Contact
Name
Nicolas Szilasi

Position
Technical staff

Email
nicolas.szilasi@uclouvain.be

Address
Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.01
B-1348 Louvain-la-Neuve
Belgium

Phone
+32 10 47 3258

Office
E.157

UCL member card
http://www.uclouvain.be/nicolas.szilasi
Projects
Research directions:
Cosmology and General Relativity
Detector commissioning, operation and data processing
Research and development of new detectors

Experiments and collaborations:
CMS
Einstein Telescope
ETpathfinder
MURAVES

Active projects
ETpathfinder - Bench top suspension design and fabrication
Giacomo Bruno, Nicolas Szilasi

The ETpathfinder is an R&D infrastructure for testing and prototyping innovative concepts and enabling technologies for the Einstein Telescope, the European concept for a new class of future gravitational wave observatories. ETpathfinder is funded by the interreg program of the EU. The ETpathfinder project broadly consists of six vacuum towers. Four towers are cryogenic and hold suspensions for the mirrors (or test masses) of the experiment. Two towers are operated at room temperature. They hold suspensions for optical tables which hold smaller optics that prepare the beams to be shot into both arms (mode cleaning, frequency stabilisation etc.) and hold the beamsplitters and detection optics.

Many of these optics are suspended individually with small bench top suspensions so they can be steered and additionally seismically isolated. This project concerns the design, prototyping and partial fabrication of >10 suspensions of order 75cm high.

External collaborators: S. Hild (Maastricht), A. Bertolini (Nikhef), Conor Mow-Lowry (Nikhef), Ken Strain (and other LIGO HRTS designers) and ETpathfinder collaboration.
Imaging with cosmic-ray muons
Abhishek Chauhan, Eduardo Cortina Gil, Pavel Demin, Khalil El Achi, Andrea Giammanco, Sumaira Ikram, Maxime Lagrange, Nicolas Szilasi, Ayman Youssef, Zahraa Zaher

The general goal of this project is to develop muon-based radiography or tomography (“muography”), an innovative multidisciplinary approach to study large-scale natural or man-made structures, establishing a strong synergy between particle physics and other disciplines, such as geology and archaeology.
Muography is an imaging technique that relies on the measurement of the absorption of muons produced by the interactions of cosmic rays with the atmosphere.
Applications span from geophysics (the study of the interior of mountains and the remote quasi-online monitoring of active volcanoes) to archaeology and mining.

We are using the local facilities at CP3 for the development of high-resolution portable detectors based on Resistive Plate Chambers.

We also participate to the MURAVES collaboration through simulations (including the coordination of the Monte Carlo group), data-analysis developments (an example of the latter is the implementation and in-situ calibration of time-of-flight capabilities), and development of a new database.

We are part of the H2020-RIA project SilentBorder, which aims at developing new muon scanners at border controls. Our role in this project is to develop a parametric simulation and a ML-based detector optimization procedure.

We are also part of the H2020-MSCA-RISE network INTENSE where we coordinate the Muography work package, which brings together particle physicists, geophysicists, archaeologists, civil engineers and private companies for the development and exploitation of this imaging method.

External collaborators: UGent; Kyushu University; INTENSE Research & Innovation Staff Exchange network (Japan, Switzerland, Italy, France, Hungary); SilentBorder network (Estonia, Germany, Finland, Turkey, Italy, UK); MURAVES Collaboration including INFN, INGV, universities of Florence and Federico II Naples, UGent, VUB.
The CMS silicon strip tracker upgrade
Anna Benecke, Agni Bethani, Laurent Bruniaux, Jérôme de Favereau, Christophe Delaere, Pavel Demin, Paul Malek, Nicolas Szilasi, Semra Turkcapar

Development of the "phase II" upgrade for the CMS silicon strip stracker.

More precisely, we are involved in the development of the uTCA-based DAQ system and in the test/validation of the first prototype modules. We take active part to the various test-beam campaigns (CERN, DESY, ...)

This activity will potentially make use of the cyclotron of UCL, the probe stations and the SYCOC setup (SYstem de mesure de COllection de Charge) to test the response to laser light, radioactive sources and beams.

The final goal is to take a leading role in the construction of part of the CMS Phase-II tracker.

External collaborators: CRC and CMS collaboration.
Publications in IRMP
All my publications on Inspire

Number of publications as IRMP member: 3

2022

CP3-22-38: Strategies and performance of the CMS silicon tracker alignment during LHC Run~2
Tumasyan, Armen and others

[Abstract] [PDF] [Local file] [Journal] [Dial] [Full text]
Published in Nucl. Instrum. Meth. A
Refereed paper. August 12.

2020

CP3-20-33: Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector
CMS Tracker Collaboration

[Journal] [Full text]
Published in: JINST 13 (2018) 03, P03003, Report number: FERMILAB-PUB-18-385-CMS, CERN-CMS-NOTE-2017-010

O. Bondu5, S. Brochet5, A. Caudron5, S. De Visscher5, B. Francois5, A. Jafari5, J. Cabrera Jamoulle5, M. Komm5, G. Krintiras5, A. Magitteri5, A. Mertens5, D. Michotte5, M. Musich5,, L. Quertenmont5, M. Vidal Marono5,
Refereed paper. July 2.
CP3-20-32: Beam test performance of prototype silicon detectors for the Outer Tracker for the Phase-2 Upgrade of CMS
CMS Tracker Group

[Journal] [Full text]
Published 17 March 2020 • © 2020 CERN for the benefit of the CMS collaboration.
Refereed paper. July 2.