Fork me on GitHub

source: git/modules/SimpleCalorimeter.cc@ cab38f6

ImprovedOutputFile Timing dual_readout llp
Last change on this file since cab38f6 was cab38f6, checked in by Pavel Demin <pavel.demin@…>, 10 years ago

remove svn tags and fix formatting

  • Property mode set to 100644
File size: 13.3 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20/** \class SimpleCalorimeter
21 *
22 * Fills SimpleCalorimeter towers, performs SimpleCalorimeter resolution smearing,
23 * and creates energy flow objects (tracks, photons, and neutral hadrons).
24 *
25 * \author P. Demin - UCL, Louvain-la-Neuve
26 *
27 */
28
29#include "modules/SimpleCalorimeter.h"
30
31#include "classes/DelphesClasses.h"
32#include "classes/DelphesFactory.h"
33#include "classes/DelphesFormula.h"
34
35#include "ExRootAnalysis/ExRootResult.h"
36#include "ExRootAnalysis/ExRootFilter.h"
37#include "ExRootAnalysis/ExRootClassifier.h"
38
39#include "TMath.h"
40#include "TString.h"
41#include "TFormula.h"
42#include "TRandom3.h"
43#include "TObjArray.h"
44#include "TDatabasePDG.h"
45#include "TLorentzVector.h"
46
47#include <algorithm>
48#include <stdexcept>
49#include <iostream>
50#include <sstream>
51
52using namespace std;
53
54//------------------------------------------------------------------------------
55
56SimpleCalorimeter::SimpleCalorimeter() :
57 fResolutionFormula(0),
58 fItParticleInputArray(0), fItTrackInputArray(0),
59 fTowerTrackArray(0), fItTowerTrackArray(0)
60{
61 fResolutionFormula = new DelphesFormula;
62
63 fTowerTrackArray = new TObjArray;
64 fItTowerTrackArray = fTowerTrackArray->MakeIterator();
65}
66
67//------------------------------------------------------------------------------
68
69SimpleCalorimeter::~SimpleCalorimeter()
70{
71 if(fResolutionFormula) delete fResolutionFormula;
72
73 if(fTowerTrackArray) delete fTowerTrackArray;
74 if(fItTowerTrackArray) delete fItTowerTrackArray;
75}
76
77//------------------------------------------------------------------------------
78
79void SimpleCalorimeter::Init()
80{
81 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
82 Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
83 Double_t fraction;
84 TBinMap::iterator itEtaBin;
85 set< Double_t >::iterator itPhiBin;
86 vector< Double_t > *phiBins;
87
88 // read eta and phi bins
89 param = GetParam("EtaPhiBins");
90 size = param.GetSize();
91 fBinMap.clear();
92 fEtaBins.clear();
93 fPhiBins.clear();
94 for(i = 0; i < size/2; ++i)
95 {
96 paramEtaBins = param[i*2];
97 sizeEtaBins = paramEtaBins.GetSize();
98 paramPhiBins = param[i*2 + 1];
99 sizePhiBins = paramPhiBins.GetSize();
100
101 for(j = 0; j < sizeEtaBins; ++j)
102 {
103 for(k = 0; k < sizePhiBins; ++k)
104 {
105 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
106 }
107 }
108 }
109
110 // for better performance we transform map of sets to parallel vectors:
111 // vector< double > and vector< vector< double >* >
112 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
113 {
114 fEtaBins.push_back(itEtaBin->first);
115 phiBins = new vector< double >(itEtaBin->second.size());
116 fPhiBins.push_back(phiBins);
117 phiBins->clear();
118 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
119 {
120 phiBins->push_back(*itPhiBin);
121 }
122 }
123
124 // read energy fractions for different particles
125 param = GetParam("EnergyFraction");
126 size = param.GetSize();
127
128 // set default energy fractions values
129 fFractionMap.clear();
130 fFractionMap[0] = 1.0;
131
132 for(i = 0; i < size/2; ++i)
133 {
134 paramFractions = param[i*2 + 1];
135 fraction = paramFractions[0].GetDouble();
136 fFractionMap[param[i*2].GetInt()] = fraction;
137 }
138/*
139 TFractionMap::iterator itFractionMap;
140 for(itFractionMap = fFractionMap.begin(); itFractionMap != fFractionMap.end(); ++itFractionMap)
141 {
142 cout << itFractionMap->first << " " << itFractionMap->second.first << " " << itFractionMap->second.second << endl;
143 }
144*/
145
146 // read min E value for towers to be saved
147 fEnergyMin = GetDouble("TowerMinEnergy", 0.0);
148 fSigmaMin = GetDouble("TowerMinSignificance", 0.0);
149
150 // read resolution formulas
151 fResolutionFormula->Compile(GetString("ResolutionFormula", "0"));
152
153 // import array with output from other modules
154 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
155 fItParticleInputArray = fParticleInputArray->MakeIterator();
156
157 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
158 fItTrackInputArray = fTrackInputArray->MakeIterator();
159
160 // create output arrays
161 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
162 fEFlowTowerOutputArray = ExportArray(GetString("EFlowTowerOutputArray", "eflowTowers"));
163
164}
165
166//------------------------------------------------------------------------------
167
168void SimpleCalorimeter::Finish()
169{
170 vector< vector< Double_t >* >::iterator itPhiBin;
171 if(fItParticleInputArray) delete fItParticleInputArray;
172 if(fItTrackInputArray) delete fItTrackInputArray;
173 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
174 {
175 delete *itPhiBin;
176 }
177}
178
179//------------------------------------------------------------------------------
180
181void SimpleCalorimeter::Process()
182{
183 Candidate *particle, *track;
184 TLorentzVector position, momentum;
185 Short_t etaBin, phiBin, flags;
186 Int_t number;
187 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
188 Double_t fraction;
189 Double_t energy;
190 Int_t pdgCode;
191
192 TFractionMap::iterator itFractionMap;
193
194 vector< Double_t >::iterator itEtaBin;
195 vector< Double_t >::iterator itPhiBin;
196 vector< Double_t > *phiBins;
197
198 vector< Long64_t >::iterator itTowerHits;
199
200 DelphesFactory *factory = GetFactory();
201 fTowerHits.clear();
202 fTowerFractions.clear();
203 fTrackFractions.clear();
204
205 // loop over all particles
206 fItParticleInputArray->Reset();
207 number = -1;
208 while((particle = static_cast<Candidate*>(fItParticleInputArray->Next())))
209 {
210 const TLorentzVector &particlePosition = particle->Position;
211 ++number;
212
213 pdgCode = TMath::Abs(particle->PID);
214
215 itFractionMap = fFractionMap.find(pdgCode);
216 if(itFractionMap == fFractionMap.end())
217 {
218 itFractionMap = fFractionMap.find(0);
219 }
220
221 fraction = itFractionMap->second;
222 fTowerFractions.push_back(fraction);
223
224 if(fraction < 1.0E-9) continue;
225
226 // find eta bin [1, fEtaBins.size - 1]
227 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
228 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
229 etaBin = distance(fEtaBins.begin(), itEtaBin);
230
231 // phi bins for given eta bin
232 phiBins = fPhiBins[etaBin];
233
234 // find phi bin [1, phiBins.size - 1]
235 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
236 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
237 phiBin = distance(phiBins->begin(), itPhiBin);
238
239 flags = 0;
240 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
241
242 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
243 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
244
245 fTowerHits.push_back(towerHit);
246 }
247
248 // loop over all tracks
249 fItTrackInputArray->Reset();
250 number = -1;
251 while((track = static_cast<Candidate*>(fItTrackInputArray->Next())))
252 {
253 const TLorentzVector &trackPosition = track->Position;
254 ++number;
255
256 pdgCode = TMath::Abs(track->PID);
257
258 itFractionMap = fFractionMap.find(pdgCode);
259 if(itFractionMap == fFractionMap.end())
260 {
261 itFractionMap = fFractionMap.find(0);
262 }
263
264 fraction = itFractionMap->second;
265
266 fTrackFractions.push_back(fraction);
267
268 // find eta bin [1, fEtaBins.size - 1]
269 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
270 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
271 etaBin = distance(fEtaBins.begin(), itEtaBin);
272
273 // phi bins for given eta bin
274 phiBins = fPhiBins[etaBin];
275
276 // find phi bin [1, phiBins.size - 1]
277 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
278 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
279 phiBin = distance(phiBins->begin(), itPhiBin);
280
281 flags = 1;
282
283 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
284 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
285
286 fTowerHits.push_back(towerHit);
287 }
288
289 // all hits are sorted first by eta bin number, then by phi bin number,
290 // then by flags and then by particle or track number
291 sort(fTowerHits.begin(), fTowerHits.end());
292
293 // loop over all hits
294 towerEtaPhi = 0;
295 fTower = 0;
296 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
297 {
298 towerHit = (*itTowerHits);
299 flags = (towerHit >> 24) & 0x00000000000000FFLL;
300 number = (towerHit) & 0x0000000000FFFFFFLL;
301 hitEtaPhi = towerHit >> 32;
302
303 if(towerEtaPhi != hitEtaPhi)
304 {
305 // switch to next tower
306 towerEtaPhi = hitEtaPhi;
307
308 // finalize previous tower
309 FinalizeTower();
310
311 // create new tower
312 fTower = factory->NewCandidate();
313
314 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
315 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
316
317 // phi bins for given eta bin
318 phiBins = fPhiBins[etaBin];
319
320 // calculate eta and phi of the tower's center
321 fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
322 fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
323
324 fTowerEdges[0] = fEtaBins[etaBin - 1];
325 fTowerEdges[1] = fEtaBins[etaBin];
326 fTowerEdges[2] = (*phiBins)[phiBin - 1];
327 fTowerEdges[3] = (*phiBins)[phiBin];
328
329 fTowerEnergy = 0.0;
330 fTrackEnergy = 0.0;
331
332 fTowerTime = 0.0;
333 fTrackTime = 0.0;
334
335 fTowerWeightTime = 0.0;
336
337 fTowerTrackHits = 0;
338 fTowerPhotonHits = 0;
339
340 fTowerTrackArray->Clear();
341 }
342
343 // check for track hits
344 if(flags & 1)
345 {
346 ++fTowerTrackHits;
347
348 track = static_cast<Candidate*>(fTrackInputArray->At(number));
349 momentum = track->Momentum;
350 position = track->Position;
351
352 energy = momentum.E() * fTrackFractions[number];
353
354 fTrackEnergy += energy;
355
356 fTrackTime += TMath::Sqrt(energy)*position.T();
357 fTrackWeightTime += TMath::Sqrt(energy);
358
359 fTowerTrackArray->Add(track);
360
361 continue;
362 }
363
364 // check for photon and electron hits in current tower
365 if(flags & 2) ++fTowerPhotonHits;
366
367 particle = static_cast<Candidate*>(fParticleInputArray->At(number));
368 momentum = particle->Momentum;
369 position = particle->Position;
370
371 // fill current tower
372 energy = momentum.E() * fTowerFractions[number];
373
374 fTowerEnergy += energy;
375
376 fTowerTime += TMath::Sqrt(energy)*position.T();
377 fTowerWeightTime += TMath::Sqrt(energy);
378
379 fTower->AddCandidate(particle);
380 }
381
382 // finalize last tower
383 FinalizeTower();
384}
385
386//------------------------------------------------------------------------------
387
388void SimpleCalorimeter::FinalizeTower()
389{
390 Candidate *tower;
391 Double_t energy, pt, eta, phi;
392 Double_t sigma;
393 Double_t time;
394
395 if(!fTower) return;
396
397 sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerEnergy);
398
399// energy = gRandom->Gaus(fTowerEnergy, sigma);
400// if(energy < 0.0) energy = 0.0;
401
402 energy = LogNormal(fTowerEnergy, sigma);
403 time = (fTowerWeightTime < 1.0E-09 ) ? 0 : fTowerTime/fTowerWeightTime;
404
405 sigma = fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy);
406
407 energy = (energy < fEnergyMin || energy < fSigmaMin*sigma) ? 0 : energy;
408
409 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
410 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
411
412 pt = energy / TMath::CosH(eta);
413
414 // fTower->Position.SetXYZT(-time, 0.0, 0.0, time);
415 fTower->Position.SetPtEtaPhiE(1.0, eta, phi, time);
416 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
417
418 fTower->Edges[0] = fTowerEdges[0];
419 fTower->Edges[1] = fTowerEdges[1];
420 fTower->Edges[2] = fTowerEdges[2];
421 fTower->Edges[3] = fTowerEdges[3];
422
423
424 // fill SimpleCalorimeter towers
425 if(energy > 0.0) fTowerOutputArray->Add(fTower);
426
427
428 // fill energy flow candidates
429 energy -= fTrackEnergy;
430 if(energy < fEnergyMin || energy < fSigmaMin*fResolutionFormula->Eval(0.0, fTowerEta, 0.0, energy)) energy = 0.0;
431
432 // save energy excess as an energy flow tower
433 if(energy > 0.0)
434 {
435 // create new photon tower
436 tower = static_cast<Candidate*>(fTower->Clone());
437 pt = energy / TMath::CosH(eta);
438
439 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
440 fEFlowTowerOutputArray->Add(tower);
441 }
442
443}
444
445//------------------------------------------------------------------------------
446
447Double_t SimpleCalorimeter::LogNormal(Double_t mean, Double_t sigma)
448{
449 Double_t a, b;
450
451 if(mean > 0.0)
452 {
453 b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
454 a = TMath::Log(mean) - 0.5*b*b;
455
456 return TMath::Exp(a + b*gRandom->Gaus(0, 1));
457 }
458 else
459 {
460 return 0.0;
461 }
462}
Note: See TracBrowser for help on using the repository browser.