Fork me on GitHub

source: svn/trunk/paper/notes.tex@ 18

Last change on this file since 18 was 5, checked in by Xavier Rouby, 16 years ago

path for figures modified

File size: 11.6 KB
Line 
1\documentclass[a4paper,11pt,oneside]{article}
2\usepackage[english]{babel}
3\usepackage[ansinew]{inputenc}
4
5\usepackage[dvips]{graphicx}
6\graphicspath{{figures/}}
7
8\usepackage{amsmath}
9\usepackage{epic}
10\usepackage{wrapfig}
11\usepackage{eepic}
12\usepackage{color}
13\usepackage{latexsym}
14\usepackage{array}
15
16\usepackage{fancyhdr}
17\usepackage{verbatim}
18\addtolength{\textwidth}{4cm} \addtolength{\hoffset}{-2cm}
19\begin{document}
20
21\section*{Abstract}
22
23\section{Introduction}
24% Motiver l'utilisation d'un simulateur rapide
25% - 1) rapide VS lent
26% - 2) relativement bonne prédiction en premiÚre approximation
27% - 3) permet de comparer
28Full simulation of the response of large detectors components to high energy particles requires a lot of computing resources. Moreover, a good knowledge of the exact geometry of subdetectors and dead material content is mandatory.
29
30Fast simulation can be a powerful predictive tool for typical response of a large detector in high energy collider.
31
32The fast simulation of the detector response takes into account geometrical
33acceptance of sub-detectors and their finite energy resolution, no smearing is
34applied on particle direction. Charged particles, once are in the fiducial
35volume of the detector are assumed to be reconstructed with $100\%$ probability.
36The energy of each particle produced after hadronization, with a lifetime
37$c\tau$ bigger than $10~\textrm{mm}$ is then smeared according to detectors along
38particule's direction. For particles with a short lifetime such as the $K_s$,
39the fraction of electromagnetic or hadronic energy is determined according to
40its decay products. The calorimeter is assumed to cover the pseudorapidity range
41$|\eta|<3$ and consists in an electromagnetic and an hadronic part. The energy
42resolution is given by $\sigma_{E}/E=0.05/\sqrt{E} \oplus 0.25/E \oplus 0.0055$
43for the electromagnetic part and by $\sigma_{E}/E=0.91/\sqrt{E}\oplus 0.038$ for
44the hadronic part, where the energy is given in GeV. A very forward calorimeter
45is assumed to cover $3<|\eta|<5$ with an electromagnetic and hadronic energy
46resolution function given by $\sigma_{E}/E=1.5/\sqrt{E}\oplus 0.06$ and
47$\sigma_{E}/E=2.7/\sqrt{E}\oplus 0.13$ respectively.\\
48
49\begin{figure}[!h]
50\begin{center}
51\includegraphics[width=0.7\textwidth]{detectorAng.eps}
52\caption{\small{detectorAng.eps}}
53\label{h_WW_ss_cut1}
54\end{center}
55\end{figure}
56
57
58The acceptance cuts applied on leptons and jets used in this section are the
59following :\\
60
61\begin{itemize}
62
63\item Electrons and muons are reconstructed if they fall into the acceptance of
64the tracker, assumed to be $|\eta|<2.5$, and have to have a transverse momentum
65above 10~GeV (the energy resolution of muons is taken to be the same as for
66electrons). Lepton isolation demands that there is no other charged particles
67with $p_T>2$~GeV within a cone of $\Delta R<0.5$ around the lepton.\\
68
69\item Jets are reconstructed using a cone algorithm with $R=0.7$ and make only
70use of the smeared particle momenta. The reconstructed jets are required to have
71a transverse momentum above 20~GeV and $|\eta|<3.0$. A jet is tagged as $b$-jets
72if its direction lies in the acceptance of the tracker, $|\eta|<0.5$, and if it
73is associated to a parent $b$-quark. A $b$-tagging efficiency of $40\%$ is
74assumed if the jet has a parent $b$ quark. For $c$-jets and light/gluon jets, a
75fake
76b-tagging efficiency of $10 \%$ and $1 \%$ respectively is assumed.\\
77
78\item A jet is tagged as a $\tau$-jet if more than $90\%$ of its energy is
79localized in a cone of $\Delta R=0.15$ around its axis. Moreover, this jet must
80have its direction in the acceptance of the tracker and have exactly one charged
81particle with $p_{T}>2$~GeV within a cone $\Delta R<0.4$ around the jet axis.
82This procedure selects taus decaying hadronically with a typical efficiency of
83$60\%$. Moreover, the minimal $p_T$ of the $\tau$-jet is required to be
8410~GeV.\\
85
86\end{itemize}
87
88\section{implementation}
89\subsection{Electron smearing}
90The smearing of the electron 4-momentum $p^\mu$ is
91 - if the electron is in the tracker ($\eta < MAX\_TRACKER$)
92 Gaussian smearing with $\sigma = ELG_Ccen*E \oplus ELG_Ncen \oplus
93ELG_Scen*\sqrt{E}$
94 - else Gaussian smearing with $\sigma = ELS_Cfwd*E \oplus ELG_Sfwd*\sqrt{E}$
95function \texttt{SmearElectron}
96Only the energy $E$ is smeared, but neither $\eta$ nor $\phi$.
97No negative values for the energy after smearing. If so, the $4$-momentum is set
98to $(0,0,0,0)$.
99\textbf{For the moment, electrons with $|\eta|> 5$ are also smeared !!!}
100
101\subsection{Muon smearing}
102The smearing ot the muon 4-momentum $p^\mu$ is given
103by a Gaussian smearing of the $p_T$
104function \texttt{SmearMuon}
105Only the $p_T$ is smeared, but neither $\eta$ nor $\phi$.
106No negative values for the energy after smearing. If so, the 4-momentum is set
107to $(0,0,0,0)$.
108
109\subsection{Hadron smearing}
110The energy of the hadron is smeared in the following ways:
111 - if the hadron is in the central calorimeter (eta < MAX\_CALO\_CEN)
112 Gaussian smearing with $\sigma = HAD_Chcal*E_{hcal} \oplus HAD_Nhcal
113\oplus HAD_Shcal*\sqrt{E_{hcal}}
114 + HAD_Cecal*E_{ecal} \oplus HAD_Necal
115\oplus HAD_Secal*\sqrt{E_{ecal}}$
116 where $E_{hcal} + E_{ecal} = E$. As some long-living particles decay in
117the calorimeters,
118 some of them decay mostly in the ECAL, some mostly in the HCAL.
119$E_{hcal}$ and $E_{ecal}$ are
120 given by $E_{hcal} = E \times F$ and $E_{ecal} = E times (1-F)$, where
121$F$ is a fraction
122 $0 \leq F \leq 1$ describing each particles. By default, $F=1.$ but is
123$F=0.7$ for $K^0_S$ and $\Lambda$.
124 - if the hadron is somewhere else (\textbf{even outside the forward
125calorimeters !!!})
126 Gaussian smearing with $\sigma = HAD_Chf*E \oplus HAD_Nhf \oplus
127HAD_Shf*\sqrt{E}$
128
129Ainsi, pour les particules considérées comme stables par PYTHIA
130mais non stables dans un détecteur tel CMS ($c\tau < 4m$), les
131dépÎts laissés dans les différents détecteurs sont directement
132liés aux modes de désintégrations de ces particules. Les
133hypothÚses des dépÎts d'énergie sont données dans le tableau
134\ref{depot}.\newline
135
136\begin{table}[!h]
137\begin{center}
138\begin{tabular}{|c|c|c|c|c|c|}
139\hline
140\emph{Particules stables} & \emph{Stable} &\emph{Mode de}
141&$\Gamma_{i}/\Gamma$&\emph{Dépot}&\emph{Dépot}\\
142\emph{dans PYTHIA}&\emph{dans
143CMS}&\emph{desintégration}&&\emph{ECAL}&\emph{HCAL}\\\hline\hline
144$\pi^{\pm}$ & oui & & & 0 & 1 \\ \hline $K^{\pm}$ & oui & & & 0 &
1451 \\\hline $K^{0}_{S}$ & non & $\gamma\gamma\gamma\gamma$ & 0.31 &
1460.3 & 0.7\\
147& & $\pi^{+}\pi^{-}$& 0.69 &&\\\hline $K^{0}_{L}$ & oui & & & 0 &
1481\\\hline $\Lambda^{0}$ & non & $\pi^{-}p/\pi^{+}\overline{p}$ &
1490.64&
1500.3 & 0.7\\
151& & $n\pi^{0}$ & 0.36 & & \\\hline $\gamma$& oui & & & 1
152&0\\\hline
153\end{tabular}
154\caption{HypothÚses des dépÎts d'énergie pour les particules les
155plus abondantes des jets.} \label{depot}
156\end{center}
157\end{table}
158
159
160function \texttt{SmearHadron}
161There is no ecal-hcal separation in the forward calorimeter.
162No negative values for the energy after smearing. If so, the 4-momentum is set
163to $(0,0,0,0)$.
164
165\subsection{Calorimetric towers}
166All final particles, which are neither muons nor neutrinos are produce a
167calorimetric tower.
168The same particles enter in the calculation of the missing transverse energy.
169\textit{what is used is the particle smeared momentum, not the calorimetric
170towers!}
171
172\subsection{Tracks}
173All final charged particles
174
175\subsection{Time of flight}
176Some subdetectors have the ability to measure the time of flight of the particle.
177This correspond to the delay after which the particle is observed in the detector, after the bunch crossing.
178The time of flight measurement of ZDC and FP420 detector is implemented here.
179For the ZDC, the formula is simply
180\begin{equation}
181 t_2 = t_1 + \frac{1}{v} \times \big( \frac{s-z}{\cos \theta}\big),
182\end{equation}
183where $t_2$ is the time of flight, $t_1$ is the true time coordinate of the vertex from which the particle originates, $v$ the particle velocity, $s$ is the ZDC distance to the interaction point, $z$ is the longitudinal coordinate of the vertex from which the particle comes from, $theta$ is the particle emission angle. This assumes that the neutral particle observed in the ZDC is highly relativistic, i.e. travelling at the speed of light $c$. We also assume that $\cos \theta = 1$, i.e. $\theta \approx 0$ or equivalently $\eta$ is large. As an example, $\eta = 5$ leads to $\theta = 0.013$ and $1 - \cos \theta < 10^{-4}$.
184The formula then reduces to
185\begin{equation}
186 t_2 = \frac{1}{c} \times (s-z)
187\end{equation}
188NB : for the moment, only neutrons and photons are assumed to be able to reach the ZDC. All other particles are neglected
189
190To fix the ideas, if the ZDC is located at $s=140~\textrm{m}$, neglecting $z$ and $\theta$, and assuming that $v=c$, one gets $t=0.47~\mu\textrm{s}$.
191
192\subsection{Tau identification}
193
194Two ways to identify a tau : using the energy inside a cone or the number of
195tracks in the cone.
196\begin{itemize}
197\item From the energy in the cone of radius TAU\_CONE\_ENERGY. To be taken into
198account, a calo tower should (1) have a transverse energy $E_T = \sqrt{E_X^2 +
199E_Y^2}$ above a given threshold M\_SEEDTHRESHOLD, (2) be inside a cone with a
200radius R and the axis defined by (eta,phi).
201\item From the number of tracks in the cone of radius TAU\_CONE\_TRACKS. To be
202taken into account, a track should (1) have a transverse momentum $ p_T =
203\sqrt{p_X^2 + p_Y^2} $ above a given threshold, (2) be inside a cone with a
204radius R and the axis defined by (eta,phi).
205\end{itemize}
206
207\begin{wrapfigure}{l}{0.3\textwidth}
208\includegraphics[width=0.3\textwidth]{Tau.eps}
209\caption{\small{detectorAng.eps}}
210\label{h_WW_ss_cut1}
211\end{wrapfigure}
212
213
214To identify a tau, one requires the \textit{electromagnetic collimation} and the
215\textit{tracking isolation}.
216The electromagnetic collimation is a kind of calorimetric isolation required
217around the jet axis.
218One requires that most of the energy of the cone is located in a small cone in
219the middle of the jet cone:
220 \begin{equation}
221 %C_{\tau}^{e.m.} = \frac{ \Sum E_T^{cell}(\Delta R= TAU\_CONE\_ENERGY)}{
222\sum E_T^{cell} (\Delta R= CONE\_RADIUS) > TAU\_EM\_COLLIMATION
223 \end{equation}
224 Typical values are TAU\_CONE\_ENERGY=0.15 , CONE\_RADIUS=0.7 and
225TAU\_EM\_COLLIMATION = 0.95.
226No further calorimetric isolation is required.
227
228The tracking isolation for the tau identification requires that the number of
229tracks associated to a particle with $p_T > PT\_TRACK\_TAU$ is one and only one
230in a cone with $\Delta R = TAU\_CONE\_TRACKS$. This cone should be entirely
231included in the tracker to be taken into account. Typical calues are
232$TAU\_CONE\_TRACKS = 0.4$ and $PT\_TRACK\_TAU = 2 GeV$.
233
234
235
236\subsection{B-tagging}
237The simulation of the b-tagging is based on the detector efficiencies assumed
238(1) for the tagging of a b-jet and (2) for the mis-identification of other jets
239as b-jets. This relies on the TAGGING\_B, MISTAGGING\_C and MISTAGGING\_L
240constants, for (respectively) the efficiency of tagging of a b-jet, the
241efficiency of mistagging a c-jet as a b-jet, and the efficiency of mistatting a
242light jet (u,d,s,g) as a b-jet. The (mis)tagging relies on the particle ID of
243the most energetic particle within a cone around the observed (eta,phi) region,
244with a radius CONERADIUS.
245
246\section{Validation}
247\section{conclusion}
248
249\appendix
250Attention : in SmearUtil::NumTracks, the function arguments 'Eta' and 'Phi' have
251been switched. Previously, 'Phi' was before 'Eta', now 'Eta' comes in front.
252This is for consistency with the other functions in SmearUtil. Check your
253routines, when using NumTracks !
254
255In the list of input files, all files should have the same type
256
257Attention : in SmearUtil::RESOLution::BJets, the maximal energy was looked in
258CONERADIUS/2 instead of CONERADIUS. This bug has been removed.
259
260Attention : for the tau-jet identification : CONERADIUS /2 was used instead of
261CONERADIUS !
262
263\end{document}
Note: See TracBrowser for help on using the repository browser.