1 | /***********************************************************************
|
---|
2 | ** **
|
---|
3 | ** /----------------------------------------------\ **
|
---|
4 | ** | Delphes, a framework for the fast simulation | **
|
---|
5 | ** | of a generic collider experiment | **
|
---|
6 | ** \----------------------------------------------/ **
|
---|
7 | ** **
|
---|
8 | ** **
|
---|
9 | ** This package uses: **
|
---|
10 | ** ------------------ **
|
---|
11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
14 | ** **
|
---|
15 | ** ------------------------------------------------------------------ **
|
---|
16 | ** **
|
---|
17 | ** Main authors: **
|
---|
18 | ** ------------- **
|
---|
19 | ** **
|
---|
20 | ** Severine Ovyn Xavier Rouby **
|
---|
21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
22 | ** **
|
---|
23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
24 | ** Universite catholique de Louvain (UCL) **
|
---|
25 | ** Louvain-la-Neuve, Belgium **
|
---|
26 | ** **
|
---|
27 | ** Copyright (C) 2008-2009, **
|
---|
28 | ** All rights reserved. **
|
---|
29 | ** **
|
---|
30 | ***********************************************************************/
|
---|
31 |
|
---|
32 |
|
---|
33 | /// \file SmearUtil.cc
|
---|
34 | /// \brief RESOLution class, and some generic definitions
|
---|
35 |
|
---|
36 |
|
---|
37 | #include "SmearUtil.h"
|
---|
38 | #include "TRandom.h"
|
---|
39 |
|
---|
40 | #include <iostream>
|
---|
41 | #include <fstream>
|
---|
42 | #include <sstream>
|
---|
43 | #include <iomanip>
|
---|
44 | using namespace std;
|
---|
45 |
|
---|
46 | //------------------------------------------------------------------------------
|
---|
47 |
|
---|
48 | RESOLution::RESOLution() {
|
---|
49 |
|
---|
50 | // Detector characteristics
|
---|
51 | CEN_max_tracker = 2.5; // Maximum tracker coverage
|
---|
52 | CEN_max_calo_cen = 3.0; // central calorimeter coverage
|
---|
53 | CEN_max_calo_fwd = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
54 | CEN_max_mu = 2.4; // muon chambers pseudorapidity coverage
|
---|
55 |
|
---|
56 | // Energy resolution for electron/photon
|
---|
57 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
58 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
59 | ELG_Ncen = 0.25; // N term for central ECAL
|
---|
60 | ELG_Ccen = 0.005; // C term for central ECAL
|
---|
61 | ELG_Sfwd = 2.084; // S term for FCAL
|
---|
62 | ELG_Nfwd = 0.0; // N term for FCAL
|
---|
63 | ELG_Cfwd = 0.107; // C term for FCAL
|
---|
64 |
|
---|
65 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
66 | // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
67 | HAD_Shcal = 1.5; // S term for central HCAL
|
---|
68 | HAD_Nhcal = 0.; // N term for central HCAL
|
---|
69 | HAD_Chcal = 0.05; // C term for central HCAL
|
---|
70 | HAD_Shf = 2.7; // S term for FCAL
|
---|
71 | HAD_Nhf = 0.; // N term for FCAL
|
---|
72 | HAD_Chf = 0.13; // C term for FCAL
|
---|
73 |
|
---|
74 | // Muon smearing
|
---|
75 | MU_SmearPt = 0.01;
|
---|
76 |
|
---|
77 | // Tracking efficiencies
|
---|
78 | TRACK_ptmin = 0.9; // minimal pt needed to reach the calorimeter in GeV
|
---|
79 | TRACK_eff = 100; // efficiency associated to the tracking
|
---|
80 |
|
---|
81 | // Calorimetric towers
|
---|
82 | TOWER_number = 40;
|
---|
83 | const float tower_eta_edges[41] = {
|
---|
84 | 0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
|
---|
85 | 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
|
---|
86 | 4.350, 4.525, 4.700, 5.000}; // temporary object
|
---|
87 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
88 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
|
---|
89 |
|
---|
90 | const float tower_dphi[40] = {
|
---|
91 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
|
---|
92 | 10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; // temporary object
|
---|
93 | TOWER_dphi = new float[TOWER_number];
|
---|
94 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
|
---|
95 |
|
---|
96 |
|
---|
97 | // Thresholds for reconstructed objetcs
|
---|
98 | PTCUT_elec = 10.0;
|
---|
99 | PTCUT_muon = 10.0;
|
---|
100 | PTCUT_jet = 20.0;
|
---|
101 | PTCUT_gamma = 10.0;
|
---|
102 | PTCUT_taujet = 10.0;
|
---|
103 |
|
---|
104 | // Isolation
|
---|
105 | ISOL_PT = 2.0; //minimal pt of tracks for isolation criteria
|
---|
106 | ISOL_Cone = 0.5; //Cone for isolation criteria
|
---|
107 | ISOL_Calo_ET = 1E99; //minimal tower energy for isolation criteria. Default off = 1E99
|
---|
108 | ISOL_Calo_Cone = 0.5; //Cone for calorimetric isolation
|
---|
109 | ISOL_Calo_Grid = 3; //Grid size (N x N) for calorimetric isolation
|
---|
110 |
|
---|
111 | // General jet variable
|
---|
112 | JET_coneradius = 0.7; // generic jet radius ; not for tau's !!!
|
---|
113 | JET_jetalgo = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
114 | JET_seed = 1.0; // minimum seed to start jet reconstruction
|
---|
115 |
|
---|
116 | // Tagging definition
|
---|
117 | BTAG_b = 40;
|
---|
118 | BTAG_mistag_c = 10;
|
---|
119 | BTAG_mistag_l = 1;
|
---|
120 |
|
---|
121 | // FLAGS
|
---|
122 | FLAG_bfield = 1; //1 to run the bfield propagation else 0
|
---|
123 | FLAG_vfd = 1; //1 to run the very forward detectors else 0
|
---|
124 | FLAG_RP = 1; //1 to run the zero degree calorimeter else 0
|
---|
125 | FLAG_trigger = 1; //1 to run the trigger selection else 0
|
---|
126 | FLAG_frog = 1; //1 to run the FROG event display
|
---|
127 | FLAG_lhco = 1;
|
---|
128 |
|
---|
129 | // In case BField propagation allowed
|
---|
130 | TRACK_radius = 129; //radius of the BField coverage
|
---|
131 | TRACK_length = 300; //length of the BField coverage
|
---|
132 | TRACK_bfield_x = 0; //X composant of the BField
|
---|
133 | TRACK_bfield_y = 0; //Y composant of the BField
|
---|
134 | TRACK_bfield_z = 3.8; //Z composant of the BField
|
---|
135 |
|
---|
136 | // In case Very forward detectors allowed
|
---|
137 | VFD_min_calo_vfd = 5.2; // very forward calorimeter (if any) like CASTOR
|
---|
138 | VFD_max_calo_vfd = 6.6;
|
---|
139 | VFD_min_zdc = 8.3;
|
---|
140 | VFD_s_zdc = 140; // distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
|
---|
141 |
|
---|
142 | RP_220_s = 220; // distance of the RP to the IP, in meters
|
---|
143 | RP_220_x = 0.002; // distance of the RP to the beam, in meters
|
---|
144 | RP_420_s = 420; // distance of the RP to the IP, in meters
|
---|
145 | RP_420_x = 0.004; // distance of the RP to the beam, in meters
|
---|
146 | RP_IP_name = "IP5";
|
---|
147 | RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
148 | RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
|
---|
149 |
|
---|
150 | // In case FROG event display allowed
|
---|
151 | NEvents_Frog = 10;
|
---|
152 |
|
---|
153 | //********************************************
|
---|
154 | //jet stuffs not defined in the input datacard
|
---|
155 | //********************************************
|
---|
156 |
|
---|
157 | JET_overlap = 0.75;
|
---|
158 | // MidPoint algorithm definition
|
---|
159 | JET_M_coneareafraction = 0.25;
|
---|
160 | JET_M_maxpairsize = 2;
|
---|
161 | JET_M_maxiterations = 100;
|
---|
162 | // Define Cone algorithm.
|
---|
163 | JET_C_adjacencycut = 2;
|
---|
164 | JET_C_maxiterations = 100;
|
---|
165 | JET_C_iratch = 1;
|
---|
166 | //Define SISCone algorithm.
|
---|
167 | JET_S_npass = 0;
|
---|
168 | JET_S_protojet_ptmin= 0.0;
|
---|
169 |
|
---|
170 | //For Tau-jet definition
|
---|
171 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
172 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
173 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
174 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
175 |
|
---|
176 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to do b-tag
|
---|
177 |
|
---|
178 | //for very forward detectors
|
---|
179 | RP_offsetEl_s = 120;
|
---|
180 | RP_offsetEl_x = 0.097;
|
---|
181 | RP_cross_x = -500;
|
---|
182 | RP_cross_y = 0.0;
|
---|
183 | RP_cross_ang = 142.5;
|
---|
184 |
|
---|
185 | }
|
---|
186 |
|
---|
187 |
|
---|
188 | RESOLution::RESOLution(const RESOLution & DET) {
|
---|
189 | // Detector characteristics
|
---|
190 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
191 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
192 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
193 | CEN_max_mu = DET.CEN_max_mu;
|
---|
194 |
|
---|
195 | // Energy resolution for electron/photon
|
---|
196 | ELG_Scen = DET.ELG_Scen;
|
---|
197 | ELG_Ncen = DET.ELG_Ncen;
|
---|
198 | ELG_Ccen = DET.ELG_Ccen;
|
---|
199 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
200 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
201 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
202 |
|
---|
203 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
204 | HAD_Shcal = DET.HAD_Shcal;
|
---|
205 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
206 | HAD_Chcal = DET.HAD_Chcal;
|
---|
207 | HAD_Shf = DET.HAD_Shf;
|
---|
208 | HAD_Nhf = DET.HAD_Nhf;
|
---|
209 | HAD_Chf = DET.HAD_Chf;
|
---|
210 |
|
---|
211 | // Muon smearing
|
---|
212 | MU_SmearPt = DET.MU_SmearPt;
|
---|
213 |
|
---|
214 | // Tracking efficiencies
|
---|
215 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
216 | TRACK_eff = DET.TRACK_eff;
|
---|
217 |
|
---|
218 | // Calorimetric towers
|
---|
219 | TOWER_number = DET.TOWER_number;
|
---|
220 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
221 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
222 |
|
---|
223 | TOWER_dphi = new float[TOWER_number];
|
---|
224 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
225 |
|
---|
226 | // Thresholds for reconstructed objetcs
|
---|
227 | PTCUT_elec = DET.PTCUT_elec;
|
---|
228 | PTCUT_muon = DET.PTCUT_muon;
|
---|
229 | PTCUT_jet = DET.PTCUT_jet;
|
---|
230 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
231 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
232 |
|
---|
233 | // Isolation
|
---|
234 | ISOL_PT = DET.ISOL_PT; // tracking isolation
|
---|
235 | ISOL_Cone = DET.ISOL_Cone;
|
---|
236 | ISOL_Calo_ET = DET.ISOL_Calo_ET; // calorimeter isolation, defaut off
|
---|
237 | ISOL_Calo_Cone = DET.ISOL_Calo_Cone;
|
---|
238 | ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
|
---|
239 |
|
---|
240 |
|
---|
241 | // General jet variable
|
---|
242 | JET_coneradius = DET.JET_coneradius;
|
---|
243 | JET_jetalgo = DET.JET_jetalgo;
|
---|
244 | JET_seed = DET.JET_seed;
|
---|
245 |
|
---|
246 | // Tagging definition
|
---|
247 | BTAG_b = DET.BTAG_b;
|
---|
248 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
249 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
250 |
|
---|
251 | // FLAGS
|
---|
252 | FLAG_bfield = DET.FLAG_bfield;
|
---|
253 | FLAG_vfd = DET.FLAG_vfd;
|
---|
254 | FLAG_RP = DET.FLAG_RP;
|
---|
255 | FLAG_trigger = DET.FLAG_trigger;
|
---|
256 | FLAG_frog = DET.FLAG_frog;
|
---|
257 | FLAG_lhco = DET.FLAG_lhco;
|
---|
258 |
|
---|
259 | // In case BField propagation allowed
|
---|
260 | TRACK_radius = DET.TRACK_radius;
|
---|
261 | TRACK_length = DET.TRACK_length;
|
---|
262 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
263 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
264 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
265 |
|
---|
266 | // In case Very forward detectors allowed
|
---|
267 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
268 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
269 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
270 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
271 |
|
---|
272 | RP_220_s = DET.RP_220_s;
|
---|
273 | RP_220_x = DET.RP_220_x;
|
---|
274 | RP_420_s = DET.RP_420_s;
|
---|
275 | RP_420_x = DET.RP_420_x;
|
---|
276 | RP_beam1Card = DET.RP_beam1Card;
|
---|
277 | RP_beam2Card = DET.RP_beam2Card;
|
---|
278 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
279 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
280 | RP_cross_x = DET.RP_cross_x;
|
---|
281 | RP_cross_y = DET.RP_cross_y;
|
---|
282 | RP_cross_ang = DET.RP_cross_ang;
|
---|
283 | RP_IP_name = DET.RP_IP_name;
|
---|
284 |
|
---|
285 | // In case FROG event display allowed
|
---|
286 | NEvents_Frog = DET.NEvents_Frog;
|
---|
287 |
|
---|
288 | JET_overlap = DET.JET_overlap;
|
---|
289 | // MidPoint algorithm definition
|
---|
290 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
291 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
292 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
293 | // Define Cone algorithm.
|
---|
294 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
295 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
296 | JET_C_iratch = DET.JET_C_iratch;
|
---|
297 | //Define SISCone algorithm.
|
---|
298 | JET_S_npass = DET.JET_S_npass;
|
---|
299 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
300 |
|
---|
301 | //For Tau-jet definition
|
---|
302 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
303 | TAU_track_scone = DET.TAU_track_scone;
|
---|
304 | TAU_track_pt = DET.TAU_track_pt;
|
---|
305 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
306 |
|
---|
307 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
308 | }
|
---|
309 |
|
---|
310 | RESOLution& RESOLution::operator=(const RESOLution& DET) {
|
---|
311 | if(this==&DET) return *this;
|
---|
312 | // Detector characteristics
|
---|
313 | CEN_max_tracker = DET.CEN_max_tracker;
|
---|
314 | CEN_max_calo_cen = DET.CEN_max_calo_cen;
|
---|
315 | CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
|
---|
316 | CEN_max_mu = DET.CEN_max_mu;
|
---|
317 |
|
---|
318 | // Energy resolution for electron/photon
|
---|
319 | ELG_Scen = DET.ELG_Scen;
|
---|
320 | ELG_Ncen = DET.ELG_Ncen;
|
---|
321 | ELG_Ccen = DET.ELG_Ccen;
|
---|
322 | ELG_Cfwd = DET.ELG_Cfwd;
|
---|
323 | ELG_Sfwd = DET.ELG_Sfwd;
|
---|
324 | ELG_Nfwd = DET.ELG_Nfwd;
|
---|
325 |
|
---|
326 | // Energy resolution for hadrons in ecal/hcal/hf
|
---|
327 | HAD_Shcal = DET.HAD_Shcal;
|
---|
328 | HAD_Nhcal = DET.HAD_Nhcal;
|
---|
329 | HAD_Chcal = DET.HAD_Chcal;
|
---|
330 | HAD_Shf = DET.HAD_Shf;
|
---|
331 | HAD_Nhf = DET.HAD_Nhf;
|
---|
332 | HAD_Chf = DET.HAD_Chf;
|
---|
333 |
|
---|
334 | // Muon smearing
|
---|
335 | MU_SmearPt = DET.MU_SmearPt;
|
---|
336 |
|
---|
337 | // Tracking efficiencies
|
---|
338 | TRACK_ptmin = DET.TRACK_ptmin;
|
---|
339 | TRACK_eff = DET.TRACK_eff;
|
---|
340 |
|
---|
341 | // Calorimetric towers
|
---|
342 | TOWER_number = DET.TOWER_number;
|
---|
343 | TOWER_eta_edges = new float[TOWER_number+1];
|
---|
344 | for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
|
---|
345 |
|
---|
346 | TOWER_dphi = new float[TOWER_number];
|
---|
347 | for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
|
---|
348 |
|
---|
349 | // Thresholds for reconstructed objetcs
|
---|
350 | PTCUT_elec = DET.PTCUT_elec;
|
---|
351 | PTCUT_muon = DET.PTCUT_muon;
|
---|
352 | PTCUT_jet = DET.PTCUT_jet;
|
---|
353 | PTCUT_gamma = DET.PTCUT_gamma;
|
---|
354 | PTCUT_taujet = DET.PTCUT_taujet;
|
---|
355 |
|
---|
356 | // Isolation
|
---|
357 | ISOL_PT = DET.ISOL_PT; // tracking isolation
|
---|
358 | ISOL_Cone = DET.ISOL_Cone;
|
---|
359 | ISOL_Calo_ET = DET.ISOL_Calo_ET; // calorimeter isolation, defaut off
|
---|
360 | ISOL_Calo_Cone = DET.ISOL_Calo_Cone;
|
---|
361 | ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
|
---|
362 |
|
---|
363 | // General jet variable
|
---|
364 | JET_coneradius = DET.JET_coneradius;
|
---|
365 | JET_jetalgo = DET.JET_jetalgo;
|
---|
366 | JET_seed = DET.JET_seed;
|
---|
367 |
|
---|
368 | // Tagging definition
|
---|
369 | BTAG_b = DET.BTAG_b;
|
---|
370 | BTAG_mistag_c = DET.BTAG_mistag_c;
|
---|
371 | BTAG_mistag_l = DET.BTAG_mistag_l;
|
---|
372 |
|
---|
373 | // FLAGS
|
---|
374 | FLAG_bfield = DET.FLAG_bfield;
|
---|
375 | FLAG_vfd = DET.FLAG_vfd;
|
---|
376 | FLAG_RP = DET.FLAG_RP;
|
---|
377 | FLAG_trigger = DET.FLAG_trigger;
|
---|
378 | FLAG_frog = DET.FLAG_frog;
|
---|
379 | FLAG_lhco = DET.FLAG_lhco;
|
---|
380 |
|
---|
381 | // In case BField propagation allowed
|
---|
382 | TRACK_radius = DET.TRACK_radius;
|
---|
383 | TRACK_length = DET.TRACK_length;
|
---|
384 | TRACK_bfield_x = DET.TRACK_bfield_x;
|
---|
385 | TRACK_bfield_y = DET.TRACK_bfield_y;
|
---|
386 | TRACK_bfield_z = DET.TRACK_bfield_z;
|
---|
387 |
|
---|
388 | // In case Very forward detectors allowed
|
---|
389 | VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
|
---|
390 | VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
|
---|
391 | VFD_min_zdc = DET.VFD_min_zdc;
|
---|
392 | VFD_s_zdc = DET.VFD_s_zdc;
|
---|
393 |
|
---|
394 | RP_220_s = DET.RP_220_s;
|
---|
395 | RP_220_x = DET.RP_220_x;
|
---|
396 | RP_420_s = DET.RP_420_s;
|
---|
397 | RP_420_x = DET.RP_420_x;
|
---|
398 | RP_offsetEl_s = DET.RP_offsetEl_s;
|
---|
399 | RP_offsetEl_x = DET.RP_offsetEl_x;
|
---|
400 | RP_beam1Card = DET.RP_beam1Card;
|
---|
401 | RP_beam2Card = DET.RP_beam2Card;
|
---|
402 | RP_cross_x = DET.RP_cross_x;
|
---|
403 | RP_cross_y = DET.RP_cross_y;
|
---|
404 | RP_cross_ang = DET.RP_cross_ang;
|
---|
405 | RP_IP_name = DET.RP_IP_name;
|
---|
406 |
|
---|
407 |
|
---|
408 | // In case FROG event display allowed
|
---|
409 | NEvents_Frog = DET.NEvents_Frog;
|
---|
410 |
|
---|
411 | JET_overlap = DET.JET_overlap;
|
---|
412 | // MidPoint algorithm definition
|
---|
413 | JET_M_coneareafraction = DET.JET_M_coneareafraction;
|
---|
414 | JET_M_maxpairsize = DET.JET_M_maxpairsize;
|
---|
415 | JET_M_maxiterations = DET.JET_M_maxiterations;
|
---|
416 | // Define Cone algorithm.
|
---|
417 | JET_C_adjacencycut = DET.JET_C_adjacencycut;
|
---|
418 | JET_C_maxiterations = DET.JET_C_maxiterations;
|
---|
419 | JET_C_iratch = DET.JET_C_iratch;
|
---|
420 | //Define SISCone algorithm.
|
---|
421 | JET_S_npass = DET.JET_S_npass;
|
---|
422 | JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
|
---|
423 |
|
---|
424 | //For Tau-jet definition
|
---|
425 | TAU_energy_scone = DET.TAU_energy_scone;
|
---|
426 | TAU_track_scone = DET.TAU_track_scone;
|
---|
427 | TAU_track_pt = DET.TAU_track_pt;
|
---|
428 | TAU_energy_frac = DET.TAU_energy_frac;
|
---|
429 |
|
---|
430 | PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
|
---|
431 | return *this;
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 |
|
---|
436 |
|
---|
437 | //------------------------------------------------------------------------------
|
---|
438 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
439 |
|
---|
440 | string temp_string;
|
---|
441 | istringstream curstring;
|
---|
442 |
|
---|
443 | ifstream fichier_a_lire(datacard.c_str());
|
---|
444 | if(!fichier_a_lire.good()) {
|
---|
445 | cout <<"** WARNING: Datadard not found, use default values **" << endl;
|
---|
446 | return;
|
---|
447 | }
|
---|
448 |
|
---|
449 | while (getline(fichier_a_lire,temp_string)) {
|
---|
450 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
451 | curstring.str(temp_string);
|
---|
452 | string varname;
|
---|
453 | float value; int ivalue; string svalue;
|
---|
454 |
|
---|
455 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
456 | else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
|
---|
457 | else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
|
---|
458 | else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
|
---|
459 | else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
|
---|
460 |
|
---|
461 | else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
|
---|
462 | else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
|
---|
463 | else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
|
---|
464 | else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
|
---|
465 |
|
---|
466 | else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
|
---|
467 | else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
|
---|
468 | else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
|
---|
469 | else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
|
---|
470 | else if(strstr(temp_string.c_str(),"RP_beam1Card")) {curstring >> varname >> svalue;RP_beam1Card = svalue;}
|
---|
471 | else if(strstr(temp_string.c_str(),"RP_beam2Card")) {curstring >> varname >> svalue;RP_beam2Card = svalue;}
|
---|
472 | else if(strstr(temp_string.c_str(),"RP_IP_name")) {curstring >> varname >> svalue;RP_IP_name = svalue;}
|
---|
473 |
|
---|
474 | else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
|
---|
475 | else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
|
---|
476 | else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
|
---|
477 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
478 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
479 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
480 | else if(strstr(temp_string.c_str(),"HAD_Shcal")) {curstring >> varname >> value; HAD_Shcal = value;}
|
---|
481 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
482 | else if(strstr(temp_string.c_str(),"HAD_Chcal")) {curstring >> varname >> value; HAD_Chcal = value;}
|
---|
483 | else if(strstr(temp_string.c_str(),"HAD_Shf")) {curstring >> varname >> value; HAD_Shf = value;}
|
---|
484 | else if(strstr(temp_string.c_str(),"HAD_Nhf")) {curstring >> varname >> value; HAD_Nhf = value;}
|
---|
485 | else if(strstr(temp_string.c_str(),"HAD_Chf")) {curstring >> varname >> value; HAD_Chf = value;}
|
---|
486 | else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
|
---|
487 |
|
---|
488 | else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
|
---|
489 | else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
|
---|
490 | else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
|
---|
491 | else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
|
---|
492 | else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
|
---|
493 | else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
|
---|
494 | else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
|
---|
495 | else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> ivalue;TRACK_eff = ivalue;}
|
---|
496 |
|
---|
497 | else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
|
---|
498 | else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
|
---|
499 | curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
|
---|
500 | else if(strstr(temp_string.c_str(),"TOWER_dphi")){
|
---|
501 | curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
|
---|
502 |
|
---|
503 | else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
|
---|
504 | else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
|
---|
505 | else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
|
---|
506 | else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
|
---|
507 | else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
|
---|
508 |
|
---|
509 | else if(strstr(temp_string.c_str(),"ISOL_PT")) {curstring >> varname >> value; ISOL_PT = value;}
|
---|
510 | else if(strstr(temp_string.c_str(),"ISOL_Cone")) {curstring >> varname >> value; ISOL_Cone = value;}
|
---|
511 | else if(strstr(temp_string.c_str(),"ISOL_Calo_ET")) {curstring >> varname >> value; ISOL_Calo_ET = value;}
|
---|
512 | else if(strstr(temp_string.c_str(),"ISOL_Calo_Cone")) {curstring >> varname >> value; ISOL_Calo_Cone = value;}
|
---|
513 | else if(strstr(temp_string.c_str(),"ISOL_Calo_Grid")) {curstring >> varname >> ivalue; ISOL_Calo_Grid = ivalue;}
|
---|
514 |
|
---|
515 | else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
|
---|
516 | else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
|
---|
517 | else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
|
---|
518 |
|
---|
519 | else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> ivalue;BTAG_b = ivalue;}
|
---|
520 | else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> ivalue;BTAG_mistag_c = ivalue;}
|
---|
521 | else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> ivalue;BTAG_mistag_l = ivalue;}
|
---|
522 |
|
---|
523 | else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
|
---|
524 | else if(strstr(temp_string.c_str(),"FLAG_RP")) {curstring >> varname >> ivalue; FLAG_RP = ivalue;}
|
---|
525 | else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
|
---|
526 | else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
|
---|
527 | else if(strstr(temp_string.c_str(),"FLAG_lhco")) {curstring >> varname >> ivalue; FLAG_lhco = ivalue;}
|
---|
528 | else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
|
---|
529 | }
|
---|
530 |
|
---|
531 | //jet stuffs not defined in the input datacard
|
---|
532 | JET_overlap = 0.75;
|
---|
533 | // MidPoint algorithm definition
|
---|
534 | JET_M_coneareafraction = 0.25;
|
---|
535 | JET_M_maxpairsize = 2;
|
---|
536 | JET_M_maxiterations = 100;
|
---|
537 | // Define Cone algorithm.
|
---|
538 | JET_C_adjacencycut = 2;
|
---|
539 | JET_C_maxiterations = 100;
|
---|
540 | JET_C_iratch = 1;
|
---|
541 | //Define SISCone algorithm.
|
---|
542 | JET_S_npass = 0;
|
---|
543 | JET_S_protojet_ptmin= 0.0;
|
---|
544 |
|
---|
545 | //For Tau-jet definition
|
---|
546 | TAU_energy_scone = 0.15; // radius R of the cone for tau definition, based on energy threshold
|
---|
547 | TAU_track_scone = 0.4; // radius R of the cone for tau definition, based on track number
|
---|
548 | TAU_track_pt = 2; // minimal pt [GeV] for tracks to be considered in tau definition
|
---|
549 | TAU_energy_frac = 0.95; // fraction of energy required in the central part of the cone, for tau jets
|
---|
550 |
|
---|
551 | }
|
---|
552 |
|
---|
553 | void RESOLution::Logfile(const string& LogName) {
|
---|
554 | //void RESOLution::Logfile(string outputfilename) {
|
---|
555 |
|
---|
556 | ofstream f_out(LogName.c_str());
|
---|
557 |
|
---|
558 | f_out <<"**********************************************************************"<< endl;
|
---|
559 | f_out <<"**********************************************************************"<< endl;
|
---|
560 | f_out <<"** **"<< endl;
|
---|
561 | f_out <<"** Welcome to **"<< endl;
|
---|
562 | f_out <<"** **"<< endl;
|
---|
563 | f_out <<"** **"<< endl;
|
---|
564 | f_out <<"** .ddddddd- lL hH **"<< endl;
|
---|
565 | f_out <<"** -Dd` `dD: Ll hH` **"<< endl;
|
---|
566 | f_out <<"** dDd dDd eeee. lL .pp+pp Hh+hhh` -eeee- `sssss **"<< endl;
|
---|
567 | f_out <<"** -Dd `DD ee. ee Ll .Pp. PP Hh. HH. ee. ee sSs **"<< endl;
|
---|
568 | f_out <<"** dD` dDd eEeee: lL. pP. pP hH hH` eEeee:` -sSSSs. **"<< endl;
|
---|
569 | f_out <<"** .Dd :dd eE. LlL PpppPP Hh Hh eE sSS **"<< endl;
|
---|
570 | f_out <<"** dddddd:. eee+: lL. pp. hh. hh eee+ sssssS **"<< endl;
|
---|
571 | f_out <<"** Pp **"<< endl;
|
---|
572 | f_out <<"** **"<< endl;
|
---|
573 | f_out <<"** Delphes, a framework for the fast simulation **"<< endl;
|
---|
574 | f_out <<"** of a generic collider experiment **"<< endl;
|
---|
575 | f_out <<"** **"<< endl;
|
---|
576 | f_out <<"** --- Version 1.4beta of Delphes --- **"<< endl;
|
---|
577 | f_out <<"** Last date of change: 9 February 2009 **"<< endl;
|
---|
578 | f_out <<"** **"<< endl;
|
---|
579 | f_out <<"** **"<< endl;
|
---|
580 | f_out <<"** This package uses: **"<< endl;
|
---|
581 | f_out <<"** ------------------ **"<< endl;
|
---|
582 | f_out <<"** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **"<< endl;
|
---|
583 | f_out <<"** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **"<< endl;
|
---|
584 | f_out <<"** FROG: L. Quertenmont, V. Roberfroid [hep-ex/0901.2718v1] **"<< endl;
|
---|
585 | f_out <<"** **"<< endl;
|
---|
586 | f_out <<"** ---------------------------------------------------------------- **"<< endl;
|
---|
587 | f_out <<"** **"<< endl;
|
---|
588 | f_out <<"** Main authors: **"<< endl;
|
---|
589 | f_out <<"** ------------- **"<< endl;
|
---|
590 | f_out <<"** **"<< endl;
|
---|
591 | f_out <<"** Séverine Ovyn Xavier Rouby **"<< endl;
|
---|
592 | f_out <<"** severine.ovyn@uclouvain.be xavier.rouby@cern **"<< endl;
|
---|
593 | f_out <<"** Center for Particle Physics and Phenomenology (CP3) **"<< endl;
|
---|
594 | f_out <<"** Universite Catholique de Louvain (UCL) **"<< endl;
|
---|
595 | f_out <<"** Louvain-la-Neuve, Belgium **"<< endl;
|
---|
596 | f_out <<"** **"<< endl;
|
---|
597 | f_out <<"** ---------------------------------------------------------------- **"<< endl;
|
---|
598 | f_out <<"** **"<< endl;
|
---|
599 | f_out <<"** Former Delphes versions and documentation can be found on : **"<< endl;
|
---|
600 | f_out <<"** http://www.fynu.ucl.ac.be/delphes.html **"<< endl;
|
---|
601 | f_out <<"** **"<< endl;
|
---|
602 | f_out <<"** **"<< endl;
|
---|
603 | f_out <<"** Disclaimer: this program is a beta version of Delphes and **"<< endl;
|
---|
604 | f_out <<"** therefore comes without guarantees. Beware of errors and please **"<< endl;
|
---|
605 | f_out <<"** give us your feedbacks about potential bugs **"<< endl;
|
---|
606 | f_out <<"** **"<< endl;
|
---|
607 | f_out <<"**********************************************************************"<< endl;
|
---|
608 | f_out <<"** **"<< endl;
|
---|
609 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
610 | f_out<<"* *"<<"\n";
|
---|
611 | f_out<<"#******************************** *"<<"\n";
|
---|
612 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
613 | f_out<<"#******************************** *"<<"\n";
|
---|
614 | f_out<<"* *"<<"\n";
|
---|
615 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
616 | << left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
|
---|
617 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
618 | << left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
|
---|
619 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
620 | << left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
|
---|
621 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
622 | << left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
|
---|
623 | f_out<<"* *"<<"\n";
|
---|
624 | if(FLAG_RP==1){
|
---|
625 | f_out<<"#************************************ *"<<"\n";
|
---|
626 | f_out<<"# Very forward Roman Pots switched on *"<<"\n";
|
---|
627 | f_out<<"#************************************ *"<<"\n";
|
---|
628 | f_out<<"* *"<<"\n";
|
---|
629 | f_out << left << setw(55) <<"* Distance of the 220 RP to the IP in meters:"<<""
|
---|
630 | << left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
631 | f_out << left << setw(55) <<"* Distance of the 220 RP to the beam in meters:"<<""
|
---|
632 | << left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
633 | f_out << left << setw(55) <<"* Distance of the 420 RP to the IP in meters:"<<""
|
---|
634 | << left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
|
---|
635 | f_out << left << setw(55) <<"* Distance of the 420 RP to the beam in meters:"<<""
|
---|
636 | << left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
637 | f_out << left << setw(55) <<"* Interaction point at the LHC named: "<<""
|
---|
638 | << left << setw(5) <<RP_IP_name <<""<< right << setw(10)<<"*"<<"\n";
|
---|
639 | f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
|
---|
640 | << left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
641 | f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
|
---|
642 | << left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
|
---|
643 | f_out << left << setw(44) <<"* Beam separation, in meters: "<<""
|
---|
644 | << left << setw(6) << RP_offsetEl_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
645 | f_out << left << setw(44) <<"* Distance from IP for Beam separation (m):"<<""
|
---|
646 | << left << setw(6) <<RP_offsetEl_s <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
647 | f_out << left << setw(44) <<"* X offset of beam crossing in micrometers:"<<""
|
---|
648 | << left << setw(6) <<RP_cross_x <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
649 | f_out << left << setw(44) <<"* Y offset of beam crossing in micrometers:"<<""
|
---|
650 | << left << setw(6) <<RP_cross_y <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
651 | f_out << left << setw(44) <<"* Angle of beam crossing:"<<""
|
---|
652 | << left << setw(6) <<RP_cross_ang <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
653 | f_out<<"* *"<<"\n";
|
---|
654 | }
|
---|
655 | else {
|
---|
656 | f_out<<"#************************************* *"<<"\n";
|
---|
657 | f_out<<"# Very forward Roman Pots switched off *"<<"\n";
|
---|
658 | f_out<<"#************************************* *"<<"\n";
|
---|
659 | f_out<<"* *"<<"\n";
|
---|
660 | }
|
---|
661 | if(FLAG_vfd==1){
|
---|
662 | f_out<<"#************************************** *"<<"\n";
|
---|
663 | f_out<<"# Very forward calorimeters switched on *"<<"\n";
|
---|
664 | f_out<<"#************************************** *"<<"\n";
|
---|
665 | f_out<<"* *"<<"\n";
|
---|
666 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
667 | << left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
668 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
669 | << left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
670 | f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
|
---|
671 | << left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
672 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
673 | << left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
|
---|
674 | f_out<<"* *"<<"\n";
|
---|
675 | }
|
---|
676 | else {
|
---|
677 | f_out<<"#*************************************** *"<<"\n";
|
---|
678 | f_out<<"# Very forward calorimeters switched off *"<<"\n";
|
---|
679 | f_out<<"#*************************************** *"<<"\n";
|
---|
680 | f_out<<"* *"<<"\n";
|
---|
681 | }
|
---|
682 |
|
---|
683 | f_out<<"#************************************ *"<<"\n";
|
---|
684 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
685 | f_out<<"#************************************ *"<<"\n";
|
---|
686 | f_out<<"* *"<<"\n";
|
---|
687 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
688 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
689 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
690 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
691 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
692 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
693 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
694 | f_out << left << setw(30) <<"* S term for FCAL: "<<""
|
---|
695 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
696 | f_out << left << setw(30) <<"* N term for FCAL: "<<""
|
---|
697 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
698 | f_out << left << setw(30) <<"* C term for FCAL: "<<""
|
---|
699 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
700 | f_out<<"* *"<<"\n";
|
---|
701 | f_out<<"#***************************** *"<<"\n";
|
---|
702 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
703 | f_out<<"#***************************** *"<<"\n";
|
---|
704 | f_out<<"* *"<<"\n";
|
---|
705 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
706 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
707 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
708 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
709 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
710 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
711 | f_out << left << setw(30) <<"* S term for FCAL: "<<""
|
---|
712 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
713 | f_out << left << setw(30) <<"* N term for FCAL: "<<""
|
---|
714 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
715 | f_out << left << setw(30) <<"* C term for FCAL: "<<""
|
---|
716 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
717 | f_out<<"* *"<<"\n";
|
---|
718 | f_out<<"#************************* *"<<"\n";
|
---|
719 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
720 | f_out<<"#************************* *"<<"\n";
|
---|
721 | f_out<<"* *"<<"\n";
|
---|
722 | f_out << left << setw(55) <<"* PT resolution for muons : "<<""
|
---|
723 | << left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
724 | f_out<<"* *"<<"\n";
|
---|
725 | if(FLAG_bfield==1){
|
---|
726 | f_out<<"#*************************** *"<<"\n";
|
---|
727 | f_out<<"# Magnetic field switched on *"<<"\n";
|
---|
728 | f_out<<"#*************************** *"<<"\n";
|
---|
729 | f_out<<"* *"<<"\n";
|
---|
730 | f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
|
---|
731 | << left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
732 | f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
|
---|
733 | << left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
|
---|
734 | f_out << left << setw(55) <<"* BField X component: "<<""
|
---|
735 | << left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
|
---|
736 | f_out << left << setw(55) <<"* BField Y component: "<<""
|
---|
737 | << left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
|
---|
738 | f_out << left << setw(55) <<"* BField Z component: "<<""
|
---|
739 | << left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
|
---|
740 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
741 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
742 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
743 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
744 | f_out<<"* *"<<"\n";
|
---|
745 | }
|
---|
746 | else {
|
---|
747 | f_out<<"#**************************** *"<<"\n";
|
---|
748 | f_out<<"# Magnetic field switched off *"<<"\n";
|
---|
749 | f_out<<"#**************************** *"<<"\n";
|
---|
750 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
751 | << left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
|
---|
752 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
753 | << left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
|
---|
754 | f_out<<"* *"<<"\n";
|
---|
755 | }
|
---|
756 | f_out<<"#******************** *"<<"\n";
|
---|
757 | f_out<<"# Calorimetric Towers *"<<"\n";
|
---|
758 | f_out<<"#******************** *"<<"\n";
|
---|
759 | f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
|
---|
760 | << left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
|
---|
761 | f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
|
---|
762 | f_out << "* ";
|
---|
763 | for (unsigned int i=0; i<TOWER_number+1; i++) {
|
---|
764 | f_out << left << setw(7) << TOWER_eta_edges[i];
|
---|
765 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
766 | }
|
---|
767 | for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
768 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
769 | f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
|
---|
770 | f_out << "* ";
|
---|
771 | for (unsigned int i=0; i<TOWER_number; i++) {
|
---|
772 | f_out << left << setw(7) << TOWER_dphi[i];
|
---|
773 | if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
|
---|
774 | }
|
---|
775 | for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
|
---|
776 | f_out << right << setw(3)<<"*"<<"\n";
|
---|
777 | f_out<<"* *"<<"\n";
|
---|
778 | f_out<<"#******************* *"<<"\n";
|
---|
779 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
780 | f_out<<"#******************* *"<<"\n";
|
---|
781 | f_out<<"* *"<<"\n";
|
---|
782 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
783 | << left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
|
---|
784 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
785 | << left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
|
---|
786 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
787 | << left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
788 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
789 | << left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
|
---|
790 | f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
|
---|
791 | << left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
|
---|
792 | f_out<<"* *"<<"\n";
|
---|
793 | f_out<<"#******************* *"<<"\n";
|
---|
794 | f_out<<"# Isolation criteria *"<<"\n";
|
---|
795 | f_out<<"#******************* *"<<"\n";
|
---|
796 | f_out<<"* *"<<"\n";
|
---|
797 | f_out << left << setw(40) <<"* Minimum pT for tracks [GeV]: "<<""
|
---|
798 | << left << setw(20) <<ISOL_PT <<""<< right << setw(10)<<"*"<<"\n";
|
---|
799 | f_out << left << setw(40) <<"* Cone for isolation criteria: "<<""
|
---|
800 | << left << setw(20) <<ISOL_Cone <<""<< right << setw(10)<<"*"<<"\n";
|
---|
801 |
|
---|
802 | if(ISOL_Calo_ET > 1E98) f_out<<"# No Calorimetric isolation applied *"<<"\n";
|
---|
803 | else {
|
---|
804 | f_out << left << setw(40) <<"* Minimum ET for towers [GeV]: "<<""
|
---|
805 | << left << setw(20) <<ISOL_Calo_ET <<""<< right << setw(10)<<"*"<<"\n";
|
---|
806 | f_out << left << setw(40) <<"* Cone for calorimetric isolation: "<<""
|
---|
807 | << left << setw(20) <<ISOL_Calo_Cone <<""<< right << setw(10)<<"*"<<"\n";
|
---|
808 | f_out << left << setw(40) <<"* Grid size (NxN) for calorimetric isolation: "<<""
|
---|
809 | << left << setw(20) <<ISOL_Calo_Grid <<""<< right << setw(10)<<"*"<<"\n";
|
---|
810 | }
|
---|
811 |
|
---|
812 |
|
---|
813 | f_out<<"* *"<<"\n";
|
---|
814 | f_out<<"#*************** *"<<"\n";
|
---|
815 | f_out<<"# Jet definition *"<<"\n";
|
---|
816 | f_out<<"#*************** *"<<"\n";
|
---|
817 | f_out<<"* *"<<"\n";
|
---|
818 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
819 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
820 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
821 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
822 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
823 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
824 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
825 | f_out<<"* *"<<"\n";
|
---|
826 | f_out<<"* You have chosen *"<<"\n";
|
---|
827 | switch(JET_jetalgo) {
|
---|
828 | default:
|
---|
829 | case 1: {
|
---|
830 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
831 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
832 | << left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
833 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
834 | << left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
|
---|
835 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
836 | << left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
837 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
838 | << left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
839 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
840 | << left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
841 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
842 | << left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
843 | }
|
---|
844 | break;
|
---|
845 | case 2: {
|
---|
846 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
847 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
848 | << left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
849 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
850 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
851 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
852 | << left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
853 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
854 | << left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
855 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
856 | << left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
857 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
858 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
859 | }
|
---|
860 | break;
|
---|
861 | case 3: {
|
---|
862 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
863 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
864 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
865 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
866 | << left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
867 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
868 | << left << setw(20) <<JET_S_npass <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
869 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
870 | << left << setw(20) <<JET_S_protojet_ptmin <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
871 | }
|
---|
872 | break;
|
---|
873 | case 4: {
|
---|
874 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
875 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
876 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
877 | }
|
---|
878 | break;
|
---|
879 | case 5: {
|
---|
880 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
881 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
882 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
883 | }
|
---|
884 | break;
|
---|
885 | case 6: {
|
---|
886 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
887 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
888 | << left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
|
---|
889 | }
|
---|
890 | break;
|
---|
891 | }
|
---|
892 | f_out<<"* *"<<"\n";
|
---|
893 | f_out<<"#****************************** *"<<"\n";
|
---|
894 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
895 | f_out<<"#****************************** *"<<"\n";
|
---|
896 | f_out<<"* *"<<"\n";
|
---|
897 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
898 | << left << setw(5) <<TAU_energy_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
899 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
900 | << left << setw(5) <<TAU_energy_frac*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
901 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
902 | << left << setw(5) <<TAU_track_scone <<""<< right << setw(20)<<"*"<<"\n";
|
---|
903 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
904 | << left << setw(5) <<TAU_track_pt <<""<< right << setw(20)<<"*"<<"\n";
|
---|
905 | f_out<<"* *"<<"\n";
|
---|
906 | f_out<<"#*************************** *"<<"\n";
|
---|
907 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
908 | f_out<<"#*************************** *"<<"\n";
|
---|
909 | f_out<<"* *"<<"\n";
|
---|
910 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
911 | << left << setw(10) <<BTAG_b <<""<< right << setw(10)<<"*"<<"\n";
|
---|
912 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
913 | << left << setw(10) <<BTAG_mistag_c <<""<< right << setw(10)<<"*"<<"\n";
|
---|
914 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
915 | << left << setw(10) <<BTAG_mistag_l <<""<< right << setw(10)<<"*"<<"\n";
|
---|
916 | f_out<<"* *"<<"\n";
|
---|
917 | f_out<<"* *"<<"\n";
|
---|
918 | f_out<<"#....................................................................*"<<"\n";
|
---|
919 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
920 |
|
---|
921 | }
|
---|
922 |
|
---|
923 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
924 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
925 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
926 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
927 | // the 'electron' variable will be changed by the function
|
---|
928 | float energy = electron.E(); // before smearing
|
---|
929 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
930 |
|
---|
931 | if(fabs(electron.Eta()) < CEN_max_tracker) { // if the electron is inside the tracker
|
---|
932 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
933 | pow(ELG_Ncen,2) +
|
---|
934 | pow(ELG_Ccen*energy,2) +
|
---|
935 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
936 | }
|
---|
937 | if(fabs(electron.Eta()) > CEN_max_tracker && fabs(electron.Eta()) < CEN_max_calo_fwd){
|
---|
938 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
939 | pow(ELG_Nfwd,2) +
|
---|
940 | pow(ELG_Cfwd*energy,2) +
|
---|
941 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
942 | }
|
---|
943 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
944 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
945 | }
|
---|
946 |
|
---|
947 |
|
---|
948 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
949 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
950 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
951 | // the 'muon' variable will be changed by the function
|
---|
952 | float pt = muon.Pt(); // before smearing
|
---|
953 | float ptS=pt;
|
---|
954 |
|
---|
955 | if(fabs(muon.Eta()) < CEN_max_mu )
|
---|
956 | {
|
---|
957 | ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
958 | }
|
---|
959 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
960 |
|
---|
961 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
962 | }
|
---|
963 |
|
---|
964 |
|
---|
965 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
966 | // Smears the hadron 4-momentum
|
---|
967 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
968 | // the 'hadron' variable will be changed by the function
|
---|
969 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
970 | {
|
---|
971 | float energy = hadron.E(); // before smearing
|
---|
972 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
973 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
974 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
975 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
976 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
977 |
|
---|
978 | float energyS1,energyS2;
|
---|
979 | if(fabs(hadron.Eta()) < CEN_max_calo_cen) {
|
---|
980 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
981 | pow(HAD_Nhcal,2) +
|
---|
982 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
983 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
984 |
|
---|
985 |
|
---|
986 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
987 | pow(ELG_Ncen,2) +
|
---|
988 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
989 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
990 |
|
---|
991 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
992 | }
|
---|
993 | if(fabs(hadron.Eta()) > CEN_max_calo_cen && fabs(hadron.Eta()) < CEN_max_calo_fwd){
|
---|
994 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
995 | pow(HAD_Nhf,2) +
|
---|
996 | pow(HAD_Chf*energy,2) +
|
---|
997 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
998 | }
|
---|
999 |
|
---|
1000 |
|
---|
1001 |
|
---|
1002 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
1003 |
|
---|
1004 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | //******************************************************************************************
|
---|
1008 |
|
---|
1009 | //void RESOLution::SortedVector(vector<ParticleUtil> &vect)
|
---|
1010 | void RESOLution::SortedVector(vector<D_Particle> &vect)
|
---|
1011 | {
|
---|
1012 | int i,j = 0;
|
---|
1013 | TLorentzVector tmp;
|
---|
1014 | bool en_desordre = true;
|
---|
1015 | int entries=vect.size();
|
---|
1016 | for(i = 0 ; (i < entries) && en_desordre; i++)
|
---|
1017 | {
|
---|
1018 | en_desordre = false;
|
---|
1019 | for(j = 1 ; j < entries - i ; j++)
|
---|
1020 | {
|
---|
1021 | if ( vect[j].Pt() > vect[j-1].Pt() )
|
---|
1022 | {
|
---|
1023 | //ParticleUtil tmp = vect[j-1];
|
---|
1024 | D_Particle tmp = vect[j-1];
|
---|
1025 | vect[j-1] = vect[j];
|
---|
1026 | vect[j] = tmp;
|
---|
1027 | en_desordre = true;
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 | }
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
1034 | // to be taken into account, a calo tower should
|
---|
1035 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
1036 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
1037 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
1038 | double Energie=0;
|
---|
1039 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
1040 | if(towers[i].fourVector.pt() < JET_seed) continue;
|
---|
1041 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_energy_scone)) {
|
---|
1042 | Energie += towers[i].fourVector.E;
|
---|
1043 | }
|
---|
1044 | }
|
---|
1045 | return Energie;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 |
|
---|
1049 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
1050 | // to be taken into account, a track should
|
---|
1051 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
1052 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
1053 | // IMPORTANT REMARK !!!!!
|
---|
1054 | // NEW : "charge" will contain the sum of all charged tracks in the cone TAU_track_scone
|
---|
1055 | unsigned int RESOLution::NumTracks(float& charge, const vector<TRootTracks> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
1056 | unsigned int numbtrack=0; // number of track in the tau-jet cone, which is smaller than R;
|
---|
1057 | charge=0;
|
---|
1058 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
1059 | if(tracks[i].PT < pt_track ) continue;
|
---|
1060 | //float dr = DeltaR(phi,eta,tracks[i].PhiOuter,tracks[i].EtaOuter);
|
---|
1061 | float dr = DeltaR(phi,eta,tracks[i].Phi,tracks[i].Eta);
|
---|
1062 | if (dr > TAU_track_scone) continue;
|
---|
1063 | numbtrack++;
|
---|
1064 | charge += tracks[i].Charge; // total charge in the cone for Tau-jet
|
---|
1065 | }
|
---|
1066 | return numbtrack;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
1070 | //used by Btaggedjet
|
---|
1071 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
1072 | int RESOLution::Bjets(const TSimpleArray<GenParticle> &subarray, const float& eta, const float& phi) {
|
---|
1073 | float emax=0;
|
---|
1074 | int Ppid=0;
|
---|
1075 | if(subarray.GetEntries()>0) {
|
---|
1076 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
1077 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
1078 | if(genDeltaR < JET_coneradius && subarray[i]->E > emax) {
|
---|
1079 | emax=subarray[i]->E;
|
---|
1080 | Ppid=abs(subarray[i]->PID);
|
---|
1081 | }
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 | return Ppid;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 |
|
---|
1088 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
1089 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<GenParticle> &subarray) {
|
---|
1090 | if( rand()%100 < (BTAG_b+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
1091 | else if( rand()%100 < (BTAG_mistag_c+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
1092 | else if( rand()%100 < (BTAG_mistag_l+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
1093 | return false;
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | //***********************Isolation criteria***********************
|
---|
1097 | //****************************************************************
|
---|
1098 | bool RESOLution::Isolation(const D_Particle& part, const vector<TRootTracks> &tracks, const float& pt_second_track, const float& isolCone, float& ptiso )
|
---|
1099 | {
|
---|
1100 | bool isolated = false;
|
---|
1101 | ptiso = 0; // sum of all track pt in isolation cone
|
---|
1102 | float deltar=1E99; // Initial value; should be high; no further repercussion
|
---|
1103 |
|
---|
1104 | // loop on all tracks, with p_t above threshold, close enough from the charged lepton
|
---|
1105 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
1106 | if(tracks[i].PT < pt_second_track) continue; // ptcut on tracks
|
---|
1107 | float genDeltaR = DeltaR(part.Phi(),part.Eta(),tracks[i].Phi,tracks[i].Eta);
|
---|
1108 | if(
|
---|
1109 | (genDeltaR > deltar) ||
|
---|
1110 | (genDeltaR==0) // rejets the track of the particle itself
|
---|
1111 | ) continue ;
|
---|
1112 | deltar=genDeltaR; // finds the closest track
|
---|
1113 |
|
---|
1114 | // as long as (genDeltaR==0) is put above, the particle itself is not taken into account
|
---|
1115 | if( genDeltaR < ISOL_Cone) ptiso += tracks[i].PT; // dR cut on tracks
|
---|
1116 | }
|
---|
1117 | if(deltar > isolCone) isolated = true;
|
---|
1118 | return isolated;
|
---|
1119 | }
|
---|
1120 |
|
---|
1121 | // ******* Calorimetric isolation
|
---|
1122 | float RESOLution::CaloIsolation(const D_Particle& part, const D_CaloTowerList & towers) {
|
---|
1123 | // etrat, which is a percentage between 00 and 99. It is the ratio of the transverse energy
|
---|
1124 | // in a 3Ã3 grid surrounding the muon to the pT of the muon. For well-isolated muons, both ptiso and etrat will be small.
|
---|
1125 | if(ISOL_Calo_ET>1E10) return UNDEFINED; // avoid doing anything unreasonable...
|
---|
1126 | float etrat=0;
|
---|
1127 | // available parameters: ISOL_Calo_ET , ISOL_Calo_Cone ,
|
---|
1128 | /* for(unsigned int i=0; i < towers.size(); i++) {
|
---|
1129 | if(towers[i].E > ISOL_Calo_ET) {
|
---|
1130 | float genDeltaR = DeltaR(part.Phi(),part.Eta(),towers[i].getPhi(),towers[i].getEta());
|
---|
1131 | if(genDeltaR < ISOL_Calo_Cone) {
|
---|
1132 | ptiso += towers[i].getET();
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 | } // loop on towers
|
---|
1136 | ptiso -=
|
---|
1137 | */
|
---|
1138 | etrat = 100*etrat/part.Pt();
|
---|
1139 | if(etrat<0) cout << "Error: negative etrat in CaloIsolation (" << etrat <<")\n";
|
---|
1140 | else if(etrat>99) cout << "Error: etrat shoud be in [0;99] in CaloIsolation (" << etrat <<")\n";
|
---|
1141 | return etrat;
|
---|
1142 | }
|
---|
1143 |
|
---|
1144 |
|
---|
1145 | //********** returns a segmented value for eta and phi, for calo towers *****
|
---|
1146 | void RESOLution::BinEtaPhi(const float phi, const float eta, float& iPhi, float& iEta){
|
---|
1147 | iEta = UNDEFINED;
|
---|
1148 | int index= iUNDEFINED;
|
---|
1149 | for (unsigned int i=1; i< TOWER_number+1; i++) {
|
---|
1150 | if(fabs(eta)>TOWER_eta_edges[i-1] && fabs(eta)<TOWER_eta_edges[i]) {
|
---|
1151 | iEta = (eta>0) ? TOWER_eta_edges[i-1] : -TOWER_eta_edges[i];
|
---|
1152 | index = i-1;
|
---|
1153 | break;
|
---|
1154 | }
|
---|
1155 | }
|
---|
1156 | if(index==UNDEFINED) return;
|
---|
1157 | iPhi = UNDEFINED;
|
---|
1158 | float dphi = TOWER_dphi[index]*pi/180.;
|
---|
1159 | for (unsigned int i=1; i < 360/TOWER_dphi[index]; i++ ) {
|
---|
1160 | float low = -pi+(i-1)*dphi;
|
---|
1161 | float high= low+dphi;
|
---|
1162 | if(phi > low && phi < high ){
|
---|
1163 | iPhi = low;
|
---|
1164 | break;
|
---|
1165 | }
|
---|
1166 | }
|
---|
1167 | if (phi > pi-dphi) iPhi = pi-dphi;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 |
|
---|
1171 |
|
---|
1172 | //**************************** Returns the delta Phi ****************************
|
---|
1173 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
1174 | float deltaphi=phi1-phi2; // in here, -pi < phi < pi
|
---|
1175 | if(fabs(deltaphi) > pi) {
|
---|
1176 | deltaphi=2.*pi -fabs(deltaphi);// put deltaphi between 0 and pi
|
---|
1177 | }
|
---|
1178 | else deltaphi=fabs(deltaphi);
|
---|
1179 |
|
---|
1180 | return deltaphi;
|
---|
1181 | }
|
---|
1182 |
|
---|
1183 | //**************************** Returns the delta R****************************
|
---|
1184 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
1185 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | int sign(const int myint) {
|
---|
1189 | if (myint >0) return 1;
|
---|
1190 | else if (myint <0) return -1;
|
---|
1191 | else return 0;
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 | int sign(const float myfloat) {
|
---|
1195 | if (myfloat >0) return 1;
|
---|
1196 | else if (myfloat <0) return -1;
|
---|
1197 | else return 0;
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 | int ChargeVal(const int pid)
|
---|
1201 | {
|
---|
1202 | int charge;
|
---|
1203 | if(
|
---|
1204 | (pid == pGAMMA) ||
|
---|
1205 | (pid == pPI0) ||
|
---|
1206 | (pid == pK0L) ||
|
---|
1207 | (pid == pN) ||
|
---|
1208 | (pid == pSIGMA0) ||
|
---|
1209 | (pid == pDELTA0) ||
|
---|
1210 | (pid == pK0S) // not charged particles : invisible by tracker
|
---|
1211 | )
|
---|
1212 | charge = 0;
|
---|
1213 | else charge = (sign(pid));
|
---|
1214 | return charge;
|
---|
1215 |
|
---|
1216 | }
|
---|