[2] | 1 | /*
|
---|
| 2 | ---- Delphes ----
|
---|
| 3 | A Fast Simulator for general purpose LHC detector
|
---|
| 4 | S. Ovyn ~~~~ severine.ovyn@uclouvain.be
|
---|
| 5 |
|
---|
| 6 | Center for Particle Physics and Phenomenology (CP3)
|
---|
| 7 | Universite Catholique de Louvain (UCL)
|
---|
| 8 | Louvain-la-Neuve, Belgium
|
---|
| 9 | */
|
---|
| 10 |
|
---|
| 11 | /// \file SmearUtil.cc
|
---|
| 12 | /// \brief RESOLution class, and some generic definitions
|
---|
| 13 |
|
---|
| 14 |
|
---|
| 15 | #include "interface/SmearUtil.h"
|
---|
| 16 | #include "TRandom.h"
|
---|
| 17 |
|
---|
| 18 | #include <iostream>
|
---|
| 19 | #include <sstream>
|
---|
| 20 | #include <fstream>
|
---|
[44] | 21 | #include <iomanip>
|
---|
| 22 |
|
---|
| 23 |
|
---|
| 24 |
|
---|
[2] | 25 | using namespace std;
|
---|
| 26 |
|
---|
| 27 | //------------------------------------------------------------------------------
|
---|
| 28 |
|
---|
| 29 | RESOLution::RESOLution() {
|
---|
| 30 |
|
---|
| 31 | MAX_TRACKER = 2.5; // tracker coverage
|
---|
| 32 | MAX_CALO_CEN = 3.0; // central calorimeter coverage
|
---|
| 33 | MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
|
---|
| 34 | MAX_MU = 2.4; // muon chambers pseudorapidity coverage
|
---|
| 35 | MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
|
---|
| 36 | MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
|
---|
| 37 | MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
|
---|
| 38 |
|
---|
| 39 | ZDC_S = 140.; // ZDC distance to IP
|
---|
| 40 | RP220_S = 220; // distance of the RP to the IP, in meters
|
---|
| 41 | RP220_X = 0.002;// distance of the RP to the beam, in meters
|
---|
| 42 | FP420_S = 420; // distance of the RP to the IP, in meters
|
---|
| 43 | FP420_X = 0.004;// distance of the RP to the beam, in meters
|
---|
| 44 |
|
---|
| 45 |
|
---|
[48] | 46 | ELG_Scen = 0.05; // S term for central ECAL
|
---|
| 47 | ELG_Ncen = 0.25 ; // N term for central ECAL
|
---|
| 48 | ELG_Ccen = 0.0055 ; // C term for central ECAL
|
---|
[2] | 49 | ELG_Cfwd = 0.107 ; // S term for forward ECAL
|
---|
| 50 | ELG_Sfwd = 2.084 ; // C term for forward ECAL
|
---|
| 51 | ELG_Nfwd = 0.0 ; // N term for central ECAL
|
---|
| 52 |
|
---|
[48] | 53 | HAD_Shcal = 1.5 ; // S term for central HCAL // hadronic calorimeter
|
---|
| 54 | HAD_Nhcal = 0.0 ; // N term for central HCAL
|
---|
| 55 | HAD_Chcal = 0.05 ; // C term for central HCAL
|
---|
[2] | 56 | HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
|
---|
[48] | 57 | HAD_Nhf = 0.0 ; // N term for central HF
|
---|
[2] | 58 | HAD_Chf = 0.13 ; // C term for central HF
|
---|
| 59 |
|
---|
| 60 | MU_SmearPt = 0.01 ;
|
---|
| 61 |
|
---|
[33] | 62 | ELEC_pt = 10.0;
|
---|
| 63 | MUON_pt = 10.0;
|
---|
| 64 | JET_pt = 20.0;
|
---|
| 65 | TAUJET_pt = 10.0;
|
---|
| 66 |
|
---|
| 67 |
|
---|
[2] | 68 | TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
|
---|
| 69 | TAU_EM_COLLIMATION = 0.95;
|
---|
| 70 | TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
|
---|
| 71 | PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
|
---|
| 72 |
|
---|
| 73 |
|
---|
| 74 | PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
|
---|
| 75 | PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
|
---|
| 76 | TRACKING_EFF = 90;
|
---|
| 77 |
|
---|
| 78 |
|
---|
| 79 | TAGGING_B = 40;
|
---|
| 80 | MISTAGGING_C = 10;
|
---|
| 81 | MISTAGGING_L = 1;
|
---|
| 82 |
|
---|
| 83 |
|
---|
| 84 | CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
|
---|
[11] | 85 | JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
|
---|
[43] | 86 |
|
---|
| 87 | //General jet parameters
|
---|
| 88 | SEEDTHRESHOLD = 1.0;
|
---|
| 89 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 90 |
|
---|
[2] | 91 | // Define Cone algorithm.
|
---|
| 92 | C_ADJACENCYCUT = 2;
|
---|
| 93 | C_MAXITERATIONS = 100;
|
---|
| 94 | C_IRATCH = 1;
|
---|
| 95 |
|
---|
| 96 | //Define MidPoint algorithm.
|
---|
| 97 | M_CONEAREAFRACTION = 0.25;
|
---|
| 98 | M_MAXPAIRSIZE = 2;
|
---|
| 99 | M_MAXITERATIONS = 100;
|
---|
| 100 |
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | //------------------------------------------------------------------------------
|
---|
| 104 | void RESOLution::ReadDataCard(const string datacard) {
|
---|
| 105 |
|
---|
| 106 | string temp_string;
|
---|
| 107 | istringstream curstring;
|
---|
| 108 |
|
---|
| 109 | ifstream fichier_a_lire(datacard.c_str());
|
---|
| 110 | if(!fichier_a_lire.good()) {
|
---|
| 111 | cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
|
---|
| 112 | return;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | while (getline(fichier_a_lire,temp_string)) {
|
---|
| 116 | curstring.clear(); // needed when using several times istringstream::str(string)
|
---|
| 117 | curstring.str(temp_string);
|
---|
| 118 | string varname;
|
---|
| 119 | float value;
|
---|
| 120 |
|
---|
| 121 | if(strstr(temp_string.c_str(),"#")) { }
|
---|
| 122 | else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
|
---|
| 123 | else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
|
---|
| 124 | else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
|
---|
| 125 | else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
|
---|
| 126 | else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
|
---|
| 127 | else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
|
---|
| 128 | else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
|
---|
| 129 | else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
|
---|
| 130 | else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
|
---|
| 131 | else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
|
---|
| 132 | else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
|
---|
| 133 | else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
|
---|
| 134 | else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
|
---|
| 135 | else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
|
---|
| 136 | else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
|
---|
| 137 | else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
|
---|
| 138 | else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
|
---|
| 139 | else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
|
---|
| 140 | else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
|
---|
| 141 | else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
|
---|
| 142 | else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
|
---|
| 143 | else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;}
|
---|
| 144 | else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;}
|
---|
| 145 | else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;}
|
---|
| 146 | else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
|
---|
| 147 | else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;}
|
---|
| 148 | else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;}
|
---|
[33] | 149 | else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;}
|
---|
| 150 | else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;}
|
---|
| 151 | else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;}
|
---|
| 152 | else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;}
|
---|
| 153 |
|
---|
[2] | 154 | }
|
---|
| 155 |
|
---|
[43] | 156 | // General jet variables
|
---|
| 157 | SEEDTHRESHOLD = 1.0;
|
---|
| 158 | OVERLAPTHRESHOLD = 0.75;
|
---|
| 159 |
|
---|
[2] | 160 | // Define Cone algorithm.
|
---|
| 161 | C_ADJACENCYCUT = 2;
|
---|
| 162 | C_MAXITERATIONS = 100;
|
---|
| 163 | C_IRATCH = 1;
|
---|
| 164 |
|
---|
| 165 | //Define MidPoint algorithm.
|
---|
| 166 | M_CONEAREAFRACTION = 0.25;
|
---|
| 167 | M_MAXPAIRSIZE = 2;
|
---|
| 168 | M_MAXITERATIONS = 100;
|
---|
| 169 |
|
---|
[44] | 170 | //Define SISCone algorithm.
|
---|
| 171 | NPASS = 0;
|
---|
| 172 | PROTOJET_PTMIN = 0.0;
|
---|
| 173 |
|
---|
| 174 |
|
---|
[2] | 175 | }
|
---|
| 176 |
|
---|
[44] | 177 | void RESOLution::Logfile(string LogName) {
|
---|
[51] | 178 | //void RESOLution::Logfile(string outputfilename) {
|
---|
| 179 |
|
---|
[44] | 180 | ofstream f_out(LogName.c_str());
|
---|
| 181 |
|
---|
| 182 | f_out<<"#*********************************************************************"<<"\n";
|
---|
| 183 | f_out<<"# *"<<"\n";
|
---|
[51] | 184 | f_out<<"# ---- DELPHES release 1.0 ---- *"<<"\n";
|
---|
[44] | 185 | f_out<<"# *"<<"\n";
|
---|
| 186 | f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
|
---|
| 187 | f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
|
---|
| 188 | f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
|
---|
| 189 | f_out<<"# *"<<"\n";
|
---|
| 190 | f_out<<"# http: *"<<"\n";
|
---|
| 191 | f_out<<"# *"<<"\n";
|
---|
| 192 | f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
|
---|
| 193 | f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
|
---|
| 194 | f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
|
---|
| 195 | f_out<<"# *"<<"\n";
|
---|
| 196 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 197 | f_out<<"# *"<<"\n";
|
---|
[46] | 198 | f_out<<"# This package uses: *"<<"\n";
|
---|
| 199 | f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
|
---|
| 200 | f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
|
---|
| 201 | f_out<<"# ExRootAnalysis *"<<"\n";
|
---|
[44] | 202 | f_out<<"# *"<<"\n";
|
---|
| 203 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 204 | f_out<<"# *"<<"\n";
|
---|
| 205 | f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
|
---|
| 206 | f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
|
---|
| 207 | f_out<<"# *"<<"\n";
|
---|
| 208 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 209 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 210 | f_out<<"* *"<<"\n";
|
---|
| 211 | f_out<<"#******************************** *"<<"\n";
|
---|
| 212 | f_out<<"# Central detector caracteristics *"<<"\n";
|
---|
| 213 | f_out<<"#******************************** *"<<"\n";
|
---|
| 214 | f_out<<"* *"<<"\n";
|
---|
| 215 | f_out << left << setw(30) <<"* Maximum tracking system: "<<""
|
---|
| 216 | << left << setw(10) <<MAX_TRACKER <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 217 | f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
|
---|
| 218 | << left << setw(10) <<MAX_CALO_CEN <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 219 | f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
|
---|
| 220 | << left << setw(10) <<MAX_CALO_FWD <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 221 | f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
|
---|
| 222 | << left << setw(10) <<MAX_MU <<""<< right << setw(15)<<"*"<<"\n";
|
---|
| 223 | f_out<<"* *"<<"\n";
|
---|
| 224 | f_out<<"#************************************* *"<<"\n";
|
---|
| 225 | f_out<<"# Very forward detector caracteristics *"<<"\n";
|
---|
| 226 | f_out<<"#************************************* *"<<"\n";
|
---|
| 227 | f_out<<"* *"<<"\n";
|
---|
| 228 | f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
|
---|
| 229 | << left << setw(5) <<MIN_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 230 | f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
|
---|
| 231 | << left << setw(5) <<MAX_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 232 | f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
|
---|
| 233 | << left << setw(5) <<ZDC_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 234 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 235 | << left << setw(5) <<RP220_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 236 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 237 | << left << setw(5) <<RP220_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 238 | f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
|
---|
| 239 | << left << setw(5) <<FP420_S <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 240 | f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
|
---|
| 241 | << left << setw(5) <<FP420_X <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 242 | f_out<<"* *"<<"\n";
|
---|
| 243 | f_out<<"#************************************ *"<<"\n";
|
---|
| 244 | f_out<<"# Electromagnetic smearing parameters *"<<"\n";
|
---|
| 245 | f_out<<"#************************************ *"<<"\n";
|
---|
| 246 | f_out<<"* *"<<"\n";
|
---|
| 247 | //# \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 248 | f_out << left << setw(30) <<"* S term for central ECAL: "<<""
|
---|
| 249 | << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 250 | f_out << left << setw(30) <<"* N term for central ECAL: "<<""
|
---|
| 251 | << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 252 | f_out << left << setw(30) <<"* C term for central ECAL: "<<""
|
---|
| 253 | << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 254 | f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
|
---|
| 255 | << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 256 | f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
|
---|
| 257 | << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 258 | f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
|
---|
| 259 | << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 260 | f_out<<"* *"<<"\n";
|
---|
| 261 | f_out<<"#***************************** *"<<"\n";
|
---|
| 262 | f_out<<"# Hadronic smearing parameters *"<<"\n";
|
---|
| 263 | f_out<<"#***************************** *"<<"\n";
|
---|
| 264 | f_out<<"* *"<<"\n";
|
---|
| 265 | f_out << left << setw(30) <<"* S term for central HCAL: "<<""
|
---|
| 266 | << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 267 | f_out << left << setw(30) <<"* N term for central HCAL: "<<""
|
---|
| 268 | << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 269 | f_out << left << setw(30) <<"* C term for central HCAL: "<<""
|
---|
| 270 | << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 271 | f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
|
---|
| 272 | << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 273 | f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
|
---|
| 274 | << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 275 | f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
|
---|
| 276 | << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 277 | f_out<<"* *"<<"\n";
|
---|
| 278 | f_out<<"#*************************** *"<<"\n";
|
---|
| 279 | f_out<<"# Tracking system acceptance *"<<"\n";
|
---|
| 280 | f_out<<"#*************************** *"<<"\n";
|
---|
| 281 | f_out<<"* *"<<"\n";
|
---|
| 282 | f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
|
---|
| 283 | << left << setw(10) <<PT_TRACKS_MIN <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 284 | f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
|
---|
| 285 | << left << setw(10) <<TRACKING_EFF <<""<< right << setw(5)<<"*"<<"\n";
|
---|
| 286 | f_out<<"* *"<<"\n";
|
---|
| 287 | f_out<<"#************************* *"<<"\n";
|
---|
| 288 | f_out<<"# Muon smearing parameters *"<<"\n";
|
---|
| 289 | f_out<<"#************************* *"<<"\n";
|
---|
| 290 | f_out<<"* *"<<"\n";
|
---|
| 291 | //MU_SmearPt 0.01
|
---|
| 292 | f_out<<"* *"<<"\n";
|
---|
| 293 | f_out<<"#****************************** *"<<"\n";
|
---|
| 294 | f_out<<"# Tau-jet definition parameters *"<<"\n";
|
---|
| 295 | f_out<<"#****************************** *"<<"\n";
|
---|
| 296 | f_out<<"* *"<<"\n";
|
---|
| 297 | f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
|
---|
| 298 | << left << setw(5) <<TAU_CONE_ENERGY <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 299 | f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
|
---|
| 300 | << left << setw(5) <<TAU_EM_COLLIMATION*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 301 | f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
|
---|
| 302 | << left << setw(5) <<TAU_CONE_TRACKS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 303 | f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
|
---|
| 304 | << left << setw(5) <<PT_TRACK_TAU <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 305 | f_out<<"* *"<<"\n";
|
---|
| 306 | f_out<<"#******************* *"<<"\n";
|
---|
| 307 | f_out<<"# Minimum pT's [GeV] *"<<"\n";
|
---|
| 308 | f_out<<"#******************* *"<<"\n";
|
---|
| 309 | f_out<<"* *"<<"\n";
|
---|
| 310 | f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
|
---|
| 311 | << left << setw(20) <<ELEC_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 312 | f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
|
---|
| 313 | << left << setw(20) <<MUON_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 314 | f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
|
---|
| 315 | << left << setw(20) <<JET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 316 | f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
|
---|
| 317 | << left << setw(20) <<TAUJET_pt <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 318 | f_out<<"* *"<<"\n";
|
---|
| 319 | f_out<<"#*************************** *"<<"\n";
|
---|
| 320 | f_out<<"# B-tagging efficiencies [%] *"<<"\n";
|
---|
| 321 | f_out<<"#*************************** *"<<"\n";
|
---|
| 322 | f_out<<"* *"<<"\n";
|
---|
| 323 | f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
|
---|
| 324 | << left << setw(10) <<TAGGING_B <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 325 | f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
|
---|
| 326 | << left << setw(10) <<MISTAGGING_C <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 327 | f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
|
---|
| 328 | << left << setw(10) <<MISTAGGING_L <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 329 | f_out<<"* *"<<"\n";
|
---|
| 330 | f_out<<"#*************** *"<<"\n";
|
---|
| 331 | f_out<<"# Jet definition *"<<"\n";
|
---|
| 332 | f_out<<"#*************** *"<<"\n";
|
---|
| 333 | f_out<<"* *"<<"\n";
|
---|
[49] | 334 | f_out<<"* Six algorithms are currently available: *"<<"\n";
|
---|
| 335 | f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
|
---|
| 336 | f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
|
---|
| 337 | f_out<<"* - 3) SIScone algorithm, *"<<"\n";
|
---|
| 338 | f_out<<"* - 4) kt algorithm, *"<<"\n";
|
---|
| 339 | f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
|
---|
| 340 | f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
|
---|
| 341 | f_out<<"* *"<<"\n";
|
---|
| 342 | f_out<<"* You have chosen *"<<"\n";
|
---|
[44] | 343 | switch(JETALGO) {
|
---|
| 344 | default:
|
---|
| 345 | case 1: {
|
---|
[49] | 346 | f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
|
---|
| 347 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 348 | << left << setw(10) <<SEEDTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 349 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 350 | << left << setw(10) <<CONERADIUS <<""<< right << setw(20)<<"*"<<"\n";
|
---|
| 351 | f_out << left << setw(40) <<"* - Adjacency cut: "<<""
|
---|
| 352 | << left << setw(10) <<C_ADJACENCYCUT <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 353 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 354 | << left << setw(10) <<C_MAXITERATIONS <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 355 | f_out << left << setw(40) <<"* - Iratch: "<<""
|
---|
| 356 | << left << setw(10) <<C_IRATCH <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
| 357 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 358 | << left << setw(10) <<OVERLAPTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
|
---|
[44] | 359 | }
|
---|
| 360 | break;
|
---|
| 361 | case 2: {
|
---|
[49] | 362 | f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
|
---|
| 363 | f_out << left << setw(40) <<"* - Seed threshold: "<<""
|
---|
| 364 | << left << setw(20) <<SEEDTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 365 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 366 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 367 | f_out << left << setw(40) <<"* - Cone area fraction:"<<""
|
---|
| 368 | << left << setw(20) <<M_CONEAREAFRACTION <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 369 | f_out << left << setw(40) <<"* - Maximum pair size: "<<""
|
---|
| 370 | << left << setw(20) <<M_MAXPAIRSIZE <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 371 | f_out << left << setw(40) <<"* - Max iterations: "<<""
|
---|
| 372 | << left << setw(20) <<M_MAXITERATIONS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 373 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 374 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 375 | }
|
---|
| 376 | break;
|
---|
| 377 | case 3: {
|
---|
[49] | 378 | f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
|
---|
| 379 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 380 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 381 | f_out << left << setw(40) <<"* - Overlap threshold: "<<""
|
---|
| 382 | << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 383 | f_out << left << setw(40) <<"* - Number pass max: "<<""
|
---|
| 384 | << left << setw(20) <<NPASS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
| 385 | f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
|
---|
| 386 | << left << setw(20) <<PROTOJET_PTMIN <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
|
---|
[44] | 387 | }
|
---|
| 388 | break;
|
---|
| 389 | case 4: {
|
---|
[49] | 390 | f_out <<"* KT jet algorithm with parameters: *"<<"\n";
|
---|
| 391 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 392 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 393 | }
|
---|
| 394 | break;
|
---|
[49] | 395 | case 5: {
|
---|
| 396 | f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
|
---|
| 397 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 398 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
[44] | 399 | }
|
---|
[49] | 400 | break;
|
---|
| 401 | case 6: {
|
---|
| 402 | f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
|
---|
| 403 | f_out << left << setw(40) <<"* - Cone radius: "<<""
|
---|
| 404 | << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
|
---|
| 405 | }
|
---|
| 406 | break;
|
---|
| 407 |
|
---|
| 408 |
|
---|
| 409 | }
|
---|
[44] | 410 | f_out<<"* *"<<"\n";
|
---|
| 411 | f_out<<"#....................................................................*"<<"\n";
|
---|
| 412 | f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
|
---|
| 413 |
|
---|
| 414 | }
|
---|
| 415 |
|
---|
[2] | 416 | // **********Provides the smeared TLorentzVector for the electrons********
|
---|
| 417 | // Smears the electron energy, and changes the 4-momentum accordingly
|
---|
| 418 | // different smearing if the electron is central (eta < 2.5) or forward
|
---|
| 419 | void RESOLution::SmearElectron(TLorentzVector &electron) {
|
---|
| 420 | // the 'electron' variable will be changed by the function
|
---|
| 421 | float energy = electron.E(); // before smearing
|
---|
| 422 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 423 |
|
---|
| 424 | if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker
|
---|
| 425 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 426 | pow(ELG_Ncen,2) +
|
---|
| 427 | pow(ELG_Ccen*energy,2) +
|
---|
[22] | 428 | pow(ELG_Scen*sqrt(energy),2) ));
|
---|
[2] | 429 | } else { // outside the tracker
|
---|
| 430 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
| 431 | pow(ELG_Nfwd,2) +
|
---|
| 432 | pow(ELG_Cfwd*energy,2) +
|
---|
| 433 | pow(ELG_Sfwd*sqrt(energy),2) ) );
|
---|
| 434 | }
|
---|
| 435 | electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
|
---|
| 436 | if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 |
|
---|
| 440 | // **********Provides the smeared TLorentzVector for the muons********
|
---|
| 441 | // Smears the muon pT and changes the 4-momentum accordingly
|
---|
| 442 | void RESOLution::SmearMu(TLorentzVector &muon) {
|
---|
| 443 | // the 'muon' variable will be changed by the function
|
---|
| 444 | float pt = muon.Pt(); // before smearing
|
---|
| 445 | float ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 446 |
|
---|
| 447 | muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
|
---|
| 448 |
|
---|
| 449 | if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
|
---|
| 450 | }
|
---|
| 451 |
|
---|
| 452 |
|
---|
| 453 | // **********Provides the smeared TLorentzVector for the hadrons********
|
---|
| 454 | // Smears the hadron 4-momentum
|
---|
| 455 | void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
|
---|
| 456 | // the 'hadron' variable will be changed by the function
|
---|
| 457 | // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
|
---|
| 458 | {
|
---|
| 459 | float energy = hadron.E(); // before smearing
|
---|
| 460 | float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
|
---|
| 461 | float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
|
---|
| 462 | float energy_hcal = frac*energy; // hadronic calorimeter
|
---|
| 463 | // frac takes into account the decay of long-living particles, that decay in the calorimeters
|
---|
| 464 | // some of the particles decay mostly in the ecal, some mostly in the hcal
|
---|
| 465 |
|
---|
[31] | 466 | float energyS1,energyS2;
|
---|
[2] | 467 | if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
|
---|
[10] | 468 | energyS1 = gRandom->Gaus(energy_hcal, sqrt(
|
---|
[2] | 469 | pow(HAD_Nhcal,2) +
|
---|
| 470 | pow(HAD_Chcal*energy_hcal,2) +
|
---|
[9] | 471 | pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
|
---|
[10] | 472 |
|
---|
[9] | 473 |
|
---|
[10] | 474 | energyS2 = gRandom->Gaus(energy_ecal, sqrt(
|
---|
[32] | 475 | pow(ELG_Ncen,2) +
|
---|
| 476 | pow(ELG_Ccen*energy_ecal,2) +
|
---|
| 477 | pow(ELG_Scen*sqrt(energy_ecal),2) ) );
|
---|
[9] | 478 |
|
---|
[10] | 479 | energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
|
---|
[2] | 480 | } else {
|
---|
[22] | 481 | energyS = gRandom->Gaus(energy, sqrt(
|
---|
[2] | 482 | pow(HAD_Nhf,2) +
|
---|
| 483 | pow(HAD_Chf*energy,2) +
|
---|
[22] | 484 | pow(HAD_Shf*sqrt(energy),2) ));
|
---|
[2] | 485 | }
|
---|
[10] | 486 |
|
---|
| 487 |
|
---|
[2] | 488 | hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
|
---|
| 489 |
|
---|
| 490 | if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
|
---|
| 491 | }
|
---|
| 492 |
|
---|
| 493 | // **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
|
---|
| 494 | // to be taken into account, a calo tower should
|
---|
| 495 | // 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
|
---|
| 496 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 497 | double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
|
---|
| 498 | double Energie=0;
|
---|
| 499 | for(unsigned int i=0; i < towers.size(); i++) {
|
---|
[43] | 500 | if(towers[i].fourVector.pt() < SEEDTHRESHOLD) continue;
|
---|
[2] | 501 | if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
|
---|
| 502 | Energie += towers[i].fourVector.E;
|
---|
| 503 | }
|
---|
| 504 | }
|
---|
| 505 | return Energie;
|
---|
| 506 | }
|
---|
| 507 |
|
---|
| 508 |
|
---|
| 509 | // **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
|
---|
| 510 | // to be taken into account, a track should
|
---|
| 511 | // 1) avec a transverse momentum \$f p_T \$ above a given threshold
|
---|
| 512 | // 2) be inside a cone with a radius R and the axis defined by (eta,phi)
|
---|
| 513 | // IMPORTANT REMARK !!!!!
|
---|
| 514 | // previously, the argument 'phi' was before the argument 'eta'
|
---|
| 515 | // this has been changed for consistency with the other functions
|
---|
| 516 | // double check your running code that uses NumTracks !
|
---|
| 517 | unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
|
---|
| 518 | unsigned int numtrack=0;
|
---|
| 519 | for(unsigned int i=0; i < tracks.size(); i++) {
|
---|
| 520 | if((tracks[i].Pt() < pt_track )||
|
---|
| 521 | (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
|
---|
| 522 | )continue;
|
---|
| 523 | numtrack++;
|
---|
| 524 | }
|
---|
| 525 | return numtrack;
|
---|
| 526 | }
|
---|
| 527 |
|
---|
| 528 |
|
---|
| 529 | //*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
|
---|
| 530 | //used by Btaggedjet
|
---|
| 531 | ///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
|
---|
| 532 | int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
|
---|
| 533 | float emax=0;
|
---|
| 534 | int Ppid=0;
|
---|
| 535 | if(subarray.GetEntries()>0) {
|
---|
| 536 | for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
|
---|
| 537 | float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
|
---|
| 538 | if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
|
---|
| 539 | emax=subarray[i]->E;
|
---|
| 540 | Ppid=abs(subarray[i]->PID);
|
---|
| 541 | }
|
---|
| 542 | }
|
---|
| 543 | }
|
---|
| 544 | return Ppid;
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 |
|
---|
| 548 | //******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
|
---|
| 549 | bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
|
---|
| 550 | if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
|
---|
| 551 | else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
|
---|
| 552 | else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
|
---|
| 553 | return false;
|
---|
| 554 | }
|
---|
| 555 |
|
---|
[31] | 556 | //***********************Isolation criteria***********************
|
---|
| 557 | //****************************************************************
|
---|
| 558 | bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector<TLorentzVector> &tracks,float PT_TRACK2)
|
---|
| 559 | {
|
---|
| 560 | bool isolated = false;
|
---|
| 561 | Float_t deltar=5000.; // Initial value; should be high; no further repercussion
|
---|
| 562 | // loop on all final charged particles, with p_t >2, close enough from the electron
|
---|
| 563 | for(unsigned int i=0; i < tracks.size(); i++)
|
---|
| 564 | {
|
---|
| 565 | if(tracks[i].Pt() < PT_TRACK2)continue;
|
---|
| 566 | Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate
|
---|
| 567 | if(
|
---|
| 568 | (genDeltaR > deltar) ||
|
---|
| 569 | (genDeltaR==0)
|
---|
| 570 | ) continue ;
|
---|
| 571 | deltar=genDeltaR;
|
---|
| 572 | }
|
---|
| 573 | if(deltar > 0.5)isolated = true; // returns the closest distance
|
---|
| 574 | return isolated;
|
---|
| 575 | }
|
---|
| 576 |
|
---|
| 577 |
|
---|
[2] | 578 | //**************************** Returns the delta Phi ****************************
|
---|
| 579 | float DeltaPhi(const float phi1, const float phi2) {
|
---|
| 580 | float deltaphi=phi1-phi2; // in here, -PI < phi < PI
|
---|
| 581 | if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
|
---|
| 582 | else deltaphi=fabs(deltaphi);
|
---|
| 583 |
|
---|
| 584 | return deltaphi;
|
---|
| 585 | }
|
---|
| 586 |
|
---|
| 587 | //**************************** Returns the delta R****************************
|
---|
| 588 | float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
|
---|
| 589 | return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
|
---|
| 590 | }
|
---|
| 591 |
|
---|
| 592 | int sign(const int myint) {
|
---|
| 593 | if (myint >0) return 1;
|
---|
| 594 | else if (myint <0) return -1;
|
---|
| 595 | else return 0;
|
---|
| 596 | }
|
---|
| 597 |
|
---|
| 598 | int sign(const float myfloat) {
|
---|
| 599 | if (myfloat >0) return 1;
|
---|
| 600 | else if (myfloat <0) return -1;
|
---|
| 601 | else return 0;
|
---|
| 602 | }
|
---|
| 603 |
|
---|
| 604 |
|
---|
| 605 | float Charge(const long int pid) {
|
---|
| 606 | // source: RPP chap 34 Monte Carlo Particle Numbering Scheme
|
---|
| 607 | /* switch (abs(pid)) {
|
---|
| 608 | case 1: case 3: case 5: case 7: return (float) sign(pid)*(-1/3); break; // d, s, b, b'
|
---|
| 609 | case 2: case 4: case 6: case 8: return (float) sign(pid)*2/3; break; // u, c, t, t'
|
---|
| 610 |
|
---|
| 611 | case 11: case 13: case 15: return (float) sign(pid)*(-1); break; // e, mu, tau
|
---|
| 612 | case 12: case 14: case 16: return (float) 0; break; // nu_e, nu_mu, nu_tau
|
---|
| 613 |
|
---|
| 614 | case 9: case 21: case 22: case 23: case 25:
|
---|
| 615 | case 32: case 33: case 35: case 36: return (float) 0; break; // neutral gauge/higgs bosons
|
---|
| 616 | case 24: case 34: case 37: return (float) sign(pid); break; // charged gauge/higgs bosons
|
---|
| 617 | }
|
---|
| 618 | */
|
---|
| 619 | return 0;
|
---|
| 620 | }
|
---|