Fork me on GitHub

source: svn/trunk/paper/notes.tex@ 4

Last change on this file since 4 was 4, checked in by Xavier Rouby, 16 years ago

first commit

File size: 11.6 KB
Line 
1\documentclass[a4paper,11pt,oneside]{article}
2\usepackage[english]{babel}
3\usepackage[ansinew]{inputenc}
4\usepackage[dvips]{graphicx}
5\usepackage{amsmath}
6\usepackage{epic}
7\usepackage{wrapfig}
8\usepackage{eepic}
9\usepackage{color}
10\usepackage{latexsym}
11\usepackage{array}
12
13\usepackage{fancyhdr}
14\usepackage{verbatim}
15\addtolength{\textwidth}{4cm} \addtolength{\hoffset}{-2cm}
16\begin{document}
17
18\section*{Abstract}
19
20\section{Introduction}
21% Motiver l'utilisation d'un simulateur rapide
22% - 1) rapide VS lent
23% - 2) relativement bonne prédiction en premiÚre approximation
24% - 3) permet de comparer
25Full simulation of the response of large detectors components to high energy particles requires a lot of computing resources. Moreover, a good knowledge of the exact geometry of subdetectors and dead material content is mandatory.
26
27Fast simulation can be a powerful predictive tool for typical response of a large detector in high energy collider.
28
29The fast simulation of the detector response takes into account geometrical
30acceptance of sub-detectors and their finite energy resolution, no smearing is
31applied on particle direction. Charged particles, once are in the fiducial
32volume of the detector are assumed to be reconstructed with $100\%$ probability.
33The energy of each particle produced after hadronization, with a lifetime
34$c\tau$ bigger than $10~\textrm{mm}$ is then smeared according to detectors along
35particule's direction. For particles with a short lifetime such as the $K_s$,
36the fraction of electromagnetic or hadronic energy is determined according to
37its decay products. The calorimeter is assumed to cover the pseudorapidity range
38$|\eta|<3$ and consists in an electromagnetic and an hadronic part. The energy
39resolution is given by $\sigma_{E}/E=0.05/\sqrt{E} \oplus 0.25/E \oplus 0.0055$
40for the electromagnetic part and by $\sigma_{E}/E=0.91/\sqrt{E}\oplus 0.038$ for
41the hadronic part, where the energy is given in GeV. A very forward calorimeter
42is assumed to cover $3<|\eta|<5$ with an electromagnetic and hadronic energy
43resolution function given by $\sigma_{E}/E=1.5/\sqrt{E}\oplus 0.06$ and
44$\sigma_{E}/E=2.7/\sqrt{E}\oplus 0.13$ respectively.\\
45
46\begin{figure}[!h]
47\begin{center}
48\includegraphics[width=0.7\textwidth]{detectorAng.eps}
49\caption{\small{detectorAng.eps}}
50\label{h_WW_ss_cut1}
51\end{center}
52\end{figure}
53
54
55The acceptance cuts applied on leptons and jets used in this section are the
56following :\\
57
58\begin{itemize}
59
60\item Electrons and muons are reconstructed if they fall into the acceptance of
61the tracker, assumed to be $|\eta|<2.5$, and have to have a transverse momentum
62above 10~GeV (the energy resolution of muons is taken to be the same as for
63electrons). Lepton isolation demands that there is no other charged particles
64with $p_T>2$~GeV within a cone of $\Delta R<0.5$ around the lepton.\\
65
66\item Jets are reconstructed using a cone algorithm with $R=0.7$ and make only
67use of the smeared particle momenta. The reconstructed jets are required to have
68a transverse momentum above 20~GeV and $|\eta|<3.0$. A jet is tagged as $b$-jets
69if its direction lies in the acceptance of the tracker, $|\eta|<0.5$, and if it
70is associated to a parent $b$-quark. A $b$-tagging efficiency of $40\%$ is
71assumed if the jet has a parent $b$ quark. For $c$-jets and light/gluon jets, a
72fake
73b-tagging efficiency of $10 \%$ and $1 \%$ respectively is assumed.\\
74
75\item A jet is tagged as a $\tau$-jet if more than $90\%$ of its energy is
76localized in a cone of $\Delta R=0.15$ around its axis. Moreover, this jet must
77have its direction in the acceptance of the tracker and have exactly one charged
78particle with $p_{T}>2$~GeV within a cone $\Delta R<0.4$ around the jet axis.
79This procedure selects taus decaying hadronically with a typical efficiency of
80$60\%$. Moreover, the minimal $p_T$ of the $\tau$-jet is required to be
8110~GeV.\\
82
83\end{itemize}
84
85\section{implementation}
86\subsection{Electron smearing}
87The smearing of the electron 4-momentum $p^\mu$ is
88 - if the electron is in the tracker ($\eta < MAX\_TRACKER$)
89 Gaussian smearing with $\sigma = ELG_Ccen*E \oplus ELG_Ncen \oplus
90ELG_Scen*\sqrt{E}$
91 - else Gaussian smearing with $\sigma = ELS_Cfwd*E \oplus ELG_Sfwd*\sqrt{E}$
92function \texttt{SmearElectron}
93Only the energy $E$ is smeared, but neither $\eta$ nor $\phi$.
94No negative values for the energy after smearing. If so, the $4$-momentum is set
95to $(0,0,0,0)$.
96\textbf{For the moment, electrons with $|\eta|> 5$ are also smeared !!!}
97
98\subsection{Muon smearing}
99The smearing ot the muon 4-momentum $p^\mu$ is given
100by a Gaussian smearing of the $p_T$
101function \texttt{SmearMuon}
102Only the $p_T$ is smeared, but neither $\eta$ nor $\phi$.
103No negative values for the energy after smearing. If so, the 4-momentum is set
104to $(0,0,0,0)$.
105
106\subsection{Hadron smearing}
107The energy of the hadron is smeared in the following ways:
108 - if the hadron is in the central calorimeter (eta < MAX\_CALO\_CEN)
109 Gaussian smearing with $\sigma = HAD_Chcal*E_{hcal} \oplus HAD_Nhcal
110\oplus HAD_Shcal*\sqrt{E_{hcal}}
111 + HAD_Cecal*E_{ecal} \oplus HAD_Necal
112\oplus HAD_Secal*\sqrt{E_{ecal}}$
113 where $E_{hcal} + E_{ecal} = E$. As some long-living particles decay in
114the calorimeters,
115 some of them decay mostly in the ECAL, some mostly in the HCAL.
116$E_{hcal}$ and $E_{ecal}$ are
117 given by $E_{hcal} = E \times F$ and $E_{ecal} = E times (1-F)$, where
118$F$ is a fraction
119 $0 \leq F \leq 1$ describing each particles. By default, $F=1.$ but is
120$F=0.7$ for $K^0_S$ and $\Lambda$.
121 - if the hadron is somewhere else (\textbf{even outside the forward
122calorimeters !!!})
123 Gaussian smearing with $\sigma = HAD_Chf*E \oplus HAD_Nhf \oplus
124HAD_Shf*\sqrt{E}$
125
126Ainsi, pour les particules considérées comme stables par PYTHIA
127mais non stables dans un détecteur tel CMS ($c\tau < 4m$), les
128dépÎts laissés dans les différents détecteurs sont directement
129liés aux modes de désintégrations de ces particules. Les
130hypothÚses des dépÎts d'énergie sont données dans le tableau
131\ref{depot}.\newline
132
133\begin{table}[!h]
134\begin{center}
135\begin{tabular}{|c|c|c|c|c|c|}
136\hline
137\emph{Particules stables} & \emph{Stable} &\emph{Mode de}
138&$\Gamma_{i}/\Gamma$&\emph{Dépot}&\emph{Dépot}\\
139\emph{dans PYTHIA}&\emph{dans
140CMS}&\emph{desintégration}&&\emph{ECAL}&\emph{HCAL}\\\hline\hline
141$\pi^{\pm}$ & oui & & & 0 & 1 \\ \hline $K^{\pm}$ & oui & & & 0 &
1421 \\\hline $K^{0}_{S}$ & non & $\gamma\gamma\gamma\gamma$ & 0.31 &
1430.3 & 0.7\\
144& & $\pi^{+}\pi^{-}$& 0.69 &&\\\hline $K^{0}_{L}$ & oui & & & 0 &
1451\\\hline $\Lambda^{0}$ & non & $\pi^{-}p/\pi^{+}\overline{p}$ &
1460.64&
1470.3 & 0.7\\
148& & $n\pi^{0}$ & 0.36 & & \\\hline $\gamma$& oui & & & 1
149&0\\\hline
150\end{tabular}
151\caption{HypothÚses des dépÎts d'énergie pour les particules les
152plus abondantes des jets.} \label{depot}
153\end{center}
154\end{table}
155
156
157function \texttt{SmearHadron}
158There is no ecal-hcal separation in the forward calorimeter.
159No negative values for the energy after smearing. If so, the 4-momentum is set
160to $(0,0,0,0)$.
161
162\subsection{Calorimetric towers}
163All final particles, which are neither muons nor neutrinos are produce a
164calorimetric tower.
165The same particles enter in the calculation of the missing transverse energy.
166\textit{what is used is the particle smeared momentum, not the calorimetric
167towers!}
168
169\subsection{Tracks}
170All final charged particles
171
172\subsection{Time of flight}
173Some subdetectors have the ability to measure the time of flight of the particle.
174This correspond to the delay after which the particle is observed in the detector, after the bunch crossing.
175The time of flight measurement of ZDC and FP420 detector is implemented here.
176For the ZDC, the formula is simply
177\begin{equation}
178 t_2 = t_1 + \frac{1}{v} \times \big( \frac{s-z}{\cos \theta}\big),
179\end{equation}
180where $t_2$ is the time of flight, $t_1$ is the true time coordinate of the vertex from which the particle originates, $v$ the particle velocity, $s$ is the ZDC distance to the interaction point, $z$ is the longitudinal coordinate of the vertex from which the particle comes from, $theta$ is the particle emission angle. This assumes that the neutral particle observed in the ZDC is highly relativistic, i.e. travelling at the speed of light $c$. We also assume that $\cos \theta = 1$, i.e. $\theta \approx 0$ or equivalently $\eta$ is large. As an example, $\eta = 5$ leads to $\theta = 0.013$ and $1 - \cos \theta < 10^{-4}$.
181The formula then reduces to
182\begin{equation}
183 t_2 = \frac{1}{c} \times (s-z)
184\end{equation}
185NB : for the moment, only neutrons and photons are assumed to be able to reach the ZDC. All other particles are neglected
186
187To fix the ideas, if the ZDC is located at $s=140~\textrm{m}$, neglecting $z$ and $\theta$, and assuming that $v=c$, one gets $t=0.47~\mu\textrm{s}$.
188
189\subsection{Tau identification}
190
191Two ways to identify a tau : using the energy inside a cone or the number of
192tracks in the cone.
193\begin{itemize}
194\item From the energy in the cone of radius TAU\_CONE\_ENERGY. To be taken into
195account, a calo tower should (1) have a transverse energy $E_T = \sqrt{E_X^2 +
196E_Y^2}$ above a given threshold M\_SEEDTHRESHOLD, (2) be inside a cone with a
197radius R and the axis defined by (eta,phi).
198\item From the number of tracks in the cone of radius TAU\_CONE\_TRACKS. To be
199taken into account, a track should (1) have a transverse momentum $ p_T =
200\sqrt{p_X^2 + p_Y^2} $ above a given threshold, (2) be inside a cone with a
201radius R and the axis defined by (eta,phi).
202\end{itemize}
203
204\begin{wrapfigure}{l}{0.3\textwidth}
205\includegraphics[width=0.3\textwidth]{Tau.eps}
206\caption{\small{detectorAng.eps}}
207\label{h_WW_ss_cut1}
208\end{wrapfigure}
209
210
211To identify a tau, one requires the \textit{electromagnetic collimation} and the
212\textit{tracking isolation}.
213The electromagnetic collimation is a kind of calorimetric isolation required
214around the jet axis.
215One requires that most of the energy of the cone is located in a small cone in
216the middle of the jet cone:
217 \begin{equation}
218 %C_{\tau}^{e.m.} = \frac{ \Sum E_T^{cell}(\Delta R= TAU\_CONE\_ENERGY)}{
219\sum E_T^{cell} (\Delta R= CONE\_RADIUS) > TAU\_EM\_COLLIMATION
220 \end{equation}
221 Typical values are TAU\_CONE\_ENERGY=0.15 , CONE\_RADIUS=0.7 and
222TAU\_EM\_COLLIMATION = 0.95.
223No further calorimetric isolation is required.
224
225The tracking isolation for the tau identification requires that the number of
226tracks associated to a particle with $p_T > PT\_TRACK\_TAU$ is one and only one
227in a cone with $\Delta R = TAU\_CONE\_TRACKS$. This cone should be entirely
228included in the tracker to be taken into account. Typical calues are
229$TAU\_CONE\_TRACKS = 0.4$ and $PT\_TRACK\_TAU = 2 GeV$.
230
231
232
233\subsection{B-tagging}
234The simulation of the b-tagging is based on the detector efficiencies assumed
235(1) for the tagging of a b-jet and (2) for the mis-identification of other jets
236as b-jets. This relies on the TAGGING\_B, MISTAGGING\_C and MISTAGGING\_L
237constants, for (respectively) the efficiency of tagging of a b-jet, the
238efficiency of mistagging a c-jet as a b-jet, and the efficiency of mistatting a
239light jet (u,d,s,g) as a b-jet. The (mis)tagging relies on the particle ID of
240the most energetic particle within a cone around the observed (eta,phi) region,
241with a radius CONERADIUS.
242
243\section{Validation}
244\section{conclusion}
245
246\appendix
247Attention : in SmearUtil::NumTracks, the function arguments 'Eta' and 'Phi' have
248been switched. Previously, 'Phi' was before 'Eta', now 'Eta' comes in front.
249This is for consistency with the other functions in SmearUtil. Check your
250routines, when using NumTracks !
251
252In the list of input files, all files should have the same type
253
254Attention : in SmearUtil::RESOLution::BJets, the maximal energy was looked in
255CONERADIUS/2 instead of CONERADIUS. This bug has been removed.
256
257Attention : for the tau-jet identification : CONERADIUS /2 was used instead of
258CONERADIUS !
259
260\end{document}
Note: See TracBrowser for help on using the repository browser.