1 | /*
|
---|
2 | * Delphes: a framework for fast simulation of a generic collider experiment
|
---|
3 | * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 | /** \class Calorimeter
|
---|
20 | *
|
---|
21 | * Fills calorimeter towers, performs calorimeter resolution smearing,
|
---|
22 | * and creates energy flow objects (tracks, photons, and neutral hadrons).
|
---|
23 | *
|
---|
24 | * \author P. Demin - UCL, Louvain-la-Neuve
|
---|
25 | *
|
---|
26 | */
|
---|
27 |
|
---|
28 | #include "modules/Calorimeter.h"
|
---|
29 |
|
---|
30 | #include "classes/DelphesClasses.h"
|
---|
31 | #include "classes/DelphesFactory.h"
|
---|
32 | #include "classes/DelphesFormula.h"
|
---|
33 |
|
---|
34 | #include "ExRootAnalysis/ExRootClassifier.h"
|
---|
35 | #include "ExRootAnalysis/ExRootFilter.h"
|
---|
36 | #include "ExRootAnalysis/ExRootResult.h"
|
---|
37 |
|
---|
38 | #include "TDatabasePDG.h"
|
---|
39 | #include "TFormula.h"
|
---|
40 | #include "TLorentzVector.h"
|
---|
41 | #include "TMath.h"
|
---|
42 | #include "TObjArray.h"
|
---|
43 | #include "TRandom3.h"
|
---|
44 | #include "TString.h"
|
---|
45 |
|
---|
46 | #include <algorithm>
|
---|
47 | #include <iostream>
|
---|
48 | #include <sstream>
|
---|
49 | #include <stdexcept>
|
---|
50 |
|
---|
51 | using namespace std;
|
---|
52 |
|
---|
53 | //------------------------------------------------------------------------------
|
---|
54 |
|
---|
55 | Calorimeter::Calorimeter() :
|
---|
56 | fECalResolutionFormula(0), fHCalResolutionFormula(0),
|
---|
57 | fItParticleInputArray(0), fItTrackInputArray(0)
|
---|
58 | {
|
---|
59 |
|
---|
60 | fECalResolutionFormula = new DelphesFormula;
|
---|
61 | fHCalResolutionFormula = new DelphesFormula;
|
---|
62 |
|
---|
63 | fECalTowerTrackArray = new TObjArray;
|
---|
64 | fItECalTowerTrackArray = fECalTowerTrackArray->MakeIterator();
|
---|
65 |
|
---|
66 | fHCalTowerTrackArray = new TObjArray;
|
---|
67 | fItHCalTowerTrackArray = fHCalTowerTrackArray->MakeIterator();
|
---|
68 | }
|
---|
69 |
|
---|
70 | //------------------------------------------------------------------------------
|
---|
71 |
|
---|
72 | Calorimeter::~Calorimeter()
|
---|
73 | {
|
---|
74 |
|
---|
75 | if(fECalResolutionFormula) delete fECalResolutionFormula;
|
---|
76 | if(fHCalResolutionFormula) delete fHCalResolutionFormula;
|
---|
77 |
|
---|
78 | if(fECalTowerTrackArray) delete fECalTowerTrackArray;
|
---|
79 | if(fItECalTowerTrackArray) delete fItECalTowerTrackArray;
|
---|
80 |
|
---|
81 | if(fHCalTowerTrackArray) delete fHCalTowerTrackArray;
|
---|
82 | if(fItHCalTowerTrackArray) delete fItHCalTowerTrackArray;
|
---|
83 | }
|
---|
84 |
|
---|
85 | //------------------------------------------------------------------------------
|
---|
86 |
|
---|
87 | void Calorimeter::Init()
|
---|
88 | {
|
---|
89 | ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
|
---|
90 | Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
|
---|
91 | Double_t ecalFraction, hcalFraction;
|
---|
92 | TBinMap::iterator itEtaBin;
|
---|
93 | set<Double_t>::iterator itPhiBin;
|
---|
94 | vector<Double_t> *phiBins;
|
---|
95 |
|
---|
96 | // read eta and phi bins
|
---|
97 | param = GetParam("EtaPhiBins");
|
---|
98 | size = param.GetSize();
|
---|
99 | fBinMap.clear();
|
---|
100 | fEtaBins.clear();
|
---|
101 | fPhiBins.clear();
|
---|
102 | for(i = 0; i < size / 2; ++i)
|
---|
103 | {
|
---|
104 | paramEtaBins = param[i * 2];
|
---|
105 | sizeEtaBins = paramEtaBins.GetSize();
|
---|
106 | paramPhiBins = param[i * 2 + 1];
|
---|
107 | sizePhiBins = paramPhiBins.GetSize();
|
---|
108 |
|
---|
109 | for(j = 0; j < sizeEtaBins; ++j)
|
---|
110 | {
|
---|
111 | for(k = 0; k < sizePhiBins; ++k)
|
---|
112 | {
|
---|
113 | fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|
117 |
|
---|
118 | // for better performance we transform map of sets to parallel vectors:
|
---|
119 | // vector< double > and vector< vector< double >* >
|
---|
120 | for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
|
---|
121 | {
|
---|
122 | fEtaBins.push_back(itEtaBin->first);
|
---|
123 | phiBins = new vector<double>(itEtaBin->second.size());
|
---|
124 | fPhiBins.push_back(phiBins);
|
---|
125 | phiBins->clear();
|
---|
126 | for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
|
---|
127 | {
|
---|
128 | phiBins->push_back(*itPhiBin);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | // read energy fractions for different particles
|
---|
133 | param = GetParam("EnergyFraction");
|
---|
134 | size = param.GetSize();
|
---|
135 |
|
---|
136 | // set default energy fractions values
|
---|
137 | fFractionMap.clear();
|
---|
138 | fFractionMap[0] = make_pair(0.0, 1.0);
|
---|
139 |
|
---|
140 | for(i = 0; i < size / 2; ++i)
|
---|
141 | {
|
---|
142 | paramFractions = param[i * 2 + 1];
|
---|
143 |
|
---|
144 | ecalFraction = paramFractions[0].GetDouble();
|
---|
145 | hcalFraction = paramFractions[1].GetDouble();
|
---|
146 |
|
---|
147 | fFractionMap[param[i * 2].GetInt()] = make_pair(ecalFraction, hcalFraction);
|
---|
148 | }
|
---|
149 |
|
---|
150 | // read min E value for timing measurement in ECAL
|
---|
151 | fTimingEnergyMin = GetDouble("TimingEnergyMin", 4.);
|
---|
152 | // For timing
|
---|
153 | // So far this flag needs to be false
|
---|
154 | // Curved extrapolation not supported
|
---|
155 | fElectronsFromTrack = false;
|
---|
156 |
|
---|
157 | // read min E value for towers to be saved
|
---|
158 | fECalEnergyMin = GetDouble("ECalEnergyMin", 0.0);
|
---|
159 | fHCalEnergyMin = GetDouble("HCalEnergyMin", 0.0);
|
---|
160 |
|
---|
161 | fECalEnergySignificanceMin = GetDouble("ECalEnergySignificanceMin", 0.0);
|
---|
162 | fHCalEnergySignificanceMin = GetDouble("HCalEnergySignificanceMin", 0.0);
|
---|
163 |
|
---|
164 | // switch on or off the dithering of the center of calorimeter towers
|
---|
165 | fSmearTowerCenter = GetBool("SmearTowerCenter", true);
|
---|
166 |
|
---|
167 | // read resolution formulas
|
---|
168 | fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
|
---|
169 | fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
|
---|
170 |
|
---|
171 | // import array with output from other modules
|
---|
172 | fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
|
---|
173 | fItParticleInputArray = fParticleInputArray->MakeIterator();
|
---|
174 |
|
---|
175 | fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
|
---|
176 | fItTrackInputArray = fTrackInputArray->MakeIterator();
|
---|
177 |
|
---|
178 | // create output arrays
|
---|
179 | fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
|
---|
180 | fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
|
---|
181 |
|
---|
182 | fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
|
---|
183 | fEFlowPhotonOutputArray = ExportArray(GetString("EFlowPhotonOutputArray", "eflowPhotons"));
|
---|
184 | fEFlowNeutralHadronOutputArray = ExportArray(GetString("EFlowNeutralHadronOutputArray", "eflowNeutralHadrons"));
|
---|
185 | }
|
---|
186 |
|
---|
187 | //------------------------------------------------------------------------------
|
---|
188 |
|
---|
189 | void Calorimeter::Finish()
|
---|
190 | {
|
---|
191 | vector<vector<Double_t> *>::iterator itPhiBin;
|
---|
192 | if(fItParticleInputArray) delete fItParticleInputArray;
|
---|
193 | if(fItTrackInputArray) delete fItTrackInputArray;
|
---|
194 | for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
|
---|
195 | {
|
---|
196 | delete *itPhiBin;
|
---|
197 | }
|
---|
198 | }
|
---|
199 |
|
---|
200 | //------------------------------------------------------------------------------
|
---|
201 |
|
---|
202 | void Calorimeter::Process()
|
---|
203 | {
|
---|
204 | Candidate *particle, *track;
|
---|
205 | TLorentzVector position, momentum;
|
---|
206 | Short_t etaBin, phiBin, flags;
|
---|
207 | Int_t number;
|
---|
208 | Long64_t towerHit, towerEtaPhi, hitEtaPhi;
|
---|
209 | Double_t ecalFraction, hcalFraction;
|
---|
210 | Double_t ecalEnergy, hcalEnergy;
|
---|
211 | Double_t ecalSigma, hcalSigma;
|
---|
212 | Double_t energyGuess;
|
---|
213 | Int_t pdgCode;
|
---|
214 |
|
---|
215 | TFractionMap::iterator itFractionMap;
|
---|
216 |
|
---|
217 | vector<Double_t>::iterator itEtaBin;
|
---|
218 | vector<Double_t>::iterator itPhiBin;
|
---|
219 | vector<Double_t> *phiBins;
|
---|
220 |
|
---|
221 | vector<Long64_t>::iterator itTowerHits;
|
---|
222 |
|
---|
223 | DelphesFactory *factory = GetFactory();
|
---|
224 | fTowerHits.clear();
|
---|
225 | fECalTowerFractions.clear();
|
---|
226 | fHCalTowerFractions.clear();
|
---|
227 | fECalTrackFractions.clear();
|
---|
228 | fHCalTrackFractions.clear();
|
---|
229 |
|
---|
230 | // loop over all particles
|
---|
231 | fItParticleInputArray->Reset();
|
---|
232 | number = -1;
|
---|
233 | fTowerRmax=0.;
|
---|
234 | while((particle = static_cast<Candidate *>(fItParticleInputArray->Next())))
|
---|
235 | {
|
---|
236 | const TLorentzVector &particlePosition = particle->Position;
|
---|
237 | ++number;
|
---|
238 |
|
---|
239 | // compute maximum radius (needed in FinalizeTower to assess whether barrel or endcap tower)
|
---|
240 | if (particlePosition.Perp() > fTowerRmax)
|
---|
241 | fTowerRmax=particlePosition.Perp();
|
---|
242 |
|
---|
243 | pdgCode = TMath::Abs(particle->PID);
|
---|
244 |
|
---|
245 | itFractionMap = fFractionMap.find(pdgCode);
|
---|
246 | if(itFractionMap == fFractionMap.end())
|
---|
247 | {
|
---|
248 | itFractionMap = fFractionMap.find(0);
|
---|
249 | }
|
---|
250 |
|
---|
251 | ecalFraction = itFractionMap->second.first;
|
---|
252 | hcalFraction = itFractionMap->second.second;
|
---|
253 |
|
---|
254 | fECalTowerFractions.push_back(ecalFraction);
|
---|
255 | fHCalTowerFractions.push_back(hcalFraction);
|
---|
256 |
|
---|
257 | if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
|
---|
258 |
|
---|
259 | // find eta bin [1, fEtaBins.size - 1]
|
---|
260 | itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
|
---|
261 | if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
|
---|
262 | etaBin = distance(fEtaBins.begin(), itEtaBin);
|
---|
263 |
|
---|
264 | // phi bins for given eta bin
|
---|
265 | phiBins = fPhiBins[etaBin];
|
---|
266 |
|
---|
267 | // find phi bin [1, phiBins.size - 1]
|
---|
268 | itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
|
---|
269 | if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
|
---|
270 | phiBin = distance(phiBins->begin(), itPhiBin);
|
---|
271 |
|
---|
272 | flags = 0;
|
---|
273 | flags |= (pdgCode == 11 || pdgCode == 22) << 1;
|
---|
274 |
|
---|
275 | // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
|
---|
276 | towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
|
---|
277 |
|
---|
278 | fTowerHits.push_back(towerHit);
|
---|
279 | }
|
---|
280 |
|
---|
281 | // loop over all tracks
|
---|
282 | fItTrackInputArray->Reset();
|
---|
283 | number = -1;
|
---|
284 | while((track = static_cast<Candidate *>(fItTrackInputArray->Next())))
|
---|
285 | {
|
---|
286 | const TLorentzVector &trackPosition = track->Position;
|
---|
287 | ++number;
|
---|
288 |
|
---|
289 | pdgCode = TMath::Abs(track->PID);
|
---|
290 |
|
---|
291 | itFractionMap = fFractionMap.find(pdgCode);
|
---|
292 | if(itFractionMap == fFractionMap.end())
|
---|
293 | {
|
---|
294 | itFractionMap = fFractionMap.find(0);
|
---|
295 | }
|
---|
296 |
|
---|
297 | ecalFraction = itFractionMap->second.first;
|
---|
298 | hcalFraction = itFractionMap->second.second;
|
---|
299 |
|
---|
300 | fECalTrackFractions.push_back(ecalFraction);
|
---|
301 | fHCalTrackFractions.push_back(hcalFraction);
|
---|
302 |
|
---|
303 | // find eta bin [1, fEtaBins.size - 1]
|
---|
304 | itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
|
---|
305 | if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
|
---|
306 | etaBin = distance(fEtaBins.begin(), itEtaBin);
|
---|
307 |
|
---|
308 | // phi bins for given eta bin
|
---|
309 | phiBins = fPhiBins[etaBin];
|
---|
310 |
|
---|
311 | // find phi bin [1, phiBins.size - 1]
|
---|
312 | itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
|
---|
313 | if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
|
---|
314 | phiBin = distance(phiBins->begin(), itPhiBin);
|
---|
315 |
|
---|
316 | flags = 1;
|
---|
317 |
|
---|
318 | // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
|
---|
319 | towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
|
---|
320 |
|
---|
321 | fTowerHits.push_back(towerHit);
|
---|
322 | }
|
---|
323 |
|
---|
324 | // all hits are sorted first by eta bin number, then by phi bin number,
|
---|
325 | // then by flags and then by particle or track number
|
---|
326 | sort(fTowerHits.begin(), fTowerHits.end());
|
---|
327 |
|
---|
328 | // loop over all hits
|
---|
329 | towerEtaPhi = 0;
|
---|
330 | fTower = 0;
|
---|
331 | for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
|
---|
332 | {
|
---|
333 | towerHit = (*itTowerHits);
|
---|
334 | flags = (towerHit >> 24) & 0x00000000000000FFLL;
|
---|
335 | number = (towerHit)&0x0000000000FFFFFFLL;
|
---|
336 | hitEtaPhi = towerHit >> 32;
|
---|
337 |
|
---|
338 | if(towerEtaPhi != hitEtaPhi)
|
---|
339 | {
|
---|
340 | // switch to next tower
|
---|
341 | towerEtaPhi = hitEtaPhi;
|
---|
342 |
|
---|
343 | // finalize previous tower
|
---|
344 | FinalizeTower();
|
---|
345 |
|
---|
346 | // create new tower
|
---|
347 | fTower = factory->NewCandidate();
|
---|
348 |
|
---|
349 | phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
|
---|
350 | etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
|
---|
351 |
|
---|
352 | // phi bins for given eta bin
|
---|
353 | phiBins = fPhiBins[etaBin];
|
---|
354 |
|
---|
355 | // calculate eta and phi of the tower's center
|
---|
356 | fTowerEta = 0.5 * (fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
|
---|
357 | fTowerPhi = 0.5 * ((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
|
---|
358 |
|
---|
359 | fTowerEdges[0] = fEtaBins[etaBin - 1];
|
---|
360 | fTowerEdges[1] = fEtaBins[etaBin];
|
---|
361 | fTowerEdges[2] = (*phiBins)[phiBin - 1];
|
---|
362 | fTowerEdges[3] = (*phiBins)[phiBin];
|
---|
363 |
|
---|
364 | fECalTowerEnergy = 0.0;
|
---|
365 | fHCalTowerEnergy = 0.0;
|
---|
366 |
|
---|
367 | fECalTrackEnergy = 0.0;
|
---|
368 | fHCalTrackEnergy = 0.0;
|
---|
369 |
|
---|
370 | fECalTrackSigma = 0.0;
|
---|
371 | fHCalTrackSigma = 0.0;
|
---|
372 |
|
---|
373 | fTowerTrackHits = 0;
|
---|
374 | fTowerPhotonHits = 0;
|
---|
375 |
|
---|
376 | fECalTowerTrackArray->Clear();
|
---|
377 | fHCalTowerTrackArray->Clear();
|
---|
378 | }
|
---|
379 |
|
---|
380 | // check for track hits
|
---|
381 | if(flags & 1)
|
---|
382 | {
|
---|
383 | ++fTowerTrackHits;
|
---|
384 |
|
---|
385 | track = static_cast<Candidate *>(fTrackInputArray->At(number));
|
---|
386 | momentum = track->Momentum;
|
---|
387 | position = track->Position;
|
---|
388 |
|
---|
389 | ecalEnergy = momentum.E() * fECalTrackFractions[number];
|
---|
390 | hcalEnergy = momentum.E() * fHCalTrackFractions[number];
|
---|
391 |
|
---|
392 | if(ecalEnergy > fTimingEnergyMin && fTower)
|
---|
393 | {
|
---|
394 | if(fElectronsFromTrack)
|
---|
395 | {
|
---|
396 | fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, track->Position.T()));
|
---|
397 | }
|
---|
398 | }
|
---|
399 |
|
---|
400 | if(fECalTrackFractions[number] > 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
|
---|
401 | {
|
---|
402 | fECalTrackEnergy += ecalEnergy;
|
---|
403 | ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
|
---|
404 | if(ecalSigma / momentum.E() < track->TrackResolution)
|
---|
405 | energyGuess = ecalEnergy;
|
---|
406 | else
|
---|
407 | energyGuess = momentum.E();
|
---|
408 |
|
---|
409 | fECalTrackSigma += (track->TrackResolution) * energyGuess * (track->TrackResolution) * energyGuess;
|
---|
410 | fECalTowerTrackArray->Add(track);
|
---|
411 | }
|
---|
412 |
|
---|
413 | else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] > 1.0E-9)
|
---|
414 | {
|
---|
415 | fHCalTrackEnergy += hcalEnergy;
|
---|
416 | hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
|
---|
417 | if(hcalSigma / momentum.E() < track->TrackResolution)
|
---|
418 | energyGuess = hcalEnergy;
|
---|
419 | else
|
---|
420 | energyGuess = momentum.E();
|
---|
421 |
|
---|
422 | fHCalTrackSigma += (track->TrackResolution) * energyGuess * (track->TrackResolution) * energyGuess;
|
---|
423 | fHCalTowerTrackArray->Add(track);
|
---|
424 | }
|
---|
425 |
|
---|
426 | else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
|
---|
427 | {
|
---|
428 | fEFlowTrackOutputArray->Add(track);
|
---|
429 | }
|
---|
430 |
|
---|
431 | continue;
|
---|
432 | }
|
---|
433 |
|
---|
434 | // check for photon and electron hits in current tower
|
---|
435 | if(flags & 2) ++fTowerPhotonHits;
|
---|
436 |
|
---|
437 | particle = static_cast<Candidate *>(fParticleInputArray->At(number));
|
---|
438 | momentum = particle->Momentum;
|
---|
439 | position = particle->Position;
|
---|
440 |
|
---|
441 | // fill current tower
|
---|
442 | ecalEnergy = momentum.E() * fECalTowerFractions[number];
|
---|
443 | hcalEnergy = momentum.E() * fHCalTowerFractions[number];
|
---|
444 |
|
---|
445 | fECalTowerEnergy += ecalEnergy;
|
---|
446 | fHCalTowerEnergy += hcalEnergy;
|
---|
447 |
|
---|
448 | if(ecalEnergy > fTimingEnergyMin && fTower)
|
---|
449 | {
|
---|
450 | if(abs(particle->PID) != 11 || !fElectronsFromTrack)
|
---|
451 | {
|
---|
452 | fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, particle->Position.T()));
|
---|
453 | }
|
---|
454 | }
|
---|
455 |
|
---|
456 | fTower->AddCandidate(particle);
|
---|
457 | fTower->Position = position;
|
---|
458 | }
|
---|
459 |
|
---|
460 | // finalize last tower
|
---|
461 | FinalizeTower();
|
---|
462 | }
|
---|
463 |
|
---|
464 | //------------------------------------------------------------------------------
|
---|
465 |
|
---|
466 | void Calorimeter::FinalizeTower()
|
---|
467 | {
|
---|
468 | Candidate *track, *tower, *mother;
|
---|
469 | Double_t energy, pt, eta, phi, r;
|
---|
470 | Double_t ecalEnergy, hcalEnergy;
|
---|
471 | Double_t ecalNeutralEnergy, hcalNeutralEnergy;
|
---|
472 |
|
---|
473 | Double_t ecalSigma, hcalSigma;
|
---|
474 | Double_t ecalNeutralSigma, hcalNeutralSigma;
|
---|
475 |
|
---|
476 | Double_t weightTrack, weightCalo, bestEnergyEstimate, rescaleFactor;
|
---|
477 |
|
---|
478 | TLorentzVector momentum;
|
---|
479 | TFractionMap::iterator itFractionMap;
|
---|
480 |
|
---|
481 | Float_t weight, sumWeightedTime, sumWeight;
|
---|
482 |
|
---|
483 | if(!fTower) return;
|
---|
484 |
|
---|
485 | ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fECalTowerEnergy);
|
---|
486 | hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fHCalTowerEnergy);
|
---|
487 |
|
---|
488 | ecalEnergy = LogNormal(fECalTowerEnergy, ecalSigma);
|
---|
489 | hcalEnergy = LogNormal(fHCalTowerEnergy, hcalSigma);
|
---|
490 |
|
---|
491 | ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy);
|
---|
492 | hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy);
|
---|
493 |
|
---|
494 | if(ecalEnergy < fECalEnergyMin || ecalEnergy < fECalEnergySignificanceMin * ecalSigma) ecalEnergy = 0.0;
|
---|
495 | if(hcalEnergy < fHCalEnergyMin || hcalEnergy < fHCalEnergySignificanceMin * hcalSigma) hcalEnergy = 0.0;
|
---|
496 |
|
---|
497 | energy = ecalEnergy + hcalEnergy;
|
---|
498 |
|
---|
499 | if(fSmearTowerCenter)
|
---|
500 | {
|
---|
501 | eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
|
---|
502 | phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
|
---|
503 | }
|
---|
504 | else
|
---|
505 | {
|
---|
506 | eta = fTowerEta;
|
---|
507 | phi = fTowerPhi;
|
---|
508 | }
|
---|
509 |
|
---|
510 | pt = energy / TMath::CosH(eta);
|
---|
511 |
|
---|
512 | // Time calculation for tower
|
---|
513 | fTower->NTimeHits = 0;
|
---|
514 | sumWeightedTime = 0.0;
|
---|
515 | sumWeight = 0.0;
|
---|
516 |
|
---|
517 | for(size_t i = 0; i < fTower->ECalEnergyTimePairs.size(); ++i)
|
---|
518 | {
|
---|
519 | weight = TMath::Power((fTower->ECalEnergyTimePairs[i].first),2);
|
---|
520 | sumWeightedTime += weight * fTower->ECalEnergyTimePairs[i].second;
|
---|
521 | sumWeight += weight;
|
---|
522 | fTower->NTimeHits++;
|
---|
523 | }
|
---|
524 |
|
---|
525 | // check whether barrel or endcap tower
|
---|
526 | if (fTower->Position.Perp() < fTowerRmax && TMath::Abs(eta) > 0.)
|
---|
527 | r = fTower->Position.Z()/TMath::SinH(eta);
|
---|
528 | else
|
---|
529 | r = fTower->Position.Pt();
|
---|
530 |
|
---|
531 | if(sumWeight > 0.0)
|
---|
532 | {
|
---|
533 | fTower->Position.SetPtEtaPhiE(r, eta, phi, sumWeightedTime / sumWeight);
|
---|
534 | }
|
---|
535 | else
|
---|
536 | {
|
---|
537 | fTower->Position.SetPtEtaPhiE(r, eta, phi, 999999.9);
|
---|
538 | }
|
---|
539 |
|
---|
540 | fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
|
---|
541 | fTower->Eem = ecalEnergy;
|
---|
542 | fTower->Ehad = hcalEnergy;
|
---|
543 |
|
---|
544 | fTower->Edges[0] = fTowerEdges[0];
|
---|
545 | fTower->Edges[1] = fTowerEdges[1];
|
---|
546 | fTower->Edges[2] = fTowerEdges[2];
|
---|
547 | fTower->Edges[3] = fTowerEdges[3];
|
---|
548 |
|
---|
549 | if(energy > 0.0)
|
---|
550 | {
|
---|
551 | if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
|
---|
552 | {
|
---|
553 | fPhotonOutputArray->Add(fTower);
|
---|
554 | }
|
---|
555 |
|
---|
556 | fTowerOutputArray->Add(fTower);
|
---|
557 | }
|
---|
558 |
|
---|
559 | // fill energy flow candidates
|
---|
560 | fECalTrackSigma = TMath::Sqrt(fECalTrackSigma);
|
---|
561 | fHCalTrackSigma = TMath::Sqrt(fHCalTrackSigma);
|
---|
562 |
|
---|
563 | //compute neutral excesses
|
---|
564 | ecalNeutralEnergy = max((ecalEnergy - fECalTrackEnergy), 0.0);
|
---|
565 | hcalNeutralEnergy = max((hcalEnergy - fHCalTrackEnergy), 0.0);
|
---|
566 |
|
---|
567 | ecalNeutralSigma = ecalNeutralEnergy / TMath::Sqrt(fECalTrackSigma * fECalTrackSigma + ecalSigma * ecalSigma);
|
---|
568 | hcalNeutralSigma = hcalNeutralEnergy / TMath::Sqrt(fHCalTrackSigma * fHCalTrackSigma + hcalSigma * hcalSigma);
|
---|
569 |
|
---|
570 | // if ecal neutral excess is significant, simply create neutral EflowPhoton tower and clone each track into eflowtrack
|
---|
571 | if(ecalNeutralEnergy > fECalEnergyMin && ecalNeutralSigma > fECalEnergySignificanceMin)
|
---|
572 | {
|
---|
573 | // create new photon tower assuming null mass
|
---|
574 | tower = static_cast<Candidate *>(fTower->Clone());
|
---|
575 | pt = ecalNeutralEnergy / TMath::CosH(eta);
|
---|
576 |
|
---|
577 | tower->Momentum.SetPtEtaPhiE(pt, eta, phi, ecalNeutralEnergy);
|
---|
578 | tower->Eem = ecalNeutralEnergy;
|
---|
579 | tower->Ehad = 0.0;
|
---|
580 | tower->PID = 22;
|
---|
581 |
|
---|
582 | fEFlowPhotonOutputArray->Add(tower);
|
---|
583 |
|
---|
584 | //clone tracks
|
---|
585 | fItECalTowerTrackArray->Reset();
|
---|
586 | while((track = static_cast<Candidate *>(fItECalTowerTrackArray->Next())))
|
---|
587 | {
|
---|
588 | mother = track;
|
---|
589 | track = static_cast<Candidate *>(track->Clone());
|
---|
590 | track->AddCandidate(mother);
|
---|
591 |
|
---|
592 | fEFlowTrackOutputArray->Add(track);
|
---|
593 | }
|
---|
594 | }
|
---|
595 |
|
---|
596 | // if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
|
---|
597 | else if(fECalTrackEnergy > 0.0)
|
---|
598 | {
|
---|
599 | weightTrack = (fECalTrackSigma > 0.0) ? 1 / (fECalTrackSigma * fECalTrackSigma) : 0.0;
|
---|
600 | weightCalo = (ecalSigma > 0.0) ? 1 / (ecalSigma * ecalSigma) : 0.0;
|
---|
601 |
|
---|
602 | bestEnergyEstimate = (weightTrack * fECalTrackEnergy + weightCalo * ecalEnergy) / (weightTrack + weightCalo);
|
---|
603 | rescaleFactor = bestEnergyEstimate / fECalTrackEnergy;
|
---|
604 |
|
---|
605 | //rescale tracks
|
---|
606 | fItECalTowerTrackArray->Reset();
|
---|
607 | while((track = static_cast<Candidate *>(fItECalTowerTrackArray->Next())))
|
---|
608 | {
|
---|
609 | mother = track;
|
---|
610 | track = static_cast<Candidate *>(track->Clone());
|
---|
611 | track->AddCandidate(mother);
|
---|
612 |
|
---|
613 | track->Momentum *= rescaleFactor;
|
---|
614 |
|
---|
615 | fEFlowTrackOutputArray->Add(track);
|
---|
616 | }
|
---|
617 | }
|
---|
618 |
|
---|
619 | // if hcal neutral excess is significant, simply create neutral EflowNeutralHadron tower and clone each track into eflowtrack
|
---|
620 | if(hcalNeutralEnergy > fHCalEnergyMin && hcalNeutralSigma > fHCalEnergySignificanceMin)
|
---|
621 | {
|
---|
622 | // create new photon tower
|
---|
623 | tower = static_cast<Candidate *>(fTower->Clone());
|
---|
624 | pt = hcalNeutralEnergy / TMath::CosH(eta);
|
---|
625 |
|
---|
626 | tower->Momentum.SetPtEtaPhiE(pt, eta, phi, hcalNeutralEnergy);
|
---|
627 | tower->Ehad = hcalNeutralEnergy;
|
---|
628 | tower->Eem = 0.0;
|
---|
629 |
|
---|
630 | fEFlowNeutralHadronOutputArray->Add(tower);
|
---|
631 |
|
---|
632 | //clone tracks
|
---|
633 | fItHCalTowerTrackArray->Reset();
|
---|
634 | while((track = static_cast<Candidate *>(fItHCalTowerTrackArray->Next())))
|
---|
635 | {
|
---|
636 | mother = track;
|
---|
637 | track = static_cast<Candidate *>(track->Clone());
|
---|
638 | track->AddCandidate(mother);
|
---|
639 |
|
---|
640 | fEFlowTrackOutputArray->Add(track);
|
---|
641 | }
|
---|
642 | }
|
---|
643 |
|
---|
644 | // if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
|
---|
645 | else if(fHCalTrackEnergy > 0.0)
|
---|
646 | {
|
---|
647 | weightTrack = (fHCalTrackSigma > 0.0) ? 1 / (fHCalTrackSigma * fHCalTrackSigma) : 0.0;
|
---|
648 | weightCalo = (hcalSigma > 0.0) ? 1 / (hcalSigma * hcalSigma) : 0.0;
|
---|
649 |
|
---|
650 | bestEnergyEstimate = (weightTrack * fHCalTrackEnergy + weightCalo * hcalEnergy) / (weightTrack + weightCalo);
|
---|
651 | rescaleFactor = bestEnergyEstimate / fHCalTrackEnergy;
|
---|
652 |
|
---|
653 | //rescale tracks
|
---|
654 | fItHCalTowerTrackArray->Reset();
|
---|
655 | while((track = static_cast<Candidate *>(fItHCalTowerTrackArray->Next())))
|
---|
656 | {
|
---|
657 | mother = track;
|
---|
658 | track = static_cast<Candidate *>(track->Clone());
|
---|
659 | track->AddCandidate(mother);
|
---|
660 | track->Momentum *= rescaleFactor;
|
---|
661 | track->Momentum.SetPtEtaPhiM(track->Momentum.Pt()*rescaleFactor, track->Momentum.Eta(), track->Momentum.Phi(), track->Momentum.M());
|
---|
662 |
|
---|
663 | fEFlowTrackOutputArray->Add(track);
|
---|
664 | }
|
---|
665 | }
|
---|
666 | }
|
---|
667 |
|
---|
668 | //------------------------------------------------------------------------------
|
---|
669 |
|
---|
670 | Double_t Calorimeter::LogNormal(Double_t mean, Double_t sigma)
|
---|
671 | {
|
---|
672 | Double_t a, b;
|
---|
673 |
|
---|
674 | if(mean > 0.0)
|
---|
675 | {
|
---|
676 | b = TMath::Sqrt(TMath::Log((1.0 + (sigma * sigma) / (mean * mean))));
|
---|
677 | a = TMath::Log(mean) - 0.5 * b * b;
|
---|
678 |
|
---|
679 | return TMath::Exp(a + b * gRandom->Gaus(0.0, 1.0));
|
---|
680 | }
|
---|
681 | else
|
---|
682 | {
|
---|
683 | return 0.0;
|
---|
684 | }
|
---|
685 | }
|
---|