Christophe Delaere

Director of CP3


Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve

+32 10 47 3207


Personal homepage

UCL member card
LPHYS1345 - Etat solide
Ce cours constitue une introduction à la physique de l'état solide. En ce sens, sont abordés les différentes propriétés thermiques et électriques du solide. On mettra l'accent sur l'application des notions de base aux semi-conducteurs (applications micro-électroniques et techniques de détection des particules chargées) et à la supraconductivité.

MAFY1181 - Actualité de la physique
Cette activité a pour but de motiver l'étudiant en lui donnant une image ouverte et attrayante de la physique et des mathématiques d'aujourd'hui. Elle l'aidera aussi à préciser son choix d'études au-delà de la première année.
Mon séminaire porte sur le démarrage du LHC et les principaux objectifs de l'expérience CMS, parmis lesquels la recherche du boson de Higgs.

LPHY2131 - Physique des particules élémentaires I
Pour 1/3 du cours : Rappel : Constantes fondamentales et unités Matière ordinaire et unifications (quark-lepton) Anti-matière et symétries discrètes (C,P,T) Matière extraordinaire et masses (matrices de mélange CKM et MNS) Pour 2/3 du cours : partie expérimentale On discute ici plus en détail les expériences présentées dans le cours PHY1331. Une revue des découvertes de ces particules + des expérience liées à la violation de CP

LPHY2135 - Computing et Méthodes numériques en physique des particules
Sélection en ligne d'événements (systèmes de déclanchement et sélection hardware et software) - Méthodes de reconstruction d'événements : Tracking, vertexing, clustering et identification de particules. Techniques de calibration et alignement. - Techniques d'analyse des données - Générateurs MonteCarlo d'interactions entre particules - Simulation de la propagation de particules dans la matière. Des travaux personnels, largement informatisés, ayant pour but la simulation d'une expérience en physique des particules intégreront les cours théoriques.
People responsibilities
Research scientists
Jérôme de Favereau (UCL-cadre - UCL) (member since October 2002)
CP3 website developement and maintenance, issue tracking system, general support, cluster maintenance, openstack deployement, CMS detector upgrade among other things...
Pavel Demin (UCL-cadre - UCL)
I'm working for the CMS experiment. My current responsibilities: developing physics analysis software for CMS; heavy flavor jet tagging based on electron identification; enabling computing GRID at UCLouvain/CP3.
Olivier Mattelaer (UCL-cadre - UCL) (member since September 2005)
Responsible software maintenance and development of MadGraph5_aMC@NLO (including most of the associated package and plugin).

Agni Bethani (IISN - MAX-LHC) (member since July 2019)
Maksym Teklishyn (IISN - CMS-phase2) (member since July 2018)
I focus on the semiconductor detectors for particle physics. Currently involved in the Phase 2 upgrade of the CMS Tracker, preparing the QA and assembling center at UCLouvain. Participate in the development of the simulation software for the silicon detectors.

PhD students
Florian Bury (FNRS - aspirant) (member since October 2018)
Exploration of the use of deep neural networks for data analysis in CMS.
Martin Delcourt (UCL-assistants - UCL) (member since September 2014)
Development of a new tracker for the CMS upgrade phase 2 and study of the feasibility of measurements at the HL-LHC.
Khawla Jaffel (EOS - be.h) (member since January 2019)
Search for heavy resonance decaying into Z+A/H.
Alessia Saggio (UCL-FSR) (member since January 2016)
Experimentalist, involved in the development of new tools for multi-variate analysis and member of the CMS collaboration.

Former members
Research directions:
Phenomenology of elementary particles
Data analysis in HEP experiments
Detector commissioning, operation and data processing
Research and development of new detectors

Experiments and collaborations:

Active projects
a C++ software package to compute Matrix Element weights: MoMEMta
Jérôme de Favereau, Christophe Delaere, Pavel Demin, Vincent Lemaitre, Alessia Saggio

MoMEMta is a C++ software package to compute Matrix Element weights. Designed in a modular way, it covers the needs of experimental analysis workflows at the LHC. MoMEMta provides working examples for the most common final states (Formula: 0, WW, ...). If you are an expert user, be prepared to feel the freedom of configuring your MEM computation at all levels.
MoMEMta is based on:

- C++, ROOT, Lua scripting language
- Cuba (Monte-Carlo integration library)
- External PDFs (LHAPDF by default)
- External Matrix Elements (currently provided by our MadGraph C++ exporter plugin)
Advanced Multi-Variate Analysis for New Physics Searches at the LHC
Christophe Delaere, Andrea Giammanco, Vincent Lemaitre, Fabio Maltoni, Alessia Saggio

With the 2012 discovery of the Higgs boson at the Large Hadron Collider, LHC, the Standard Model of particle physics has been completed, emerging as a most successful description of matter at the smallest distance scales. But as is always the case, the observation of this particle has also heralded the dawn of a new era in the field: particle physics is now turning to the mysteries posed by the presence of dark matter in the universe, as well as the very existence of the Higgs. The upcoming run of the LHC at 13 TeV will probe possible answers to both issues, providing detailed measurements of the properties of the Higgs and extending significantly the sensitivity to new phenomena.

Since the LHC is the only accelerator currently exploring the energy frontier, it is imperative that the analyses of the collected data use the most powerful possible techniques. In recent years several analyses have utilized multi-variate analysis techniques, obtaining higher sensitivity; yet there is ample room for further improvement. With our program we will import and specialize the most powerful advanced statistical learning techniques to data analyses at the LHC, with the objective of maximizing the chance of new physics discoveries.

We are part of a network of European institutions whose goal is to foster the development and exploitation of Advanced Multi-Variate Analysis (AMVA) for New Physics searches. The network offers extensive training in both physics and advanced analysis techniques to graduate students, focusing on providing them with the know-how and the experience to boost their career prospects in and outside academia. The network develops ties with non-academic partners for the creation of interdisciplinary software tools, allowing a successful knowledge transfer in both directions. The network studies innovative techniques and identifies their suitability to problems encountered in searches for new physics at the LHC and detailed studies of the Higgs boson sector.

External collaborators: University of Oxford, INFN, University of Padova, Université Blaise Pascal, LIP, IASA, CERN, UCI, EPFL, B12 Consulting, SDG Consulting, Yandex, MathWorks.
CMS Tracker commissioning and performance assessment
Pieter David, Christophe Delaere, Martin Delcourt, Jessica Prisciandaro, Alessia Saggio, Jože Zobec

The CMS silicon strip tracker is the largest device of its type ever built. There are 24244 single-sided micro-strip sensors covering an active area of 198m2.
Physics performance of the detector are being constantly assessed and optimized as new data comes.
Members of UCL are playing a major role in the understanding of the silicon strip tracker and in the maintenance and development of the local reconstruction code.

External collaborators: CMS tracker collaboration.
Development of a framework for fast simulation of a generic collider experiment: Delphes
Jérôme de Favereau, Christophe Delaere, Pavel Demin, Andrea Giammanco, Vincent Lemaitre

Observability of new phenomenological models in High Energy experiments is delicate to evaluate, due to the complexity of the related detectors, DAQ chain and software. Delphes is a new framework for fast simulation of a general purpose experiment. The simulation includes a tracking system, a magnetic field, calorimetry and a muon system, and possible very forward detectors arranged along the beamline. The framework is interfaced to standard file format from event generators and outputs observable analysis data objects. The simulation takes into account the detector resolutions, usual reconstruction algorithms for complex objects (FastJet) and a simplified trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the Hector software.
Search for Higgs boson(s) in CMS at the LHC in the llbb topology
Jérôme de Favereau, Christophe Delaere, Khawla Jaffel, Vincent Lemaitre

Search for Higgs boson(s) within the Standard Model and beyond and also withing a minimal extension of the scalar sector (2HDM).

The final state under study is a Z decaying into a lepton pair associated with two b-jets. This topology is sensitive to a light SM Higgs via the associate ZH production, as well as a middle mass range SM Higgs boson via the inclusive Higgs production followed by its decay into ZZ with one Z decaying into a lepton pair and the other into bbar.

It is also very sensitive to the production of a non standard heavy Higgs boson decaying into Z plus A (pseudo scalar Higgs boson).

Similar selection (but outside of the Z window) is also sensitive to H->aa->llbb, with "a" a generic light scalar.

External collaborators: CMS collaboration.
Search for nonresonant Higgs boson pair production in the llbb+MET final state
Christophe Delaere, Martin Delcourt, Vincent Lemaitre, Fabio Maltoni

The discovery of a Higgs boson (H) by the ATLAS and CMS experiments fixes the value of the self-coupling λ in the scalar potential whose form is determined by the symmetries of the Standard Model and the requirement of renormalisability. Higgs boson pair production is sensitive to the self-coupling and will play a major role in investigating the scalar potential structure.

This project consists in a search for nonresonant Higgs boson pair production via gluon fusion in the final state with two leptons, two b jets and missing transvere energy – gg → H(bb) H(WW) asking for the leptonic decay of the W's. The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
Search for resonant Higgs pair production in the llbb+MET final state
Christophe Delaere, Martin Delcourt, Vincent Lemaitre

The recent discovery of a scalar boson compatible with the Standard Model (SM) Higgs boson opened new windows to look for physics beyond the SM (BSM). An example of newly accessible phenomenology is the production of resonances decaying into two SM Higgs bosons (h) predicted by several theory families such as additional Higgs singlet/doublet or warped extra dimension.

This project consists in a search for spin-0 or spin-2 resonances produced via gluon fusion in the final state with two leptons, two b-jets and missing transverse energy – gg → X → h(bb) h(WW) asking for the leptonic decay of the W's. In particular, we are probing a mass range between 260 GeV and 900 GeV.
Study and optimization of b-tagging performances in CMS
Christophe Delaere

We are involved in the activities of the btag POG (performance object group) of CMS, in release and data validation and purity measurement. We are also interested in btagging in special cases like for colinear b-jets. Furthermore, we are involved in the re-optimization and improvement of the Combined Secondary Vertex (CSV) tagger for the 2012 analyses.

External collaborators: Strasbourg CMS group, CMS collaboration.
The CMS silicon strip tracker upgrade
Giacomo Bruno, Florian Bury, Eduardo Cortina Gil, Jérôme de Favereau, Christophe Delaere, Martin Delcourt, Pavel Demin, Khawla Jaffel, Vincent Lemaitre

Development of the "phase II" upgrade for the CMS silicon strip stracker.

More precisely, we are involved in the development of the uTCA-based DAQ system and in the test/validation of the first prototype modules. We take active part to the various test-beam campaigns (CERN, DESY, ...)

This activity will potentially make use of the cyclotron of UCL, the probe stations and the SYCOC setup (SYstem de mesure de COllection de Charge) to test the response to laser light, radioactive sources and beams.

The final goal is to take a leading role in the construction of part of the CMS Phase-II tracker.

External collaborators: CRC and CMS collaboration.

Non-active projects
Publications in CP3
All my publications on Inspire

Number of publications as CP3 member: 46 Download BibTeX

Last 5 publications


CP3-19-29: Search for 2HDM neutral Higgs bosons through the H → ZA → llbb process
Alessia Saggio, Olivier Bondu, Miguel Vidal Marono, Christophe Delaere, Pieter David, Sebastien Wertz

[Full text]
Private experimental note. May 29.
CP3-19-28: Search for 2HDM neutral Higgs bosons through the H→ZA→ℓ+ℓ−bb process in proton-proton collisions at sqrt(s)=13 TeV
CMS collaboration

[Full text 1] [Full text 2]
Public experimental note. May 29.


CP3-18-30: MoMEMta, a modular toolkit for the Matrix Element Method at the LHC
Brochet, Sébastien and Delaere, Christophe and François, Brieuc and Lemaître, Vincent and Mertens, Alexandre and Saggio, Alessia and Vidal Marono, Miguel and Wertz, Sébastien

[Abstract] [PDF] [Journal] [Dial]
Published in EPJ.C
Refereed paper. May 23.


CP3-17-56: The Phase-2 Upgrade of the CMS Tracker
CMS collaboration

[Full text]
CERN-LHCC-2017-009 ; CMS-TDR-014
Refereed paper. December 13.
CP3-17-30: Search for resonant production of two Higgs bosons in the b-blν lν final state in 2016 data
O. Bondu, S. Brochet, C. Delaere, M. Delcourt, B. Francois, V. Lemaitre, M. Vidal Marono, S. Wertz

[Full text]
CMS AN-2016/444; Restricted access
Private experimental note. August 21.

More publications