Fork me on GitHub

source: svn/trunk/src/SmearUtil.cc@ 50

Last change on this file since 50 was 50, checked in by severine ovyn, 16 years ago

version from file

File size: 34.1 KB
Line 
1/*
2 ---- Delphes ----
3 A Fast Simulator for general purpose LHC detector
4 S. Ovyn ~~~~ severine.ovyn@uclouvain.be
5
6 Center for Particle Physics and Phenomenology (CP3)
7 Universite Catholique de Louvain (UCL)
8 Louvain-la-Neuve, Belgium
9*/
10
11/// \file SmearUtil.cc
12/// \brief RESOLution class, and some generic definitions
13
14
15#include "interface/SmearUtil.h"
16#include "TRandom.h"
17
18#include <iostream>
19#include <sstream>
20#include <fstream>
21
22#include <cstdio>
23#include <cstdio>
24#include <TCanvas.h>
25#include <TLorentzVector.h>
26#include <string>
27#include <fstream>
28#include <istream>
29#include <iostream>
30#include <TMath.h>
31#include <vector>
32#include "TRandom.h"
33#include <cstdlib>
34#include <math.h>
35#include <time.h>
36
37#include <iostream>
38#include <iomanip>
39
40#include <iostream>
41#include <sstream>
42
43#include <fstream>
44#include <vector>
45
46using namespace std;
47
48//------------------------------------------------------------------------------
49
50RESOLution::RESOLution() {
51
52MAX_TRACKER = 2.5; // tracker coverage
53MAX_CALO_CEN = 3.0; // central calorimeter coverage
54MAX_CALO_FWD = 5.0; // forward calorimeter pseudorapidity coverage
55MAX_MU = 2.4; // muon chambers pseudorapidity coverage
56MIN_CALO_VFWD= 5.2; // very forward calorimeter (if any), like CASTOR
57MAX_CALO_VFWD= 6.6; // very forward calorimeter (if any), like CASTOR
58MIN_ZDC = 8.3; // zero-degree calorimeter, coverage
59
60ZDC_S = 140.; // ZDC distance to IP
61RP220_S = 220; // distance of the RP to the IP, in meters
62RP220_X = 0.002;// distance of the RP to the beam, in meters
63FP420_S = 420; // distance of the RP to the IP, in meters
64FP420_X = 0.004;// distance of the RP to the beam, in meters
65
66
67ELG_Scen = 0.05; // S term for central ECAL
68ELG_Ncen = 0.25 ; // N term for central ECAL
69ELG_Ccen = 0.0055 ; // C term for central ECAL
70ELG_Cfwd = 0.107 ; // S term for forward ECAL
71ELG_Sfwd = 2.084 ; // C term for forward ECAL
72ELG_Nfwd = 0.0 ; // N term for central ECAL
73
74HAD_Shcal = 1.5 ; // S term for central HCAL // hadronic calorimeter
75HAD_Nhcal = 0.0 ; // N term for central HCAL
76HAD_Chcal = 0.05 ; // C term for central HCAL
77HAD_Shf = 2.7 ; // S term for central HF // forward calorimeter
78HAD_Nhf = 0.0 ; // N term for central HF
79HAD_Chf = 0.13 ; // C term for central HF
80
81MU_SmearPt = 0.01 ;
82
83ELEC_pt = 10.0;
84MUON_pt = 10.0;
85JET_pt = 20.0;
86TAUJET_pt = 10.0;
87
88
89TAU_CONE_ENERGY = 0.15 ; // Delta R = radius of the cone // for "electromagnetic collimation"
90TAU_EM_COLLIMATION = 0.95;
91TAU_CONE_TRACKS= 0.4 ; //Delta R for tracker isolation for tau's
92PT_TRACK_TAU = 2.0 ; // GeV // 6 GeV ????
93
94
95PT_TRACKS_MIN = 0.9 ; // minimal pt needed to reach the calorimeter, in GeV
96PT_QUARKS_MIN = 2.0 ; // minimal pt needed by quarks to reach the tracker, in GeV (??????)
97TRACKING_EFF = 90;
98
99
100TAGGING_B = 40;
101MISTAGGING_C = 10;
102MISTAGGING_L = 1;
103
104
105CONERADIUS = 0.7; // generic jet radius ; not for tau's !!!
106JETALGO = 1; // 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
107
108//General jet parameters
109SEEDTHRESHOLD = 1.0;
110OVERLAPTHRESHOLD = 0.75;
111
112// Define Cone algorithm.
113C_ADJACENCYCUT = 2;
114C_MAXITERATIONS = 100;
115C_IRATCH = 1;
116
117//Define MidPoint algorithm.
118M_CONEAREAFRACTION = 0.25;
119M_MAXPAIRSIZE = 2;
120M_MAXITERATIONS = 100;
121
122}
123
124//------------------------------------------------------------------------------
125void RESOLution::ReadDataCard(const string datacard) {
126
127 string temp_string;
128 istringstream curstring;
129
130 ifstream fichier_a_lire(datacard.c_str());
131 if(!fichier_a_lire.good()) {
132 cout << datacard << "Datadard " << datacard << " not found, use default values" << endl;
133 return;
134 }
135
136 while (getline(fichier_a_lire,temp_string)) {
137 curstring.clear(); // needed when using several times istringstream::str(string)
138 curstring.str(temp_string);
139 string varname;
140 float value;
141
142 if(strstr(temp_string.c_str(),"#")) { }
143 else if(strstr(temp_string.c_str(),"MAX_TRACKER")){curstring >> varname >> value; MAX_TRACKER = value;}
144 else if(strstr(temp_string.c_str(),"MAX_CALO_CEN")){curstring >> varname >> value; MAX_CALO_CEN = value;}
145 else if(strstr(temp_string.c_str(),"MAX_CALO_FWD")){curstring >> varname >> value; MAX_CALO_FWD = value;}
146 else if(strstr(temp_string.c_str(),"MAX_MU")){curstring >> varname >> value; MAX_MU = value;}
147 else if(strstr(temp_string.c_str(),"ELG_Scen")){curstring >> varname >> value; ELG_Scen = value;}
148 else if(strstr(temp_string.c_str(),"ELG_Ncen")){curstring >> varname >> value; ELG_Ncen = value;}
149 else if(strstr(temp_string.c_str(),"ELG_Ccen")){curstring >> varname >> value; ELG_Ccen = value;}
150 else if(strstr(temp_string.c_str(),"ELG_Sfwd")){curstring >> varname >> value; ELG_Sfwd = value;}
151 else if(strstr(temp_string.c_str(),"ELG_Cfwd")){curstring >> varname >> value; ELG_Cfwd = value;}
152 else if(strstr(temp_string.c_str(),"ELG_Nfwd")){curstring >> varname >> value; ELG_Nfwd = value;}
153 else if(strstr(temp_string.c_str(),"HAD_Shcal")){curstring >> varname >> value; HAD_Shcal = value;}
154 else if(strstr(temp_string.c_str(),"HAD_Nhcal")){curstring >> varname >> value; HAD_Nhcal = value;}
155 else if(strstr(temp_string.c_str(),"HAD_Chcal")){curstring >> varname >> value; HAD_Chcal = value;}
156 else if(strstr(temp_string.c_str(),"HAD_Shf")){curstring >> varname >> value; HAD_Shf = value;}
157 else if(strstr(temp_string.c_str(),"HAD_Nhf")){curstring >> varname >> value; HAD_Nhf = value;}
158 else if(strstr(temp_string.c_str(),"HAD_Chf")){curstring >> varname >> value; HAD_Chf = value;}
159 else if(strstr(temp_string.c_str(),"MU_SmearPt")){curstring >> varname >> value; MU_SmearPt = value;}
160 else if(strstr(temp_string.c_str(),"TAU_CONE_ENERGY")){curstring >> varname >> value; TAU_CONE_ENERGY = value;}
161 else if(strstr(temp_string.c_str(),"TAU_CONE_TRACKS")){curstring >> varname >> value; TAU_CONE_TRACKS = value;}
162 else if(strstr(temp_string.c_str(),"PT_TRACK_TAU")){curstring >> varname >> value; PT_TRACK_TAU = value;}
163 else if(strstr(temp_string.c_str(),"PT_TRACKS_MIN")){curstring >> varname >> value; PT_TRACKS_MIN = value;}
164 else if(strstr(temp_string.c_str(),"TAGGING_B")){curstring >> varname >> value; TAGGING_B = (int)value;}
165 else if(strstr(temp_string.c_str(),"MISTAGGING_C")){curstring >> varname >> value; MISTAGGING_C = (int)value;}
166 else if(strstr(temp_string.c_str(),"MISTAGGING_L")){curstring >> varname >> value; MISTAGGING_L = (int)value;}
167 else if(strstr(temp_string.c_str(),"CONERADIUS")){curstring >> varname >> value; CONERADIUS = value;}
168 else if(strstr(temp_string.c_str(),"JETALGO")){curstring >> varname >> value; JETALGO = (int)value;}
169 else if(strstr(temp_string.c_str(),"TRACKING_EFF")){curstring >> varname >> value; TRACKING_EFF = (int)value;}
170 else if(strstr(temp_string.c_str(),"ELEC_pt")){curstring >> varname >> value; ELEC_pt = value;}
171 else if(strstr(temp_string.c_str(),"MUON_pt")){curstring >> varname >> value; MUON_pt = value;}
172 else if(strstr(temp_string.c_str(),"JET_pt")){curstring >> varname >> value; JET_pt = value;}
173 else if(strstr(temp_string.c_str(),"TAUJET_pt")){curstring >> varname >> value; TAUJET_pt = value;}
174
175 }
176
177// General jet variables
178 SEEDTHRESHOLD = 1.0;
179 OVERLAPTHRESHOLD = 0.75;
180
181// Define Cone algorithm.
182 C_ADJACENCYCUT = 2;
183 C_MAXITERATIONS = 100;
184 C_IRATCH = 1;
185
186//Define MidPoint algorithm.
187 M_CONEAREAFRACTION = 0.25;
188 M_MAXPAIRSIZE = 2;
189 M_MAXITERATIONS = 100;
190
191//Define SISCone algorithm.
192 NPASS = 0;
193 PROTOJET_PTMIN = 0.0;
194
195
196}
197
198void RESOLution::Logfile(string LogName) {
199
200 ofstream f_out(LogName.c_str());
201
202 f_out<<"#*********************************************************************"<<"\n";
203 f_out<<"# *"<<"\n";
204
205 string temp_string;
206 istringstream curstring;
207 ifstream fichier_a_lire("VERSION");
208 if(fichier_a_lire.good()) {
209 string Version;
210 while (getline(fichier_a_lire,temp_string)) {
211 curstring.str(temp_string);
212 curstring >> Version;}
213 f_out<<"#"<< right << setw(39) <<"---- DELPHES release "<<Version<< left <<" ---- *"<<"\n";
214
215 }
216 else { f_out<<"# ---- DELPHES release not defined ---- *"<<"\n";}
217
218 f_out<<"# *"<<"\n";
219 f_out<<"# A Fast Simulator for general purpose LHC detector *"<<"\n";
220 f_out<<"# Written by S. Ovyn and X. Rouby *"<<"\n";
221 f_out<<"# severine.ovyn@uclouvain.be *"<<"\n";
222 f_out<<"# *"<<"\n";
223 f_out<<"# http: *"<<"\n";
224 f_out<<"# *"<<"\n";
225 f_out<<"# Center for Particle Physics and Phenomenology (CP3) *"<<"\n";
226 f_out<<"# Universite Catholique de Louvain (UCL) *"<<"\n";
227 f_out<<"# Louvain-la-Neuve, Belgium *"<<"\n";
228 f_out<<"# *"<<"\n";
229 f_out<<"#....................................................................*"<<"\n";
230 f_out<<"# *"<<"\n";
231 f_out<<"# This package uses: *"<<"\n";
232 f_out<<"# FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] *"<<"\n";
233 f_out<<"# Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] *"<<"\n";
234 f_out<<"# ExRootAnalysis *"<<"\n";
235 f_out<<"# *"<<"\n";
236 f_out<<"#....................................................................*"<<"\n";
237 f_out<<"# *"<<"\n";
238 f_out<<"# This file contains all the running parameters (detector and cuts) *"<<"\n";
239 f_out<<"# necessary to reproduce the detector simulation *"<<"\n";
240 f_out<<"# *"<<"\n";
241 f_out<<"#....................................................................*"<<"\n";
242 f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
243 f_out<<"* *"<<"\n";
244 f_out<<"#******************************** *"<<"\n";
245 f_out<<"# Central detector caracteristics *"<<"\n";
246 f_out<<"#******************************** *"<<"\n";
247 f_out<<"* *"<<"\n";
248 f_out << left << setw(30) <<"* Maximum tracking system: "<<""
249 << left << setw(10) <<MAX_TRACKER <<""<< right << setw(15)<<"*"<<"\n";
250 f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
251 << left << setw(10) <<MAX_CALO_CEN <<""<< right << setw(15)<<"*"<<"\n";
252 f_out << left << setw(30) <<"* Maximum forward calorimeter: "<<""
253 << left << setw(10) <<MAX_CALO_FWD <<""<< right << setw(15)<<"*"<<"\n";
254 f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
255 << left << setw(10) <<MAX_MU <<""<< right << setw(15)<<"*"<<"\n";
256 f_out<<"* *"<<"\n";
257 f_out<<"#************************************* *"<<"\n";
258 f_out<<"# Very forward detector caracteristics *"<<"\n";
259 f_out<<"#************************************* *"<<"\n";
260 f_out<<"* *"<<"\n";
261 f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
262 << left << setw(5) <<MIN_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
263 f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
264 << left << setw(5) <<MAX_CALO_VFWD <<""<< right << setw(10)<<"*"<<"\n";
265 f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
266 << left << setw(5) <<ZDC_S <<""<< right << setw(10)<<"*"<<"\n";
267 f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
268 << left << setw(5) <<RP220_S <<""<< right << setw(10)<<"*"<<"\n";
269 f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
270 << left << setw(5) <<RP220_X <<""<< right << setw(10)<<"*"<<"\n";
271 f_out << left << setw(55) <<"* Distance of the RP to the IP, in meters: "<<""
272 << left << setw(5) <<FP420_S <<""<< right << setw(10)<<"*"<<"\n";
273 f_out << left << setw(55) <<"* Distance of the RP to the beam, in meters: "<<""
274 << left << setw(5) <<FP420_X <<""<< right << setw(10)<<"*"<<"\n";
275 f_out<<"* *"<<"\n";
276 f_out<<"#************************************ *"<<"\n";
277 f_out<<"# Electromagnetic smearing parameters *"<<"\n";
278 f_out<<"#************************************ *"<<"\n";
279 f_out<<"* *"<<"\n";
280 //# \sigma/E = C + N/E + S/\sqrt{E}
281 f_out << left << setw(30) <<"* S term for central ECAL: "<<""
282 << left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
283 f_out << left << setw(30) <<"* N term for central ECAL: "<<""
284 << left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
285 f_out << left << setw(30) <<"* C term for central ECAL: "<<""
286 << left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
287 f_out << left << setw(30) <<"* S term for forward ECAL: "<<""
288 << left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
289 f_out << left << setw(30) <<"* N term for forward ECAL: "<<""
290 << left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
291 f_out << left << setw(30) <<"* C term for forward ECAL: "<<""
292 << left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
293 f_out<<"* *"<<"\n";
294 f_out<<"#***************************** *"<<"\n";
295 f_out<<"# Hadronic smearing parameters *"<<"\n";
296 f_out<<"#***************************** *"<<"\n";
297 f_out<<"* *"<<"\n";
298 f_out << left << setw(30) <<"* S term for central HCAL: "<<""
299 << left << setw(30) <<HAD_Shcal <<""<< right << setw(10)<<"*"<<"\n";
300 f_out << left << setw(30) <<"* N term for central HCAL: "<<""
301 << left << setw(30) <<HAD_Nhcal <<""<< right << setw(10)<<"*"<<"\n";
302 f_out << left << setw(30) <<"* C term for central HCAL: "<<""
303 << left << setw(30) <<HAD_Chcal <<""<< right << setw(10)<<"*"<<"\n";
304 f_out << left << setw(30) <<"* S term for forward HCAL: "<<""
305 << left << setw(30) <<HAD_Shf <<""<< right << setw(10)<<"*"<<"\n";
306 f_out << left << setw(30) <<"* N term for forward HCAL: "<<""
307 << left << setw(30) <<HAD_Nhf <<""<< right << setw(10)<<"*"<<"\n";
308 f_out << left << setw(30) <<"* C term for forward HCAL: "<<""
309 << left << setw(30) <<HAD_Chf <<""<< right << setw(10)<<"*"<<"\n";
310 f_out<<"* *"<<"\n";
311 f_out<<"#*************************** *"<<"\n";
312 f_out<<"# Tracking system acceptance *"<<"\n";
313 f_out<<"#*************************** *"<<"\n";
314 f_out<<"* *"<<"\n";
315 f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
316 << left << setw(10) <<PT_TRACKS_MIN <<""<< right << setw(5)<<"*"<<"\n";
317 f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
318 << left << setw(10) <<TRACKING_EFF <<""<< right << setw(5)<<"*"<<"\n";
319 f_out<<"* *"<<"\n";
320 f_out<<"#************************* *"<<"\n";
321 f_out<<"# Muon smearing parameters *"<<"\n";
322 f_out<<"#************************* *"<<"\n";
323 f_out<<"* *"<<"\n";
324 //MU_SmearPt 0.01
325 f_out<<"* *"<<"\n";
326 f_out<<"#****************************** *"<<"\n";
327 f_out<<"# Tau-jet definition parameters *"<<"\n";
328 f_out<<"#****************************** *"<<"\n";
329 f_out<<"* *"<<"\n";
330 f_out << left << setw(45) <<"* Cone radius for calorimeter tagging: "<<""
331 << left << setw(5) <<TAU_CONE_ENERGY <<""<< right << setw(20)<<"*"<<"\n";
332 f_out << left << setw(45) <<"* Fraction of energy in the small cone: "<<""
333 << left << setw(5) <<TAU_EM_COLLIMATION*100 <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
334 f_out << left << setw(45) <<"* Cone radius for tracking tagging: "<<""
335 << left << setw(5) <<TAU_CONE_TRACKS <<""<< right << setw(20)<<"*"<<"\n";
336 f_out << left << setw(45) <<"* Minimum track pT [GeV]: "<<""
337 << left << setw(5) <<PT_TRACK_TAU <<""<< right << setw(20)<<"*"<<"\n";
338 f_out<<"* *"<<"\n";
339 f_out<<"#******************* *"<<"\n";
340 f_out<<"# Minimum pT's [GeV] *"<<"\n";
341 f_out<<"#******************* *"<<"\n";
342 f_out<<"* *"<<"\n";
343 f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
344 << left << setw(20) <<ELEC_pt <<""<< right << setw(10)<<"*"<<"\n";
345 f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
346 << left << setw(20) <<MUON_pt <<""<< right << setw(10)<<"*"<<"\n";
347 f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
348 << left << setw(20) <<JET_pt <<""<< right << setw(10)<<"*"<<"\n";
349 f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
350 << left << setw(20) <<TAUJET_pt <<""<< right << setw(10)<<"*"<<"\n";
351 f_out<<"* *"<<"\n";
352 f_out<<"#*************************** *"<<"\n";
353 f_out<<"# B-tagging efficiencies [%] *"<<"\n";
354 f_out<<"#*************************** *"<<"\n";
355 f_out<<"* *"<<"\n";
356 f_out << left << setw(50) <<"* Efficiency to tag a \"b\" as a b-jet: "<<""
357 << left << setw(10) <<TAGGING_B <<""<< right << setw(10)<<"*"<<"\n";
358 f_out << left << setw(50) <<"* Efficiency to mistag a c-jet as a b-jet: "<<""
359 << left << setw(10) <<MISTAGGING_C <<""<< right << setw(10)<<"*"<<"\n";
360 f_out << left << setw(50) <<"* Efficiency to mistag a light jet as a b-jet: "<<""
361 << left << setw(10) <<MISTAGGING_L <<""<< right << setw(10)<<"*"<<"\n";
362 f_out<<"* *"<<"\n";
363 f_out<<"#*************** *"<<"\n";
364 f_out<<"# Jet definition *"<<"\n";
365 f_out<<"#*************** *"<<"\n";
366 f_out<<"* *"<<"\n";
367 f_out<<"* Six algorithms are currently available: *"<<"\n";
368 f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
369 f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
370 f_out<<"* - 3) SIScone algorithm, *"<<"\n";
371 f_out<<"* - 4) kt algorithm, *"<<"\n";
372 f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
373 f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
374 f_out<<"* *"<<"\n";
375 f_out<<"* You have chosen *"<<"\n";
376 switch(JETALGO) {
377 default:
378 case 1: {
379 f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
380 f_out << left << setw(40) <<"* - Seed threshold: "<<""
381 << left << setw(10) <<SEEDTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
382 f_out << left << setw(40) <<"* - Cone radius: "<<""
383 << left << setw(10) <<CONERADIUS <<""<< right << setw(20)<<"*"<<"\n";
384 f_out << left << setw(40) <<"* - Adjacency cut: "<<""
385 << left << setw(10) <<C_ADJACENCYCUT <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
386 f_out << left << setw(40) <<"* - Max iterations: "<<""
387 << left << setw(10) <<C_MAXITERATIONS <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
388 f_out << left << setw(40) <<"* - Iratch: "<<""
389 << left << setw(10) <<C_IRATCH <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
390 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
391 << left << setw(10) <<OVERLAPTHRESHOLD <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
392 }
393 break;
394 case 2: {
395 f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
396 f_out << left << setw(40) <<"* - Seed threshold: "<<""
397 << left << setw(20) <<SEEDTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
398 f_out << left << setw(40) <<"* - Cone radius: "<<""
399 << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
400 f_out << left << setw(40) <<"* - Cone area fraction:"<<""
401 << left << setw(20) <<M_CONEAREAFRACTION <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
402 f_out << left << setw(40) <<"* - Maximum pair size: "<<""
403 << left << setw(20) <<M_MAXPAIRSIZE <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
404 f_out << left << setw(40) <<"* - Max iterations: "<<""
405 << left << setw(20) <<M_MAXITERATIONS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
406 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
407 << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
408 }
409 break;
410 case 3: {
411 f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
412 f_out << left << setw(40) <<"* - Cone radius: "<<""
413 << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
414 f_out << left << setw(40) <<"* - Overlap threshold: "<<""
415 << left << setw(20) <<OVERLAPTHRESHOLD <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
416 f_out << left << setw(40) <<"* - Number pass max: "<<""
417 << left << setw(20) <<NPASS <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
418 f_out << left << setw(40) <<"* - Minimum pT for protojet: "<<""
419 << left << setw(20) <<PROTOJET_PTMIN <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
420 }
421 break;
422 case 4: {
423 f_out <<"* KT jet algorithm with parameters: *"<<"\n";
424 f_out << left << setw(40) <<"* - Cone radius: "<<""
425 << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
426 }
427 break;
428 case 5: {
429 f_out <<"* Cambridge/Aachen jet algorithm with parameters: *"<<"\n";
430 f_out << left << setw(40) <<"* - Cone radius: "<<""
431 << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
432 }
433 break;
434 case 6: {
435 f_out <<"* Anti-kt jet algorithm with parameters: *"<<"\n";
436 f_out << left << setw(40) <<"* - Cone radius: "<<""
437 << left << setw(20) <<CONERADIUS <<""<< right << setw(10)<<"*"<<"\n";
438 }
439 break;
440
441
442 }
443 f_out<<"* *"<<"\n";
444 f_out<<"#....................................................................*"<<"\n";
445 f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
446
447}
448
449// **********Provides the smeared TLorentzVector for the electrons********
450// Smears the electron energy, and changes the 4-momentum accordingly
451// different smearing if the electron is central (eta < 2.5) or forward
452void RESOLution::SmearElectron(TLorentzVector &electron) {
453 // the 'electron' variable will be changed by the function
454 float energy = electron.E(); // before smearing
455 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
456
457 if(fabs(electron.Eta()) < MAX_TRACKER) { // if the electron is inside the tracker
458 energyS = gRandom->Gaus(energy, sqrt(
459 pow(ELG_Ncen,2) +
460 pow(ELG_Ccen*energy,2) +
461 pow(ELG_Scen*sqrt(energy),2) ));
462 } else { // outside the tracker
463 energyS = gRandom->Gaus(energy, sqrt(
464 pow(ELG_Nfwd,2) +
465 pow(ELG_Cfwd*energy,2) +
466 pow(ELG_Sfwd*sqrt(energy),2) ) );
467 }
468 electron.SetPtEtaPhiE(energyS/cosh(electron.Eta()), electron.Eta(), electron.Phi(), energyS);
469 if(electron.E() < 0)electron.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
470}
471
472
473// **********Provides the smeared TLorentzVector for the muons********
474// Smears the muon pT and changes the 4-momentum accordingly
475void RESOLution::SmearMu(TLorentzVector &muon) {
476 // the 'muon' variable will be changed by the function
477 float pt = muon.Pt(); // before smearing
478 float ptS = gRandom->Gaus(pt, MU_SmearPt*pt ); // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
479
480 muon.SetPtEtaPhiE(ptS, muon.Eta(), muon.Phi(), ptS*cosh(muon.Eta()));
481
482 if(muon.E() < 0)muon.SetPxPyPzE(0,0,0,0); // no negative values after smearing !
483}
484
485
486// **********Provides the smeared TLorentzVector for the hadrons********
487// Smears the hadron 4-momentum
488void RESOLution::SmearHadron(TLorentzVector &hadron, const float frac)
489 // the 'hadron' variable will be changed by the function
490 // the 'frac' variable describes the long-living particles. Should be 0.7 for K0S and Lambda, 1. otherwise
491{
492 float energy = hadron.E(); // before smearing
493 float energyS = 0.0; // after smearing // \sigma/E = C + N/E + S/\sqrt{E}
494 float energy_ecal = (1.0 - frac)*energy; // electromagnetic calorimeter
495 float energy_hcal = frac*energy; // hadronic calorimeter
496 // frac takes into account the decay of long-living particles, that decay in the calorimeters
497 // some of the particles decay mostly in the ecal, some mostly in the hcal
498
499 float energyS1,energyS2;
500 if(fabs(hadron.Eta()) < MAX_CALO_CEN) {
501 energyS1 = gRandom->Gaus(energy_hcal, sqrt(
502 pow(HAD_Nhcal,2) +
503 pow(HAD_Chcal*energy_hcal,2) +
504 pow(HAD_Shcal*sqrt(energy_hcal),2) )) ;
505
506
507 energyS2 = gRandom->Gaus(energy_ecal, sqrt(
508 pow(ELG_Ncen,2) +
509 pow(ELG_Ccen*energy_ecal,2) +
510 pow(ELG_Scen*sqrt(energy_ecal),2) ) );
511
512 energyS = ((energyS1>0)?energyS1:0) + ((energyS2>0)?energyS2:0);
513 } else {
514 energyS = gRandom->Gaus(energy, sqrt(
515 pow(HAD_Nhf,2) +
516 pow(HAD_Chf*energy,2) +
517 pow(HAD_Shf*sqrt(energy),2) ));
518 }
519
520
521 hadron.SetPtEtaPhiE(energyS/cosh(hadron.Eta()),hadron.Eta(), hadron.Phi(), energyS);
522
523 if(hadron.E() < 0)hadron.SetPxPyPzE(0,0,0,0);
524}
525
526// **********Provides the energy in the cone of radius TAU_CONE_ENERGY for the tau identification********
527// to be taken into account, a calo tower should
528// 1) have a transverse energy \f$ E_T = \sqrt{E_X^2 + E_Y^2} \f$ above a given threshold
529// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
530double RESOLution::EnergySmallCone(const vector<PhysicsTower> &towers, const float eta, const float phi) {
531 double Energie=0;
532 for(unsigned int i=0; i < towers.size(); i++) {
533 if(towers[i].fourVector.pt() < SEEDTHRESHOLD) continue;
534 if((DeltaR(phi,eta,towers[i].fourVector.phi(),towers[i].fourVector.eta()) < TAU_CONE_ENERGY)) {
535 Energie += towers[i].fourVector.E;
536 }
537 }
538 return Energie;
539}
540
541
542// **********Provides the number of tracks in the cone of radius TAU_CONE_TRACKS for the tau identification********
543// to be taken into account, a track should
544// 1) avec a transverse momentum \$f p_T \$ above a given threshold
545// 2) be inside a cone with a radius R and the axis defined by (eta,phi)
546// IMPORTANT REMARK !!!!!
547// previously, the argument 'phi' was before the argument 'eta'
548// this has been changed for consistency with the other functions
549// double check your running code that uses NumTracks !
550unsigned int RESOLution::NumTracks(const vector<TLorentzVector> &tracks, const float pt_track, const float eta, const float phi) {
551 unsigned int numtrack=0;
552 for(unsigned int i=0; i < tracks.size(); i++) {
553 if((tracks[i].Pt() < pt_track )||
554 (DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()) > TAU_CONE_TRACKS)
555 )continue;
556 numtrack++;
557 }
558 return numtrack;
559}
560
561
562//*** Returns the PID of the particle with the highest energy, in a cone with a radius CONERADIUS and an axis (eta,phi) *********
563//used by Btaggedjet
564///// Attention : bug removed => CONERADIUS/2 -> CONERADIUS !!
565int RESOLution::Bjets(const TSimpleArray<TRootGenParticle> &subarray, const float eta, const float phi) {
566 float emax=0;
567 int Ppid=0;
568 if(subarray.GetEntries()>0) {
569 for(int i=0; i < subarray.GetEntries();i++) { // should have pt>PT_JETMIN and a small cone radius (r<CONE_JET)
570 float genDeltaR = DeltaR(subarray[i]->Phi,subarray[i]->Eta,phi,eta);
571 if(genDeltaR < CONERADIUS && subarray[i]->E > emax) {
572 emax=subarray[i]->E;
573 Ppid=abs(subarray[i]->PID);
574 }
575 }
576 }
577 return Ppid;
578}
579
580
581//******************** Simulates the b-tagging efficiency for real bjet, or the misendentification for other jets****************
582bool RESOLution::Btaggedjet(const TLorentzVector &JET, const TSimpleArray<TRootGenParticle> &subarray) {
583 if( rand()%100 < (TAGGING_B+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pB ) return true; // b-tag of b-jets is 40%
584 else if( rand()%100 < (MISTAGGING_C+1) && Bjets(subarray,JET.Eta(),JET.Phi())==pC ) return true; // b-tag of c-jets is 10%
585 else if( rand()%100 < (MISTAGGING_L+1) && Bjets(subarray,JET.Eta(),JET.Phi())!=0) return true; // b-tag of light jets is 1%
586 return false;
587}
588
589//***********************Isolation criteria***********************
590//****************************************************************
591bool RESOLution::Isolation(Float_t phi,Float_t eta,const vector<TLorentzVector> &tracks,float PT_TRACK2)
592{
593 bool isolated = false;
594 Float_t deltar=5000.; // Initial value; should be high; no further repercussion
595 // loop on all final charged particles, with p_t >2, close enough from the electron
596 for(unsigned int i=0; i < tracks.size(); i++)
597 {
598 if(tracks[i].Pt() < PT_TRACK2)continue;
599 Float_t genDeltaR = DeltaR(phi,eta,tracks[i].Phi(),tracks[i].Eta()); // slower to evaluate
600 if(
601 (genDeltaR > deltar) ||
602 (genDeltaR==0)
603 ) continue ;
604 deltar=genDeltaR;
605 }
606 if(deltar > 0.5)isolated = true; // returns the closest distance
607 return isolated;
608}
609
610
611//**************************** Returns the delta Phi ****************************
612float DeltaPhi(const float phi1, const float phi2) {
613 float deltaphi=phi1-phi2; // in here, -PI < phi < PI
614 if(fabs(deltaphi) > PI) deltaphi=2.*PI-fabs(deltaphi);// put deltaphi between 0 and PI
615 else deltaphi=fabs(deltaphi);
616
617 return deltaphi;
618}
619
620//**************************** Returns the delta R****************************
621float DeltaR(const float phi1, const float eta1, const float phi2, const float eta2) {
622 return sqrt(pow(DeltaPhi(phi1,phi2),2) + pow(eta1-eta2,2));
623}
624
625int sign(const int myint) {
626 if (myint >0) return 1;
627 else if (myint <0) return -1;
628 else return 0;
629}
630
631int sign(const float myfloat) {
632 if (myfloat >0) return 1;
633 else if (myfloat <0) return -1;
634 else return 0;
635}
636
637
638float Charge(const long int pid) {
639 // source: RPP chap 34 Monte Carlo Particle Numbering Scheme
640/* switch (abs(pid)) {
641 case 1: case 3: case 5: case 7: return (float) sign(pid)*(-1/3); break; // d, s, b, b'
642 case 2: case 4: case 6: case 8: return (float) sign(pid)*2/3; break; // u, c, t, t'
643
644 case 11: case 13: case 15: return (float) sign(pid)*(-1); break; // e, mu, tau
645 case 12: case 14: case 16: return (float) 0; break; // nu_e, nu_mu, nu_tau
646
647 case 9: case 21: case 22: case 23: case 25:
648 case 32: case 33: case 35: case 36: return (float) 0; break; // neutral gauge/higgs bosons
649 case 24: case 34: case 37: return (float) sign(pid); break; // charged gauge/higgs bosons
650 }
651*/
652 return 0;
653}
Note: See TracBrowser for help on using the repository browser.