[4] | 1 | \documentclass[a4paper,11pt,oneside]{article}
|
---|
| 2 | \usepackage[english]{babel}
|
---|
| 3 | \usepackage[ansinew]{inputenc}
|
---|
[5] | 4 |
|
---|
[4] | 5 | \usepackage[dvips]{graphicx}
|
---|
[5] | 6 | \graphicspath{{figures/}}
|
---|
| 7 |
|
---|
[4] | 8 | \usepackage{amsmath}
|
---|
| 9 | \usepackage{epic}
|
---|
| 10 | \usepackage{wrapfig}
|
---|
| 11 | \usepackage{eepic}
|
---|
| 12 | \usepackage{color}
|
---|
| 13 | \usepackage{latexsym}
|
---|
| 14 | \usepackage{array}
|
---|
| 15 |
|
---|
| 16 | \usepackage{fancyhdr}
|
---|
| 17 | \usepackage{verbatim}
|
---|
| 18 | \addtolength{\textwidth}{4cm} \addtolength{\hoffset}{-2cm}
|
---|
| 19 | \begin{document}
|
---|
| 20 |
|
---|
| 21 | \section*{Abstract}
|
---|
| 22 |
|
---|
| 23 | \section{Introduction}
|
---|
| 24 | % Motiver l'utilisation d'un simulateur rapide
|
---|
| 25 | % - 1) rapide VS lent
|
---|
| 26 | % - 2) relativement bonne prédiction en premiÚre approximation
|
---|
| 27 | % - 3) permet de comparer
|
---|
| 28 | Full simulation of the response of large detectors components to high energy particles requires a lot of computing resources. Moreover, a good knowledge of the exact geometry of subdetectors and dead material content is mandatory.
|
---|
| 29 |
|
---|
| 30 | Fast simulation can be a powerful predictive tool for typical response of a large detector in high energy collider.
|
---|
| 31 |
|
---|
| 32 | The fast simulation of the detector response takes into account geometrical
|
---|
| 33 | acceptance of sub-detectors and their finite energy resolution, no smearing is
|
---|
| 34 | applied on particle direction. Charged particles, once are in the fiducial
|
---|
| 35 | volume of the detector are assumed to be reconstructed with $100\%$ probability.
|
---|
| 36 | The energy of each particle produced after hadronization, with a lifetime
|
---|
| 37 | $c\tau$ bigger than $10~\textrm{mm}$ is then smeared according to detectors along
|
---|
| 38 | particule's direction. For particles with a short lifetime such as the $K_s$,
|
---|
| 39 | the fraction of electromagnetic or hadronic energy is determined according to
|
---|
| 40 | its decay products. The calorimeter is assumed to cover the pseudorapidity range
|
---|
| 41 | $|\eta|<3$ and consists in an electromagnetic and an hadronic part. The energy
|
---|
| 42 | resolution is given by $\sigma_{E}/E=0.05/\sqrt{E} \oplus 0.25/E \oplus 0.0055$
|
---|
| 43 | for the electromagnetic part and by $\sigma_{E}/E=0.91/\sqrt{E}\oplus 0.038$ for
|
---|
| 44 | the hadronic part, where the energy is given in GeV. A very forward calorimeter
|
---|
| 45 | is assumed to cover $3<|\eta|<5$ with an electromagnetic and hadronic energy
|
---|
| 46 | resolution function given by $\sigma_{E}/E=1.5/\sqrt{E}\oplus 0.06$ and
|
---|
| 47 | $\sigma_{E}/E=2.7/\sqrt{E}\oplus 0.13$ respectively.\\
|
---|
| 48 |
|
---|
| 49 | \begin{figure}[!h]
|
---|
| 50 | \begin{center}
|
---|
| 51 | \includegraphics[width=0.7\textwidth]{detectorAng.eps}
|
---|
| 52 | \caption{\small{detectorAng.eps}}
|
---|
| 53 | \label{h_WW_ss_cut1}
|
---|
| 54 | \end{center}
|
---|
| 55 | \end{figure}
|
---|
| 56 |
|
---|
| 57 |
|
---|
| 58 | The acceptance cuts applied on leptons and jets used in this section are the
|
---|
| 59 | following :\\
|
---|
| 60 |
|
---|
| 61 | \begin{itemize}
|
---|
| 62 |
|
---|
| 63 | \item Electrons and muons are reconstructed if they fall into the acceptance of
|
---|
| 64 | the tracker, assumed to be $|\eta|<2.5$, and have to have a transverse momentum
|
---|
| 65 | above 10~GeV (the energy resolution of muons is taken to be the same as for
|
---|
| 66 | electrons). Lepton isolation demands that there is no other charged particles
|
---|
| 67 | with $p_T>2$~GeV within a cone of $\Delta R<0.5$ around the lepton.\\
|
---|
| 68 |
|
---|
| 69 | \item Jets are reconstructed using a cone algorithm with $R=0.7$ and make only
|
---|
| 70 | use of the smeared particle momenta. The reconstructed jets are required to have
|
---|
| 71 | a transverse momentum above 20~GeV and $|\eta|<3.0$. A jet is tagged as $b$-jets
|
---|
| 72 | if its direction lies in the acceptance of the tracker, $|\eta|<0.5$, and if it
|
---|
| 73 | is associated to a parent $b$-quark. A $b$-tagging efficiency of $40\%$ is
|
---|
| 74 | assumed if the jet has a parent $b$ quark. For $c$-jets and light/gluon jets, a
|
---|
| 75 | fake
|
---|
| 76 | b-tagging efficiency of $10 \%$ and $1 \%$ respectively is assumed.\\
|
---|
| 77 |
|
---|
| 78 | \item A jet is tagged as a $\tau$-jet if more than $90\%$ of its energy is
|
---|
| 79 | localized in a cone of $\Delta R=0.15$ around its axis. Moreover, this jet must
|
---|
| 80 | have its direction in the acceptance of the tracker and have exactly one charged
|
---|
| 81 | particle with $p_{T}>2$~GeV within a cone $\Delta R<0.4$ around the jet axis.
|
---|
| 82 | This procedure selects taus decaying hadronically with a typical efficiency of
|
---|
| 83 | $60\%$. Moreover, the minimal $p_T$ of the $\tau$-jet is required to be
|
---|
| 84 | 10~GeV.\\
|
---|
| 85 |
|
---|
| 86 | \end{itemize}
|
---|
| 87 |
|
---|
| 88 | \section{implementation}
|
---|
| 89 | \subsection{Electron smearing}
|
---|
| 90 | The smearing of the electron 4-momentum $p^\mu$ is
|
---|
| 91 | - if the electron is in the tracker ($\eta < MAX\_TRACKER$)
|
---|
| 92 | Gaussian smearing with $\sigma = ELG_Ccen*E \oplus ELG_Ncen \oplus
|
---|
| 93 | ELG_Scen*\sqrt{E}$
|
---|
| 94 | - else Gaussian smearing with $\sigma = ELS_Cfwd*E \oplus ELG_Sfwd*\sqrt{E}$
|
---|
| 95 | function \texttt{SmearElectron}
|
---|
| 96 | Only the energy $E$ is smeared, but neither $\eta$ nor $\phi$.
|
---|
| 97 | No negative values for the energy after smearing. If so, the $4$-momentum is set
|
---|
| 98 | to $(0,0,0,0)$.
|
---|
| 99 | \textbf{For the moment, electrons with $|\eta|> 5$ are also smeared !!!}
|
---|
| 100 |
|
---|
| 101 | \subsection{Muon smearing}
|
---|
| 102 | The smearing ot the muon 4-momentum $p^\mu$ is given
|
---|
| 103 | by a Gaussian smearing of the $p_T$
|
---|
| 104 | function \texttt{SmearMuon}
|
---|
| 105 | Only the $p_T$ is smeared, but neither $\eta$ nor $\phi$.
|
---|
| 106 | No negative values for the energy after smearing. If so, the 4-momentum is set
|
---|
| 107 | to $(0,0,0,0)$.
|
---|
| 108 |
|
---|
| 109 | \subsection{Hadron smearing}
|
---|
| 110 | The energy of the hadron is smeared in the following ways:
|
---|
| 111 | - if the hadron is in the central calorimeter (eta < MAX\_CALO\_CEN)
|
---|
| 112 | Gaussian smearing with $\sigma = HAD_Chcal*E_{hcal} \oplus HAD_Nhcal
|
---|
| 113 | \oplus HAD_Shcal*\sqrt{E_{hcal}}
|
---|
| 114 | + HAD_Cecal*E_{ecal} \oplus HAD_Necal
|
---|
| 115 | \oplus HAD_Secal*\sqrt{E_{ecal}}$
|
---|
| 116 | where $E_{hcal} + E_{ecal} = E$. As some long-living particles decay in
|
---|
| 117 | the calorimeters,
|
---|
| 118 | some of them decay mostly in the ECAL, some mostly in the HCAL.
|
---|
| 119 | $E_{hcal}$ and $E_{ecal}$ are
|
---|
| 120 | given by $E_{hcal} = E \times F$ and $E_{ecal} = E times (1-F)$, where
|
---|
| 121 | $F$ is a fraction
|
---|
| 122 | $0 \leq F \leq 1$ describing each particles. By default, $F=1.$ but is
|
---|
| 123 | $F=0.7$ for $K^0_S$ and $\Lambda$.
|
---|
| 124 | - if the hadron is somewhere else (\textbf{even outside the forward
|
---|
| 125 | calorimeters !!!})
|
---|
| 126 | Gaussian smearing with $\sigma = HAD_Chf*E \oplus HAD_Nhf \oplus
|
---|
| 127 | HAD_Shf*\sqrt{E}$
|
---|
| 128 |
|
---|
| 129 | Ainsi, pour les particules considérées comme stables par PYTHIA
|
---|
| 130 | mais non stables dans un détecteur tel CMS ($c\tau < 4m$), les
|
---|
| 131 | dépÎts laissés dans les différents détecteurs sont directement
|
---|
| 132 | liés aux modes de désintégrations de ces particules. Les
|
---|
| 133 | hypothÚses des dépÎts d'énergie sont données dans le tableau
|
---|
| 134 | \ref{depot}.\newline
|
---|
| 135 |
|
---|
| 136 | \begin{table}[!h]
|
---|
| 137 | \begin{center}
|
---|
| 138 | \begin{tabular}{|c|c|c|c|c|c|}
|
---|
| 139 | \hline
|
---|
| 140 | \emph{Particules stables} & \emph{Stable} &\emph{Mode de}
|
---|
| 141 | &$\Gamma_{i}/\Gamma$&\emph{Dépot}&\emph{Dépot}\\
|
---|
| 142 | \emph{dans PYTHIA}&\emph{dans
|
---|
| 143 | CMS}&\emph{desintégration}&&\emph{ECAL}&\emph{HCAL}\\\hline\hline
|
---|
| 144 | $\pi^{\pm}$ & oui & & & 0 & 1 \\ \hline $K^{\pm}$ & oui & & & 0 &
|
---|
| 145 | 1 \\\hline $K^{0}_{S}$ & non & $\gamma\gamma\gamma\gamma$ & 0.31 &
|
---|
| 146 | 0.3 & 0.7\\
|
---|
| 147 | & & $\pi^{+}\pi^{-}$& 0.69 &&\\\hline $K^{0}_{L}$ & oui & & & 0 &
|
---|
| 148 | 1\\\hline $\Lambda^{0}$ & non & $\pi^{-}p/\pi^{+}\overline{p}$ &
|
---|
| 149 | 0.64&
|
---|
| 150 | 0.3 & 0.7\\
|
---|
| 151 | & & $n\pi^{0}$ & 0.36 & & \\\hline $\gamma$& oui & & & 1
|
---|
| 152 | &0\\\hline
|
---|
| 153 | \end{tabular}
|
---|
| 154 | \caption{HypothÚses des dépÎts d'énergie pour les particules les
|
---|
| 155 | plus abondantes des jets.} \label{depot}
|
---|
| 156 | \end{center}
|
---|
| 157 | \end{table}
|
---|
| 158 |
|
---|
| 159 |
|
---|
| 160 | function \texttt{SmearHadron}
|
---|
| 161 | There is no ecal-hcal separation in the forward calorimeter.
|
---|
| 162 | No negative values for the energy after smearing. If so, the 4-momentum is set
|
---|
| 163 | to $(0,0,0,0)$.
|
---|
| 164 |
|
---|
| 165 | \subsection{Calorimetric towers}
|
---|
| 166 | All final particles, which are neither muons nor neutrinos are produce a
|
---|
| 167 | calorimetric tower.
|
---|
| 168 | The same particles enter in the calculation of the missing transverse energy.
|
---|
| 169 | \textit{what is used is the particle smeared momentum, not the calorimetric
|
---|
| 170 | towers!}
|
---|
| 171 |
|
---|
| 172 | \subsection{Tracks}
|
---|
| 173 | All final charged particles
|
---|
| 174 |
|
---|
| 175 | \subsection{Time of flight}
|
---|
| 176 | Some subdetectors have the ability to measure the time of flight of the particle.
|
---|
| 177 | This correspond to the delay after which the particle is observed in the detector, after the bunch crossing.
|
---|
| 178 | The time of flight measurement of ZDC and FP420 detector is implemented here.
|
---|
| 179 | For the ZDC, the formula is simply
|
---|
| 180 | \begin{equation}
|
---|
| 181 | t_2 = t_1 + \frac{1}{v} \times \big( \frac{s-z}{\cos \theta}\big),
|
---|
| 182 | \end{equation}
|
---|
| 183 | where $t_2$ is the time of flight, $t_1$ is the true time coordinate of the vertex from which the particle originates, $v$ the particle velocity, $s$ is the ZDC distance to the interaction point, $z$ is the longitudinal coordinate of the vertex from which the particle comes from, $theta$ is the particle emission angle. This assumes that the neutral particle observed in the ZDC is highly relativistic, i.e. travelling at the speed of light $c$. We also assume that $\cos \theta = 1$, i.e. $\theta \approx 0$ or equivalently $\eta$ is large. As an example, $\eta = 5$ leads to $\theta = 0.013$ and $1 - \cos \theta < 10^{-4}$.
|
---|
| 184 | The formula then reduces to
|
---|
| 185 | \begin{equation}
|
---|
| 186 | t_2 = \frac{1}{c} \times (s-z)
|
---|
| 187 | \end{equation}
|
---|
| 188 | NB : for the moment, only neutrons and photons are assumed to be able to reach the ZDC. All other particles are neglected
|
---|
| 189 |
|
---|
| 190 | To fix the ideas, if the ZDC is located at $s=140~\textrm{m}$, neglecting $z$ and $\theta$, and assuming that $v=c$, one gets $t=0.47~\mu\textrm{s}$.
|
---|
| 191 |
|
---|
| 192 | \subsection{Tau identification}
|
---|
| 193 |
|
---|
| 194 | Two ways to identify a tau : using the energy inside a cone or the number of
|
---|
| 195 | tracks in the cone.
|
---|
| 196 | \begin{itemize}
|
---|
| 197 | \item From the energy in the cone of radius TAU\_CONE\_ENERGY. To be taken into
|
---|
| 198 | account, a calo tower should (1) have a transverse energy $E_T = \sqrt{E_X^2 +
|
---|
| 199 | E_Y^2}$ above a given threshold M\_SEEDTHRESHOLD, (2) be inside a cone with a
|
---|
| 200 | radius R and the axis defined by (eta,phi).
|
---|
| 201 | \item From the number of tracks in the cone of radius TAU\_CONE\_TRACKS. To be
|
---|
| 202 | taken into account, a track should (1) have a transverse momentum $ p_T =
|
---|
| 203 | \sqrt{p_X^2 + p_Y^2} $ above a given threshold, (2) be inside a cone with a
|
---|
| 204 | radius R and the axis defined by (eta,phi).
|
---|
| 205 | \end{itemize}
|
---|
| 206 |
|
---|
| 207 | \begin{wrapfigure}{l}{0.3\textwidth}
|
---|
| 208 | \includegraphics[width=0.3\textwidth]{Tau.eps}
|
---|
| 209 | \caption{\small{detectorAng.eps}}
|
---|
| 210 | \label{h_WW_ss_cut1}
|
---|
| 211 | \end{wrapfigure}
|
---|
| 212 |
|
---|
| 213 |
|
---|
| 214 | To identify a tau, one requires the \textit{electromagnetic collimation} and the
|
---|
| 215 | \textit{tracking isolation}.
|
---|
| 216 | The electromagnetic collimation is a kind of calorimetric isolation required
|
---|
| 217 | around the jet axis.
|
---|
| 218 | One requires that most of the energy of the cone is located in a small cone in
|
---|
| 219 | the middle of the jet cone:
|
---|
| 220 | \begin{equation}
|
---|
| 221 | %C_{\tau}^{e.m.} = \frac{ \Sum E_T^{cell}(\Delta R= TAU\_CONE\_ENERGY)}{
|
---|
| 222 | \sum E_T^{cell} (\Delta R= CONE\_RADIUS) > TAU\_EM\_COLLIMATION
|
---|
| 223 | \end{equation}
|
---|
| 224 | Typical values are TAU\_CONE\_ENERGY=0.15 , CONE\_RADIUS=0.7 and
|
---|
| 225 | TAU\_EM\_COLLIMATION = 0.95.
|
---|
| 226 | No further calorimetric isolation is required.
|
---|
| 227 |
|
---|
| 228 | The tracking isolation for the tau identification requires that the number of
|
---|
| 229 | tracks associated to a particle with $p_T > PT\_TRACK\_TAU$ is one and only one
|
---|
| 230 | in a cone with $\Delta R = TAU\_CONE\_TRACKS$. This cone should be entirely
|
---|
| 231 | included in the tracker to be taken into account. Typical calues are
|
---|
| 232 | $TAU\_CONE\_TRACKS = 0.4$ and $PT\_TRACK\_TAU = 2 GeV$.
|
---|
| 233 |
|
---|
| 234 |
|
---|
| 235 |
|
---|
| 236 | \subsection{B-tagging}
|
---|
| 237 | The simulation of the b-tagging is based on the detector efficiencies assumed
|
---|
| 238 | (1) for the tagging of a b-jet and (2) for the mis-identification of other jets
|
---|
| 239 | as b-jets. This relies on the TAGGING\_B, MISTAGGING\_C and MISTAGGING\_L
|
---|
| 240 | constants, for (respectively) the efficiency of tagging of a b-jet, the
|
---|
| 241 | efficiency of mistagging a c-jet as a b-jet, and the efficiency of mistatting a
|
---|
| 242 | light jet (u,d,s,g) as a b-jet. The (mis)tagging relies on the particle ID of
|
---|
| 243 | the most energetic particle within a cone around the observed (eta,phi) region,
|
---|
| 244 | with a radius CONERADIUS.
|
---|
| 245 |
|
---|
| 246 | \section{Validation}
|
---|
| 247 | \section{conclusion}
|
---|
| 248 |
|
---|
| 249 | \appendix
|
---|
| 250 | Attention : in SmearUtil::NumTracks, the function arguments 'Eta' and 'Phi' have
|
---|
| 251 | been switched. Previously, 'Phi' was before 'Eta', now 'Eta' comes in front.
|
---|
| 252 | This is for consistency with the other functions in SmearUtil. Check your
|
---|
| 253 | routines, when using NumTracks !
|
---|
| 254 |
|
---|
| 255 | In the list of input files, all files should have the same type
|
---|
| 256 |
|
---|
| 257 | Attention : in SmearUtil::RESOLution::BJets, the maximal energy was looked in
|
---|
| 258 | CONERADIUS/2 instead of CONERADIUS. This bug has been removed.
|
---|
| 259 |
|
---|
| 260 | Attention : for the tau-jet identification : CONERADIUS /2 was used instead of
|
---|
| 261 | CONERADIUS !
|
---|
| 262 |
|
---|
| 263 | \end{document}
|
---|