± are represented. The plain line corresponds to prograde orbits, the
dashed one to retrograde orbits. Depending on the value of ν, there will be between zero
and four possible circular orbits.
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4 Proper distance and velocity
The radar distance, or spatial distance[11] is the distance determined by the following
procedure: an observer at point B sends a light signal to point A and receives its reflection
back after some short interval of time. The radar distance between A and B is defined
as half the total travel time (measured in the observer’s proper time) multiplied by the
speed of light.

This is expressed as

dℓ2 =

(
gij −

g0ig0j
g00

)
dxidxj. (4.1)

This expression differs from the purely spatial distance by the term
−g0ig0j
g00

dxidxj,

which takes into account the spatial deformation due to the advancement of time (note
that it is also, of course, of the right dimension). It can be rewritten in the form:

dℓ2 = γijdx
idxj, with γij = gij −

g0ig0j
g00

. (4.2)

The tensor γij is the reciprocal of the contravariant spatial tensor gij. Indeed, from
the relation gαγgγβ = δαβ , it follows that

gijgjk + gi0g0k = δik, gi0 = −gijgj0
g00

, (4.3)

and by inserting gi0 in the first of these two relations, one finds,

gijγjk = δik. (4.4)

Since in the general case gµν depends on x0, it is meaningless to integrate dℓ given a
generic curved spacetime. The integral would be ill-defined since it would depend on the
worldline, i.e., the chosen path between the two points. Thus, generally speaking, in the
context of generic curved spacetimes the concept of spatial distance remains valid at best
only for infinitesimally small distances.

However, in the case of a stationary metric, gµν does not depend on x0 and as such,
the integral

∫
dℓ is well-defined and can be used to determine the finite spatial distance

between two simultaneous events.
Let us also note that in the axisymmetric spacetime under consideration here, the

only cross term is gtϕ and there is no gtρ crossterm. As such, the spatial radial distance
corresponds to the proper distance ρ̄ between ρ and ρ0 defined as

ρ̄ =

∫ ρ

ρ0

√
gρρ dρ. (4.5)

Now that the concept of spatial distance is properly defined, the proper velocity (also
known as celerity) can be defined as follows relative to the proper time along the worldline:

v2τ ≡ γij
dxi

dτ

dxj

dτ
, (4.6)

as well as the velocity relative to the coordinate time, or coordinate velocity:

v2t ≡ γij
dxi

dt

dxj

dt
=

(
dτ

dt

)2

v2τ , v2τ =

(
dt

dτ

)2

v2t . (4.7)
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The coordinate velocity, denoted as vt > 0 in the following, represents the particle’s
velocity as recorded by an asymptotic observer2. The proper velocity, vτ > 0, represents
the ratio between the observer-measured displacement and the proper time elapsed on the
clocks of the particle. In the following, focus is being put on the coordinate velocity as
must be measured by an asymptotic observer, hence its physical relevance to this article.

4.1 Proper distance in the gravimagnetic dipole spacetime

On the equatorial plane z = 0, the gρρ factor can be written quite nicely:

e2γ

f
=

|A+B|2

64α2
+α

2
−d

4R2r2
. (4.8)

When divided by α+α−, at z = 0, A+B is real and negative. As such,

√
gρρ = −A+B

α+α−

1

8d2Rr

=
1

4

(
1− 1

d2

)(
r

R
+

R

r

)
+

1

2d2
+

1

d

(
1

R
− 1

r

)
+

(
1

R
+

1

r

)
+

1

2
.

(4.9)

This expression can be integrated in the following manner:∫
√
gρρ dρ =

−i(d2 − 1)

4dα+

{
α2
+E

(
i arcsinh

(
ρ

α−

)
,
α2
−

α2
+

)
+ (α2

− − α2
+)F

(
i arcsinh

(
ρ

α−

)
,
α2
−

α2
+

)}
+

1

d2

{ρ
2

(
d2 + 1

)
+ d [(d− 1) log(ρ+ r) + (d+ 1) log(ρ+R)]

}
,

(4.10)
where F (ϕ,m) and E(ϕ,m) are the elliptic integrals of the first and second kind defined
as:

E(ϕ,m) =

∫ ϕ

0

(1−m2 sin2 θ)1/2 dθ,

F (ϕ,m) =

∫ ϕ

0

(1−m2 sin2 θ)−1/2 dθ.

(4.11)

The proper radius between ρ = 0 and the position of a particle at coordinate ρ is then
defined as

ρ̄ =

∫ ρ

0

√
gρρ dρ. (4.12)

In Fig. 8, the proper radii for three different values of ν are plotted as function of ρ. It
is not immediately obvious on the graph, but

lim
ρ→∞

ρ̄(ρ) = ρ. (4.13)

Let us insist that ρ̄(ρ) depends not only on ρ, but also on the value of the NUT parameter
ν.

2In view of the physical context, it is implicitly assumed herein that the stationary metric is asymp-
totically flat.
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Figure 8: The proper radius for three values of the NUT parameter is plotted as a
function of the coordinate radius. As a reference, the thin grey line is also the coordinate
radius as a function of the coordinate radius, i.e. the identity.

4.2 Velocities for circular orbits in the gravimagnetic dipole space-
time

For a circular rotation curve in the equatorial plane, we require dρ/du = 0 and z = 0,
dz/du = 0, meaning that the velocity can be written from eqs. (3.7) and (4.7) as:

v2t =

(
gϕϕ −

(gtϕ)
2

gtt

)(
dϕ

dt

)2

=

(
gϕϕ −

(gtϕ)
2

gtt

)
gϕϕb− gtϕ

gtϕb− gtt

⇒ v2t
c2

=
ρ2f 3(b− ω)2

(ρ2 + f 2ω(b− ω))2
, where b = b± = ω ± ρ

f

√
1− f

(
µ0c2

E

)2

.

(4.14)

The expressions of the potentials give a nice representation of where the circular orbits
might be, but are not very practical to compute the velocities since one has to solve
eq. (3.17) (numerically) to find the energy needed for a circular orbit for each value of
the radius. As such, hereafter another approach is being used to determine the energy
corresponding to a particular value of ρ.

4.3 The massive case

Replacing the value of b± obtained from eq. (3.17) in eq. (4.14), the velocity of a circular
orbit as a function of the radius is given by

v2t
c2

=
β2ρ2f

(ρ± βfω)2
, where β =

√
1− f

(
µ0c2

E

)2

. (4.15)

As was mentioned earlier, the value of the energy E in this last equation can be found
for each value of ρ by solving eq. (3.17), but can also be expressed in a simpler manner.

One of the conditions for a circular orbit is dpρ/du = 0 and eq. (3.8) can be used to
rewrite it as

∂ρg
tt − 2∂ρg

tϕ cL

E
+ ∂ρg

ϕϕ

(
cL

E

)2

= 0. (4.16)
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Figure 9: The velocity of a massive particle on a circular orbit is plotted as a function
of, on the left-most (resp. right-most) plot, the radius ρ (resp. the proper radius ρ̄), for
different values of the NUT parameter ν. For the retrograde orbits, the opposite of the
velocity is plotted for clarity’s sake. The discontinuities (notably for the prograde and
retrograde direction for ν = 0.05 and for the retrograde direction for ν = 0.6) appear due
to the presence of photon orbits at these radii; the energy of a massive particle should be
infinite. This phenomenon does not occur for ν = 0.9 since there are no photon orbits for
this value of the NUT parameter. In between the photon orbits, the energy of a massive
particle on a circular orbit should be negative, as shown on Fig. 10. The Newtonian
velocity curve, ρ−1/2, is also displayed on the left-most plot for comparison.

In conjunction with the constraint (3.9), this gives the expressions for the energy E and
the angular momentum L for a circular orbit of radius ρ:

E2 =
−(µ0c

2)2

gtt − 2gtϕb+ gϕϕb2
,

(cL)2 =
−(µ0c)

2b2

gtt − 2gtϕb+ gϕϕb2
,

(4.17)

with

cL

E
= b =

∂ρg
tϕ ±

√
(∂ρgtϕ)

2 − ∂ρgϕϕ∂ρgtt

∂ρgϕϕ
. (4.18)

Fig. 9 shows the velocity of a massive particle on a circular orbit as a function of, on
the leftmost (resp. rightmost) plot, the radius ρ (resp. the proper radius ρ̄), for different
values of the NUT parameter ν. For the retrograde orbits, the opposite of the velocity
is plotted for clarity’s sake. The discontinuities (notably for the prograde and retrograde
direction for ν = 0.05 and for the retrograde direction for ν = 0.6) appear due to the
presence of photon orbits at these radii; the energy of a massive particle should be infinite.
This phenomenon does not occur for ν = 0.9 since there are no photon orbits for this value
of the NUT parameter. In between the photon orbits, the energy of a massive particle on

14



Figure 10: The squared value of the energy (eq. (4.17), with µ0 = c = 1) is plotted as
a function of the radius ρ for (prograde or retrograde) circular orbits and for different
values of the NUT parameter. The asymptotes towards positive infinity mark the radii
at which photon orbits are permitted. In between, the energy is imaginary and there are
no circular orbits.

a circular orbit is imaginary (eq. (4.17)), as shown on Fig. 10. The Newtonian velocity
curve, ρ−1/2, is also displayed on the left-most plot for comparison.

In Fig. 11 the velocity rotation curve, computed at ν = 0.999, is compared with the
approximate expression given in eq. (79) of [6]. In this regime (ν ≈ 1, tensionless Misner
string), where the gravito-electromagnetic approximation is expected to hold, we find
close agreement between the two results. (For ν = 0.999 the following values are found:
k = 44.716, α+ = 46.107, α− = 43.279.)

4.4 The massless case

In the massless case, the value of the radius of a photon orbit for some value of the NUT
parameter is given by the solution of eq. (3.18). Replacing b± = ω ± ρ

f
in eq. (4.14), the

velocity of the photons on their circular orbit is given by

v2t,±
c2

=
ρ2f

(ρ± fω)2
, (4.19)

where all functions are evaluated at ρ = ρ±.
This velocity is plotted as a function of the NUT parameter ν on Fig. 12. As should

be expected, the figure has again the shape of a bifurcation diagram. When the prograde
(resp. retrograde) orbits coalesce together, the corresponding velocities also coalesce to-
gether.
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Figure 11: For a value of the NUT parameter of ν = 0.999, the blue plain (resp. dashed)
line depicts the exact velocity of a massive particle on a prograde (resp. retrograde)
circular orbit. The red dashdotted line depicts the gravito-electromagnetic approximation
in eq. (79) of Ref. [6].

5 Conclusion
This paper has presented a general method to compute the velocity of a massive, or
massless, particle on a circular orbit in the equatorial plane of an axisymmetric stationary
and asymptotically flat metric. The approach has then been applied specifically to the
gravimagnetic dipole metric, allowing for an analysis of circular rotation curves for both
massive and massless particles.

The next natural step would be to investigate the behaviour of particles not confined
strictly to the equatorial plane. For example, if particles start in the neighbourhood of
the equatorial plane but not in it, they should manifest an oscillatory behaviour around
it. This phenomenon could be explored through perturbative methods.

Furthermore, the model could be enriched by adding matter distributions, superposed
on the gravimagnetic dipole metric. Such modifications would allow for a more realistic
representation of astrophysical scenarios and would very likely influence the shape of the
rotation curves.

A Condition in z is verified ∀pt, pϕ in z = 0

The following equation should be trivially satisfied in z = 0 for any pt and pϕ:

dpz
du

= −1

2
e
∂gµν

∂z
pµpν

0 = ∂zg
ttp2t + 2∂zg

tϕptpϕ + ∂zg
ϕϕ,

(A.1)
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Figure 12: As functions of the NUT parameter ν, the velocities vt for massless particles
on circular orbits. The plain line corresponds to the prograde velocities, the dashed line
to the opposite of the retrograde velocity.

and here are the derivatives in z of the metric:

∂zg
tt = f−2∂zf +

1

ρ2
(
ω2∂zf + 2fω∂zω

)
,

∂zg
tϕ =

1

ρ2
(
ω2∂zf + 2fω∂zω

)
,

∂zg
ϕϕ =

1

ρ2
∂zf.

(A.2)

For eq. (A.1) to be verified ∀ρ > 0, z = 0, using (A.2), we need only to verify that for
ρ > 0, z = 0, ∂zf = 0 and ∂zω = 0.

Let us start by noticing the following relations when z = 0:

R±(ρ, z) =
√
ρ2 + (z ± α+)2 ⇒ R±|z=0 =

√
ρ2 + α2

+ ≡ R,

r±(ρ, z) =
√

ρ2 + (z ± α−)2 ⇒ r±|z=0 =
√

ρ2 + α2
− ≡ r,

∂zR±(ρ, z) =
z ± α+

R±(ρ, z)
⇒ ∂zR±|z=0 =

±α+

R
,

∂zr±(ρ, z) =
z ± α−

r±(ρ, z)
⇒ ∂zr±|z=0 =

±α−

r
.

(A.3)

Let us first take a look at A and its derivative in z at z = 0:

A(ρ, z)

α+α−

∣∣∣∣
z=0

≡ A0 ∈ R, ∂z
A(ρ, z)

α+α−

∣∣∣∣
z=0

≡ ∂zA0 ∈ I. (A.4)

Similarly, for B,

B(ρ, z)

α+α−

∣∣∣∣
z=0

≡ B0 ∈ R, ∂z
B(ρ, z)

α+α−

∣∣∣∣
z=0

≡ ∂zB0 ∈ I. (A.5)
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Thus we can write the following equalities:

Ā0 = A0, (∂zA0) = −∂zA0,

Ā0 = B0, (∂zB0) = −∂zB0.
(A.6)

Let us now look at the expression for f and its derivative in z:

f =
|A|2 − |B|2

|A+B|2
=

AA−BB

(A+B)(A+B)
. (A.7)

Its derivative in z, with ∂zA ≡ A′ and ∂zB ≡ B′ is thus given by:

∂zf =
1

(A+B)2(A+B)2

{
(A′A+ AA

′ −B′B −BB
′
)(A+B)(A+B)

− (AA−BB)
(
(A′ +B′)(A+B) + (A+B)(A

′
+B

′
)
)}

.

(A.8)
When z = 0, using (A.6), this simplifies to

∂zf |z=0 =

(
1

(A+B)2(A+B)2

{
(A′A− AA′ −B′B +BB′)(A+B)(A+B)

− (AA−BB) ((A′ +B′)(A+B)− (A+B)(A′ +B′))
})

z=0

= 0.
(A.9)

For G, the situation is a bit more complex, because both the imaginary and the real
parts survive when z = 0. We will then denote G as G ≡ Gr + iGi.

We can then compute what happens to G and its derivative when z = 0.

G

α+α−

∣∣∣∣
z=0

≡ Gr + iGi, ∂z
G

α+α−

∣∣∣∣
z=0

≡ ∂zGr + i∂Gi, (A.10)

and in terms of these notations, it follows that:

Ḡ0 = Gr − iGi, (∂zG0) = ∂zGr − i∂zGi. (A.11)

We can now finally compute ω and its derivative in z. We know that the expression
for ω is given by:

ω(ρ, z) = −4
ℑ(G(A+B))

|A|2 − |B|2
, (A.12)

thus its derivative in z should look like:

∂zω(ρ, z) =
−4

(|A|2 − |B|2)2
×

{
− 4ℑ

{
G′(A+B) +G(A

′
+B

′
)
}{

|A|2 − |B|2
}

+ 4ℑ
{
G(A+B)

}
(A′A+ AA

′ −B′B −BB
′
)

}
.

(A.13)
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We now put z = 0 and use (A.4) and (A.5) to reduce the expression to:

∂zω0 =
−4

(|A0|2 − |B0|2)2
×

{
− 4ℑ{G′

0(A0 +B0)−G0(A
′
0 +B′

0)}
{
|A0|2 − |B0|2

}
+ 4ℑ{G0(A0 +B0)} (A′

0A0 − A0A
′
0 −B′

0B0 +B0B
′
0)

}
.

(A.14)
The second line vanishes, and we now just have to verify that

Q ≡ ℑ{G′
0(A0 +B0)−G0(A

′
0 +B′

0)} = 0. (A.15)

To do that, let us use (A.10), we get

Q = ℑ{(G′
r + iG′

i)(A0 +B0)− (Gr + iGi)(A
′
0 +B′

0)} . (A.16)

Since we know that A0, B0 ∈ R and A′
0, B

′
0 ∈ I,

Q = G′
i(A0 +B0)−Gr(A

′
0 +B′

0), (A.17)

which we will have to brute force our way through.
The easiest way is to realise that

G′
i

A′
0 +B′

0

= m, (A.18)

then divide (A.17) by (A′
0+B′

0) and show that m(A0+B0)−Gr = 0 by looking individually
at the factors for R2, r2, Rr, R and r, which are all 0. Also, there is no independent term.

Thus we find that Q = 0, which means that ∂zω0 = 0 and the derivatives in (A.2) are
all identically 0, which verifies the equation (A.1) trivially for all ρ > 0, z = 0.
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