Fork me on GitHub

source: git/modules/Calorimeter.cc@ a221d1f

ImprovedOutputFile Timing dual_readout llp
Last change on this file since a221d1f was a221d1f, checked in by Pavel Demin <pavel.demin@…>, 10 years ago

add DitherTowerCenters parameter [close #363]

  • Property mode set to 100644
File size: 17.0 KB
Line 
1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
4 *
5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19
20/** \class Calorimeter
21 *
22 * Fills calorimeter towers, performs calorimeter resolution smearing,
23 * and creates energy flow objects (tracks, photons, and neutral hadrons).
24 *
25 * $Date$
26 * $Revision$
27 *
28 *
29 * \author P. Demin - UCL, Louvain-la-Neuve
30 *
31 */
32
33#include "modules/Calorimeter.h"
34
35#include "classes/DelphesClasses.h"
36#include "classes/DelphesFactory.h"
37#include "classes/DelphesFormula.h"
38
39#include "ExRootAnalysis/ExRootResult.h"
40#include "ExRootAnalysis/ExRootFilter.h"
41#include "ExRootAnalysis/ExRootClassifier.h"
42
43#include "TMath.h"
44#include "TString.h"
45#include "TFormula.h"
46#include "TRandom3.h"
47#include "TObjArray.h"
48#include "TDatabasePDG.h"
49#include "TLorentzVector.h"
50
51#include <algorithm>
52#include <stdexcept>
53#include <iostream>
54#include <sstream>
55
56using namespace std;
57
58//------------------------------------------------------------------------------
59
60Calorimeter::Calorimeter() :
61 fECalResolutionFormula(0), fHCalResolutionFormula(0),
62 fItParticleInputArray(0), fItTrackInputArray(0),
63 fTowerTrackArray(0), fItTowerTrackArray(0)
64{
65 fECalResolutionFormula = new DelphesFormula;
66 fHCalResolutionFormula = new DelphesFormula;
67
68 fTowerTrackArray = new TObjArray;
69 fItTowerTrackArray = fTowerTrackArray->MakeIterator();
70}
71
72//------------------------------------------------------------------------------
73
74Calorimeter::~Calorimeter()
75{
76 if(fECalResolutionFormula) delete fECalResolutionFormula;
77 if(fHCalResolutionFormula) delete fHCalResolutionFormula;
78
79 if(fTowerTrackArray) delete fTowerTrackArray;
80 if(fItTowerTrackArray) delete fItTowerTrackArray;
81}
82
83//------------------------------------------------------------------------------
84
85void Calorimeter::Init()
86{
87 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
88 Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
89 Double_t ecalFraction, hcalFraction;
90 TBinMap::iterator itEtaBin;
91 set< Double_t >::iterator itPhiBin;
92 vector< Double_t > *phiBins;
93
94 // read eta and phi bins
95 param = GetParam("EtaPhiBins");
96 size = param.GetSize();
97 fBinMap.clear();
98 fEtaBins.clear();
99 fPhiBins.clear();
100 for(i = 0; i < size/2; ++i)
101 {
102 paramEtaBins = param[i*2];
103 sizeEtaBins = paramEtaBins.GetSize();
104 paramPhiBins = param[i*2 + 1];
105 sizePhiBins = paramPhiBins.GetSize();
106
107 for(j = 0; j < sizeEtaBins; ++j)
108 {
109 for(k = 0; k < sizePhiBins; ++k)
110 {
111 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
112 }
113 }
114 }
115
116 // for better performance we transform map of sets to parallel vectors:
117 // vector< double > and vector< vector< double >* >
118 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
119 {
120 fEtaBins.push_back(itEtaBin->first);
121 phiBins = new vector< double >(itEtaBin->second.size());
122 fPhiBins.push_back(phiBins);
123 phiBins->clear();
124 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
125 {
126 phiBins->push_back(*itPhiBin);
127 }
128 }
129
130 // read energy fractions for different particles
131 param = GetParam("EnergyFraction");
132 size = param.GetSize();
133
134 // set default energy fractions values
135 fFractionMap.clear();
136 fFractionMap[0] = make_pair(0.0, 1.0);
137
138 for(i = 0; i < size/2; ++i)
139 {
140 paramFractions = param[i*2 + 1];
141
142 ecalFraction = paramFractions[0].GetDouble();
143 hcalFraction = paramFractions[1].GetDouble();
144
145 fFractionMap[param[i*2].GetInt()] = make_pair(ecalFraction, hcalFraction);
146 }
147/*
148 TFractionMap::iterator itFractionMap;
149 for(itFractionMap = fFractionMap.begin(); itFractionMap != fFractionMap.end(); ++itFractionMap)
150 {
151 cout << itFractionMap->first << " " << itFractionMap->second.first << " " << itFractionMap->second.second << endl;
152 }
153*/
154
155 // read min E value for towers to be saved
156 fEcalEnergyMin = GetDouble("EcalTowerMinEnergy", 0.0);
157 fHcalEnergyMin = GetDouble("HcalTowerMinEnergy", 0.0);
158
159 fEcalSigmaMin = GetDouble("EcalTowerMinSignificance", 0.0);
160 fHcalSigmaMin = GetDouble("HcalTowerMinSignificance", 0.0);
161
162
163 // read resolution formulas
164 fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
165 fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
166
167 // import array with output from other modules
168 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
169 fItParticleInputArray = fParticleInputArray->MakeIterator();
170
171 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
172 fItTrackInputArray = fTrackInputArray->MakeIterator();
173
174 // create output arrays
175 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
176 fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
177
178 fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
179 fEFlowPhotonOutputArray = ExportArray(GetString("EFlowPhotonOutputArray", "eflowPhotons"));
180 fEFlowNeutralHadronOutputArray = ExportArray(GetString("EFlowNeutralHadronOutputArray", "eflowNeutralHadrons"));
181
182 fDitherTowerCenter = GetBool("DitherTowerCenters", true);
183}
184
185//------------------------------------------------------------------------------
186
187void Calorimeter::Finish()
188{
189 vector< vector< Double_t >* >::iterator itPhiBin;
190 if(fItParticleInputArray) delete fItParticleInputArray;
191 if(fItTrackInputArray) delete fItTrackInputArray;
192 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
193 {
194 delete *itPhiBin;
195 }
196}
197
198//------------------------------------------------------------------------------
199
200void Calorimeter::Process()
201{
202 Candidate *particle, *track;
203 TLorentzVector position, momentum;
204 Short_t etaBin, phiBin, flags;
205 Int_t number;
206 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
207 Double_t ecalFraction, hcalFraction;
208 Double_t ecalEnergy, hcalEnergy;
209 Int_t pdgCode;
210
211 TFractionMap::iterator itFractionMap;
212
213 vector< Double_t >::iterator itEtaBin;
214 vector< Double_t >::iterator itPhiBin;
215 vector< Double_t > *phiBins;
216
217 vector< Long64_t >::iterator itTowerHits;
218
219 DelphesFactory *factory = GetFactory();
220 fTowerHits.clear();
221 fTowerECalFractions.clear();
222 fTowerHCalFractions.clear();
223 fTrackECalFractions.clear();
224 fTrackHCalFractions.clear();
225
226 // loop over all particles
227 fItParticleInputArray->Reset();
228 number = -1;
229 while((particle = static_cast<Candidate*>(fItParticleInputArray->Next())))
230 {
231 const TLorentzVector &particlePosition = particle->Position;
232 ++number;
233
234 pdgCode = TMath::Abs(particle->PID);
235
236 itFractionMap = fFractionMap.find(pdgCode);
237 if(itFractionMap == fFractionMap.end())
238 {
239 itFractionMap = fFractionMap.find(0);
240 }
241
242 ecalFraction = itFractionMap->second.first;
243 hcalFraction = itFractionMap->second.second;
244
245 fTowerECalFractions.push_back(ecalFraction);
246 fTowerHCalFractions.push_back(hcalFraction);
247
248 if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
249
250 // find eta bin [1, fEtaBins.size - 1]
251 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
252 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
253 etaBin = distance(fEtaBins.begin(), itEtaBin);
254
255 // phi bins for given eta bin
256 phiBins = fPhiBins[etaBin];
257
258 // find phi bin [1, phiBins.size - 1]
259 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
260 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
261 phiBin = distance(phiBins->begin(), itPhiBin);
262
263 flags = 0;
264 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
265
266 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
267 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
268
269 fTowerHits.push_back(towerHit);
270 }
271
272 // loop over all tracks
273 fItTrackInputArray->Reset();
274 number = -1;
275 while((track = static_cast<Candidate*>(fItTrackInputArray->Next())))
276 {
277 const TLorentzVector &trackPosition = track->Position;
278 ++number;
279
280 pdgCode = TMath::Abs(track->PID);
281
282 itFractionMap = fFractionMap.find(pdgCode);
283 if(itFractionMap == fFractionMap.end())
284 {
285 itFractionMap = fFractionMap.find(0);
286 }
287
288 ecalFraction = itFractionMap->second.first;
289 hcalFraction = itFractionMap->second.second;
290
291 fTrackECalFractions.push_back(ecalFraction);
292 fTrackHCalFractions.push_back(hcalFraction);
293
294 // find eta bin [1, fEtaBins.size - 1]
295 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
296 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
297 etaBin = distance(fEtaBins.begin(), itEtaBin);
298
299 // phi bins for given eta bin
300 phiBins = fPhiBins[etaBin];
301
302 // find phi bin [1, phiBins.size - 1]
303 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
304 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
305 phiBin = distance(phiBins->begin(), itPhiBin);
306
307 flags = 1;
308
309 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
310 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
311
312 fTowerHits.push_back(towerHit);
313 }
314
315 // all hits are sorted first by eta bin number, then by phi bin number,
316 // then by flags and then by particle or track number
317 sort(fTowerHits.begin(), fTowerHits.end());
318
319 // loop over all hits
320 towerEtaPhi = 0;
321 fTower = 0;
322 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
323 {
324 towerHit = (*itTowerHits);
325 flags = (towerHit >> 24) & 0x00000000000000FFLL;
326 number = (towerHit) & 0x0000000000FFFFFFLL;
327 hitEtaPhi = towerHit >> 32;
328
329 if(towerEtaPhi != hitEtaPhi)
330 {
331 // switch to next tower
332 towerEtaPhi = hitEtaPhi;
333
334 // finalize previous tower
335 FinalizeTower();
336
337 // create new tower
338 fTower = factory->NewCandidate();
339
340 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
341 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
342
343 // phi bins for given eta bin
344 phiBins = fPhiBins[etaBin];
345
346 // calculate eta and phi of the tower's center
347 fTowerEta = 0.5*(fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
348 fTowerPhi = 0.5*((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
349
350 fTowerEdges[0] = fEtaBins[etaBin - 1];
351 fTowerEdges[1] = fEtaBins[etaBin];
352 fTowerEdges[2] = (*phiBins)[phiBin - 1];
353 fTowerEdges[3] = (*phiBins)[phiBin];
354
355 fTowerECalEnergy = 0.0;
356 fTowerHCalEnergy = 0.0;
357
358 fTrackECalEnergy = 0.0;
359 fTrackHCalEnergy = 0.0;
360
361 fTowerECalTime = 0.0;
362 fTowerHCalTime = 0.0;
363
364 fTrackECalTime = 0.0;
365 fTrackHCalTime = 0.0;
366
367 fTowerECalWeightTime = 0.0;
368 fTowerHCalWeightTime = 0.0;
369
370 fTowerTrackHits = 0;
371 fTowerPhotonHits = 0;
372
373 fTowerTrackArray->Clear();
374 }
375
376 // check for track hits
377 if(flags & 1)
378 {
379 ++fTowerTrackHits;
380
381 track = static_cast<Candidate*>(fTrackInputArray->At(number));
382 momentum = track->Momentum;
383 position = track->Position;
384
385
386 ecalEnergy = momentum.E() * fTrackECalFractions[number];
387 hcalEnergy = momentum.E() * fTrackHCalFractions[number];
388
389 fTrackECalEnergy += ecalEnergy;
390 fTrackHCalEnergy += hcalEnergy;
391
392 fTrackECalTime += TMath::Sqrt(ecalEnergy)*position.T();
393 fTrackHCalTime += TMath::Sqrt(hcalEnergy)*position.T();
394
395 fTrackECalWeightTime += TMath::Sqrt(ecalEnergy);
396 fTrackHCalWeightTime += TMath::Sqrt(hcalEnergy);
397
398 fTowerTrackArray->Add(track);
399
400 continue;
401 }
402
403 // check for photon and electron hits in current tower
404 if(flags & 2) ++fTowerPhotonHits;
405
406 particle = static_cast<Candidate*>(fParticleInputArray->At(number));
407 momentum = particle->Momentum;
408 position = particle->Position;
409
410 // fill current tower
411 ecalEnergy = momentum.E() * fTowerECalFractions[number];
412 hcalEnergy = momentum.E() * fTowerHCalFractions[number];
413
414 fTowerECalEnergy += ecalEnergy;
415 fTowerHCalEnergy += hcalEnergy;
416
417 fTowerECalTime += TMath::Sqrt(ecalEnergy)*position.T();
418 fTowerHCalTime += TMath::Sqrt(hcalEnergy)*position.T();
419
420 fTowerECalWeightTime += TMath::Sqrt(ecalEnergy);
421 fTowerHCalWeightTime += TMath::Sqrt(hcalEnergy);
422
423
424 fTower->AddCandidate(particle);
425 }
426
427 // finalize last tower
428 FinalizeTower();
429}
430
431//------------------------------------------------------------------------------
432
433void Calorimeter::FinalizeTower()
434{
435 Candidate *track, *tower;
436 Double_t energy, pt, eta, phi;
437 Double_t ecalEnergy, hcalEnergy;
438 Double_t ecalSigma, hcalSigma;
439 Double_t ecalTime, hcalTime, time;
440
441 if(!fTower) return;
442// cout<<"----------------------"<<endl;
443// cout<<"Finalize Tower"<<endl;
444// cout<<""<<endl;
445
446
447 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerECalEnergy);
448
449// ecalEnergy = gRandom->Gaus(fTowerECalEnergy, ecalSigma);
450// if(ecalEnergy < 0.0) ecalEnergy = 0.0;
451
452 ecalEnergy = LogNormal(fTowerECalEnergy, ecalSigma);
453 ecalTime = (fTowerECalWeightTime < 1.0E-09 ) ? 0 : fTowerECalTime/fTowerECalWeightTime;
454
455 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fTowerHCalEnergy);
456
457// hcalEnergy = gRandom->Gaus(fTowerHCalEnergy, hcalSigma);
458// if(hcalEnergy < 0.0) hcalEnergy = 0.0;
459
460 hcalEnergy = LogNormal(fTowerHCalEnergy, hcalSigma);
461 hcalTime = (fTowerHCalWeightTime < 1.0E-09 ) ? 0 : fTowerHCalTime/fTowerHCalWeightTime;
462
463
464 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy);
465 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy);
466
467 ecalEnergy = (ecalEnergy < fEcalEnergyMin || ecalEnergy < fEcalSigmaMin*ecalSigma) ? 0 : ecalEnergy;
468 hcalEnergy = (hcalEnergy < fHcalEnergyMin || hcalEnergy < fHcalSigmaMin*hcalSigma) ? 0 : hcalEnergy;
469
470 energy = ecalEnergy + hcalEnergy;
471 time = (TMath::Sqrt(ecalEnergy)*ecalTime + TMath::Sqrt(hcalEnergy)*hcalTime)/(TMath::Sqrt(ecalEnergy) + TMath::Sqrt(hcalEnergy));
472
473 if(fDitherTowerCenter)
474 {
475 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
476 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
477 }
478 else
479 {
480 eta = fTowerEta;
481 phi = fTowerPhi;
482 }
483
484 pt = energy / TMath::CosH(eta);
485
486 // fTower->Position.SetXYZT(-time, 0.0, 0.0, time);
487 fTower->Position.SetPtEtaPhiE(1.0, eta, phi, time);
488 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
489 fTower->Eem = ecalEnergy;
490 fTower->Ehad = hcalEnergy;
491
492 fTower->Edges[0] = fTowerEdges[0];
493 fTower->Edges[1] = fTowerEdges[1];
494 fTower->Edges[2] = fTowerEdges[2];
495 fTower->Edges[3] = fTowerEdges[3];
496
497 if( energy > 0.0 )
498 {
499 if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
500 {
501 fPhotonOutputArray->Add(fTower);
502 }
503
504 fTowerOutputArray->Add(fTower);
505 }
506
507 // fill energy flow candidates
508
509 // save all the tracks as energy flow tracks
510 fItTowerTrackArray->Reset();
511 while((track = static_cast<Candidate*>(fItTowerTrackArray->Next())))
512 {
513 fEFlowTrackOutputArray->Add(track);
514 }
515
516 ecalEnergy -= fTrackECalEnergy;
517 if(ecalEnergy < fEcalEnergyMin || ecalEnergy < fEcalSigmaMin*fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy)) ecalEnergy = 0.0;
518
519 hcalEnergy -= fTrackHCalEnergy;
520 if(hcalEnergy < fHcalEnergyMin || hcalEnergy < fHcalSigmaMin*fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy)) hcalEnergy = 0.0;
521
522 energy = ecalEnergy + hcalEnergy;
523
524 if(ecalEnergy > 0.0)
525 {
526 // create new photon tower
527 tower = static_cast<Candidate*>(fTower->Clone());
528
529 pt = ecalEnergy / TMath::CosH(eta);
530
531 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, ecalEnergy);
532 tower->Eem = ecalEnergy;
533 tower->Ehad = 0;
534
535 fEFlowPhotonOutputArray->Add(tower);
536 }
537 if(hcalEnergy > 0.0)
538 {
539 // create new neutral hadron tower
540 tower = static_cast<Candidate*>(fTower->Clone());
541
542 pt = hcalEnergy / TMath::CosH(eta);
543
544 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, hcalEnergy);
545 tower->Eem = 0;
546 tower->Ehad = hcalEnergy;
547
548 fEFlowNeutralHadronOutputArray->Add(tower);
549 }
550
551
552
553
554}
555
556//------------------------------------------------------------------------------
557
558Double_t Calorimeter::LogNormal(Double_t mean, Double_t sigma)
559{
560 Double_t a, b;
561
562 if(mean > 0.0)
563 {
564 b = TMath::Sqrt(TMath::Log((1.0 + (sigma*sigma)/(mean*mean))));
565 a = TMath::Log(mean) - 0.5*b*b;
566
567 return TMath::Exp(a + b*gRandom->Gaus(0, 1));
568 }
569 else
570 {
571 return 0.0;
572 }
573}
Note: See TracBrowser for help on using the repository browser.