Fork me on GitHub

source: git/modules/Calorimeter.cc@ 4aec383

Last change on this file since 4aec383 was 5eda6767, checked in by Michele Selvaggi <michele@…>, 4 years ago

fix calo tower position

  • Property mode set to 100644
File size: 21.6 KB
RevLine 
[01f457a]1/*
2 * Delphes: a framework for fast simulation of a generic collider experiment
3 * Copyright (C) 2012-2014 Universite catholique de Louvain (UCL), Belgium
[1fa50c2]4 *
[01f457a]5 * This program is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
[1fa50c2]9 *
[01f457a]10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
[1fa50c2]14 *
[01f457a]15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
[d7d2da3]19/** \class Calorimeter
20 *
21 * Fills calorimeter towers, performs calorimeter resolution smearing,
[d4c4d9d]22 * and creates energy flow objects (tracks, photons, and neutral hadrons).
[d7d2da3]23 *
24 * \author P. Demin - UCL, Louvain-la-Neuve
25 *
26 */
27
28#include "modules/Calorimeter.h"
29
30#include "classes/DelphesClasses.h"
31#include "classes/DelphesFactory.h"
32#include "classes/DelphesFormula.h"
33
34#include "ExRootAnalysis/ExRootClassifier.h"
[341014c]35#include "ExRootAnalysis/ExRootFilter.h"
36#include "ExRootAnalysis/ExRootResult.h"
[d7d2da3]37
38#include "TDatabasePDG.h"
[341014c]39#include "TFormula.h"
[d7d2da3]40#include "TLorentzVector.h"
[341014c]41#include "TMath.h"
42#include "TObjArray.h"
43#include "TRandom3.h"
44#include "TString.h"
[d7d2da3]45
46#include <algorithm>
47#include <iostream>
48#include <sstream>
[341014c]49#include <stdexcept>
[d7d2da3]50
51using namespace std;
52
53//------------------------------------------------------------------------------
54
55Calorimeter::Calorimeter() :
[82575a3]56 fECalResolutionFormula(0), fHCalResolutionFormula(0),
[00e8dca]57 fItParticleInputArray(0), fItTrackInputArray(0)
[d7d2da3]58{
[341014c]59
[82575a3]60 fECalResolutionFormula = new DelphesFormula;
61 fHCalResolutionFormula = new DelphesFormula;
62
[04290b1]63 fECalTowerTrackArray = new TObjArray;
64 fItECalTowerTrackArray = fECalTowerTrackArray->MakeIterator();
[00e8dca]65
[04290b1]66 fHCalTowerTrackArray = new TObjArray;
67 fItHCalTowerTrackArray = fHCalTowerTrackArray->MakeIterator();
[d7d2da3]68}
69
70//------------------------------------------------------------------------------
71
72Calorimeter::~Calorimeter()
73{
[341014c]74
[82575a3]75 if(fECalResolutionFormula) delete fECalResolutionFormula;
76 if(fHCalResolutionFormula) delete fHCalResolutionFormula;
77
[04290b1]78 if(fECalTowerTrackArray) delete fECalTowerTrackArray;
79 if(fItECalTowerTrackArray) delete fItECalTowerTrackArray;
[00e8dca]80
[04290b1]81 if(fHCalTowerTrackArray) delete fHCalTowerTrackArray;
82 if(fItHCalTowerTrackArray) delete fItHCalTowerTrackArray;
[2dab783]83}
[d7d2da3]84
85//------------------------------------------------------------------------------
86
87void Calorimeter::Init()
88{
89 ExRootConfParam param, paramEtaBins, paramPhiBins, paramFractions;
[a221d1f]90 Long_t i, j, k, size, sizeEtaBins, sizePhiBins;
[82575a3]91 Double_t ecalFraction, hcalFraction;
[d7d2da3]92 TBinMap::iterator itEtaBin;
[341014c]93 set<Double_t>::iterator itPhiBin;
94 vector<Double_t> *phiBins;
[d7d2da3]95
96 // read eta and phi bins
97 param = GetParam("EtaPhiBins");
98 size = param.GetSize();
99 fBinMap.clear();
100 fEtaBins.clear();
101 fPhiBins.clear();
[341014c]102 for(i = 0; i < size / 2; ++i)
[d7d2da3]103 {
[341014c]104 paramEtaBins = param[i * 2];
[d7d2da3]105 sizeEtaBins = paramEtaBins.GetSize();
[341014c]106 paramPhiBins = param[i * 2 + 1];
[d7d2da3]107 sizePhiBins = paramPhiBins.GetSize();
108
109 for(j = 0; j < sizeEtaBins; ++j)
110 {
111 for(k = 0; k < sizePhiBins; ++k)
112 {
113 fBinMap[paramEtaBins[j].GetDouble()].insert(paramPhiBins[k].GetDouble());
114 }
115 }
116 }
117
118 // for better performance we transform map of sets to parallel vectors:
119 // vector< double > and vector< vector< double >* >
120 for(itEtaBin = fBinMap.begin(); itEtaBin != fBinMap.end(); ++itEtaBin)
121 {
122 fEtaBins.push_back(itEtaBin->first);
[341014c]123 phiBins = new vector<double>(itEtaBin->second.size());
[d7d2da3]124 fPhiBins.push_back(phiBins);
125 phiBins->clear();
126 for(itPhiBin = itEtaBin->second.begin(); itPhiBin != itEtaBin->second.end(); ++itPhiBin)
127 {
128 phiBins->push_back(*itPhiBin);
129 }
130 }
131
132 // read energy fractions for different particles
133 param = GetParam("EnergyFraction");
134 size = param.GetSize();
135
136 // set default energy fractions values
137 fFractionMap.clear();
[82575a3]138 fFractionMap[0] = make_pair(0.0, 1.0);
[d7d2da3]139
[341014c]140 for(i = 0; i < size / 2; ++i)
[d7d2da3]141 {
[341014c]142 paramFractions = param[i * 2 + 1];
[82575a3]143
144 ecalFraction = paramFractions[0].GetDouble();
145 hcalFraction = paramFractions[1].GetDouble();
146
[341014c]147 fFractionMap[param[i * 2].GetInt()] = make_pair(ecalFraction, hcalFraction);
[d7d2da3]148 }
[8624f58]149
[3db5282]150 // read min E value for timing measurement in ECAL
[341014c]151 fTimingEnergyMin = GetDouble("TimingEnergyMin", 4.);
[3db5282]152 // For timing
153 // So far this flag needs to be false
154 // Curved extrapolation not supported
155 fElectronsFromTrack = false;
156
[4b9a2dc]157 // read min E value for towers to be saved
[38bf1ae]158 fECalEnergyMin = GetDouble("ECalEnergyMin", 0.0);
159 fHCalEnergyMin = GetDouble("HCalEnergyMin", 0.0);
[a221d1f]160
[38bf1ae]161 fECalEnergySignificanceMin = GetDouble("ECalEnergySignificanceMin", 0.0);
162 fHCalEnergySignificanceMin = GetDouble("HCalEnergySignificanceMin", 0.0);
[a221d1f]163
[8624f58]164 // switch on or off the dithering of the center of calorimeter towers
[4e09c3a]165 fSmearTowerCenter = GetBool("SmearTowerCenter", true);
[4b9a2dc]166
[d7d2da3]167 // read resolution formulas
[82575a3]168 fECalResolutionFormula->Compile(GetString("ECalResolutionFormula", "0"));
169 fHCalResolutionFormula->Compile(GetString("HCalResolutionFormula", "0"));
170
[d7d2da3]171 // import array with output from other modules
172 fParticleInputArray = ImportArray(GetString("ParticleInputArray", "ParticlePropagator/particles"));
173 fItParticleInputArray = fParticleInputArray->MakeIterator();
174
175 fTrackInputArray = ImportArray(GetString("TrackInputArray", "ParticlePropagator/tracks"));
176 fItTrackInputArray = fTrackInputArray->MakeIterator();
177
178 // create output arrays
179 fTowerOutputArray = ExportArray(GetString("TowerOutputArray", "towers"));
[82575a3]180 fPhotonOutputArray = ExportArray(GetString("PhotonOutputArray", "photons"));
[a221d1f]181
[82575a3]182 fEFlowTrackOutputArray = ExportArray(GetString("EFlowTrackOutputArray", "eflowTracks"));
183 fEFlowPhotonOutputArray = ExportArray(GetString("EFlowPhotonOutputArray", "eflowPhotons"));
184 fEFlowNeutralHadronOutputArray = ExportArray(GetString("EFlowNeutralHadronOutputArray", "eflowNeutralHadrons"));
[d7d2da3]185}
186
187//------------------------------------------------------------------------------
188
189void Calorimeter::Finish()
190{
[341014c]191 vector<vector<Double_t> *>::iterator itPhiBin;
[d7d2da3]192 if(fItParticleInputArray) delete fItParticleInputArray;
193 if(fItTrackInputArray) delete fItTrackInputArray;
194 for(itPhiBin = fPhiBins.begin(); itPhiBin != fPhiBins.end(); ++itPhiBin)
195 {
196 delete *itPhiBin;
197 }
198}
199
200//------------------------------------------------------------------------------
201
202void Calorimeter::Process()
203{
204 Candidate *particle, *track;
205 TLorentzVector position, momentum;
206 Short_t etaBin, phiBin, flags;
207 Int_t number;
208 Long64_t towerHit, towerEtaPhi, hitEtaPhi;
[82575a3]209 Double_t ecalFraction, hcalFraction;
210 Double_t ecalEnergy, hcalEnergy;
[298734e]211 Double_t ecalSigma, hcalSigma;
212 Double_t energyGuess;
[d7d2da3]213 Int_t pdgCode;
214
215 TFractionMap::iterator itFractionMap;
216
[341014c]217 vector<Double_t>::iterator itEtaBin;
218 vector<Double_t>::iterator itPhiBin;
219 vector<Double_t> *phiBins;
[d7d2da3]220
[341014c]221 vector<Long64_t>::iterator itTowerHits;
[d7d2da3]222
223 DelphesFactory *factory = GetFactory();
224 fTowerHits.clear();
[00e8dca]225 fECalTowerFractions.clear();
226 fHCalTowerFractions.clear();
227 fECalTrackFractions.clear();
228 fHCalTrackFractions.clear();
[82575a3]229
[d7d2da3]230 // loop over all particles
231 fItParticleInputArray->Reset();
232 number = -1;
[5eda6767]233 fTowerRmax=0.;
[341014c]234 while((particle = static_cast<Candidate *>(fItParticleInputArray->Next())))
[d7d2da3]235 {
236 const TLorentzVector &particlePosition = particle->Position;
237 ++number;
238
[5eda6767]239 // compute maximum radius (needed in FinalizeTower to assess whether barrel or endcap tower)
240 if (particlePosition.Perp() > fTowerRmax)
241 fTowerRmax=particlePosition.Perp();
242
[d7d2da3]243 pdgCode = TMath::Abs(particle->PID);
244
245 itFractionMap = fFractionMap.find(pdgCode);
246 if(itFractionMap == fFractionMap.end())
247 {
248 itFractionMap = fFractionMap.find(0);
249 }
250
[82575a3]251 ecalFraction = itFractionMap->second.first;
252 hcalFraction = itFractionMap->second.second;
253
[00e8dca]254 fECalTowerFractions.push_back(ecalFraction);
255 fHCalTowerFractions.push_back(hcalFraction);
[82575a3]256
257 if(ecalFraction < 1.0E-9 && hcalFraction < 1.0E-9) continue;
[d7d2da3]258
259 // find eta bin [1, fEtaBins.size - 1]
260 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), particlePosition.Eta());
261 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
262 etaBin = distance(fEtaBins.begin(), itEtaBin);
263
264 // phi bins for given eta bin
265 phiBins = fPhiBins[etaBin];
266
267 // find phi bin [1, phiBins.size - 1]
268 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), particlePosition.Phi());
269 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
270 phiBin = distance(phiBins->begin(), itPhiBin);
271
[73e0386]272 flags = 0;
[2dab783]273 flags |= (pdgCode == 11 || pdgCode == 22) << 1;
[d7d2da3]274
275 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for particle number}
276 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
277
278 fTowerHits.push_back(towerHit);
279 }
280
281 // loop over all tracks
282 fItTrackInputArray->Reset();
283 number = -1;
[341014c]284 while((track = static_cast<Candidate *>(fItTrackInputArray->Next())))
[d7d2da3]285 {
286 const TLorentzVector &trackPosition = track->Position;
287 ++number;
288
[73e0386]289 pdgCode = TMath::Abs(track->PID);
290
291 itFractionMap = fFractionMap.find(pdgCode);
292 if(itFractionMap == fFractionMap.end())
293 {
294 itFractionMap = fFractionMap.find(0);
295 }
296
[82575a3]297 ecalFraction = itFractionMap->second.first;
298 hcalFraction = itFractionMap->second.second;
299
[00e8dca]300 fECalTrackFractions.push_back(ecalFraction);
301 fHCalTrackFractions.push_back(hcalFraction);
[82575a3]302
[d7d2da3]303 // find eta bin [1, fEtaBins.size - 1]
304 itEtaBin = lower_bound(fEtaBins.begin(), fEtaBins.end(), trackPosition.Eta());
305 if(itEtaBin == fEtaBins.begin() || itEtaBin == fEtaBins.end()) continue;
306 etaBin = distance(fEtaBins.begin(), itEtaBin);
307
308 // phi bins for given eta bin
309 phiBins = fPhiBins[etaBin];
310
311 // find phi bin [1, phiBins.size - 1]
312 itPhiBin = lower_bound(phiBins->begin(), phiBins->end(), trackPosition.Phi());
313 if(itPhiBin == phiBins->begin() || itPhiBin == phiBins->end()) continue;
314 phiBin = distance(phiBins->begin(), itPhiBin);
315
[73e0386]316 flags = 1;
317
[d7d2da3]318 // make tower hit {16-bits for eta bin number, 16-bits for phi bin number, 8-bits for flags, 24-bits for track number}
[73e0386]319 towerHit = (Long64_t(etaBin) << 48) | (Long64_t(phiBin) << 32) | (Long64_t(flags) << 24) | Long64_t(number);
[d7d2da3]320
321 fTowerHits.push_back(towerHit);
322 }
323
324 // all hits are sorted first by eta bin number, then by phi bin number,
325 // then by flags and then by particle or track number
326 sort(fTowerHits.begin(), fTowerHits.end());
327
328 // loop over all hits
329 towerEtaPhi = 0;
330 fTower = 0;
331 for(itTowerHits = fTowerHits.begin(); itTowerHits != fTowerHits.end(); ++itTowerHits)
332 {
333 towerHit = (*itTowerHits);
334 flags = (towerHit >> 24) & 0x00000000000000FFLL;
[341014c]335 number = (towerHit)&0x0000000000FFFFFFLL;
[d7d2da3]336 hitEtaPhi = towerHit >> 32;
337
338 if(towerEtaPhi != hitEtaPhi)
339 {
340 // switch to next tower
341 towerEtaPhi = hitEtaPhi;
342
343 // finalize previous tower
344 FinalizeTower();
345
346 // create new tower
347 fTower = factory->NewCandidate();
348
349 phiBin = (towerHit >> 32) & 0x000000000000FFFFLL;
350 etaBin = (towerHit >> 48) & 0x000000000000FFFFLL;
351
352 // phi bins for given eta bin
353 phiBins = fPhiBins[etaBin];
354
355 // calculate eta and phi of the tower's center
[341014c]356 fTowerEta = 0.5 * (fEtaBins[etaBin - 1] + fEtaBins[etaBin]);
357 fTowerPhi = 0.5 * ((*phiBins)[phiBin - 1] + (*phiBins)[phiBin]);
[d7d2da3]358
359 fTowerEdges[0] = fEtaBins[etaBin - 1];
360 fTowerEdges[1] = fEtaBins[etaBin];
361 fTowerEdges[2] = (*phiBins)[phiBin - 1];
362 fTowerEdges[3] = (*phiBins)[phiBin];
363
[00e8dca]364 fECalTowerEnergy = 0.0;
365 fHCalTowerEnergy = 0.0;
366
[04290b1]367 fECalTrackEnergy = 0.0;
368 fHCalTrackEnergy = 0.0;
[341014c]369
[04290b1]370 fECalTrackSigma = 0.0;
371 fHCalTrackSigma = 0.0;
[341014c]372
[2dab783]373 fTowerTrackHits = 0;
374 fTowerPhotonHits = 0;
[a221d1f]375
[04290b1]376 fECalTowerTrackArray->Clear();
377 fHCalTowerTrackArray->Clear();
[d7d2da3]378 }
379
380 // check for track hits
[73e0386]381 if(flags & 1)
[d7d2da3]382 {
[2dab783]383 ++fTowerTrackHits;
[73e0386]384
[341014c]385 track = static_cast<Candidate *>(fTrackInputArray->At(number));
[2dab783]386 momentum = track->Momentum;
[22dc7fd]387 position = track->Position;
[82575a3]388
[00e8dca]389 ecalEnergy = momentum.E() * fECalTrackFractions[number];
390 hcalEnergy = momentum.E() * fHCalTrackFractions[number];
[a221d1f]391
[839deb7]392 if(ecalEnergy > fTimingEnergyMin && fTower)
393 {
394 if(fElectronsFromTrack)
395 {
396 fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, track->Position.T()));
397 }
[3db5282]398 }
[a221d1f]399
[9da65a5]400 if(fECalTrackFractions[number] > 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
[00e8dca]401 {
[04290b1]402 fECalTrackEnergy += ecalEnergy;
[341014c]403 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
404 if(ecalSigma / momentum.E() < track->TrackResolution)
405 energyGuess = ecalEnergy;
406 else
407 energyGuess = momentum.E();
[298734e]408
[341014c]409 fECalTrackSigma += (track->TrackResolution) * energyGuess * (track->TrackResolution) * energyGuess;
[04290b1]410 fECalTowerTrackArray->Add(track);
[00e8dca]411 }
[341014c]412
[9da65a5]413 else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] > 1.0E-9)
[00e8dca]414 {
[04290b1]415 fHCalTrackEnergy += hcalEnergy;
[298734e]416 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, momentum.E());
[341014c]417 if(hcalSigma / momentum.E() < track->TrackResolution)
418 energyGuess = hcalEnergy;
419 else
420 energyGuess = momentum.E();
[298734e]421
[341014c]422 fHCalTrackSigma += (track->TrackResolution) * energyGuess * (track->TrackResolution) * energyGuess;
[04290b1]423 fHCalTowerTrackArray->Add(track);
[00e8dca]424 }
[341014c]425
[9da65a5]426 else if(fECalTrackFractions[number] < 1.0E-9 && fHCalTrackFractions[number] < 1.0E-9)
427 {
428 fEFlowTrackOutputArray->Add(track);
429 }
[73e0386]430
[2dab783]431 continue;
[73e0386]432 }
[839deb7]433
[73e0386]434 // check for photon and electron hits in current tower
[2dab783]435 if(flags & 2) ++fTowerPhotonHits;
[a221d1f]436
[341014c]437 particle = static_cast<Candidate *>(fParticleInputArray->At(number));
[d7d2da3]438 momentum = particle->Momentum;
[22dc7fd]439 position = particle->Position;
[d7d2da3]440
441 // fill current tower
[00e8dca]442 ecalEnergy = momentum.E() * fECalTowerFractions[number];
443 hcalEnergy = momentum.E() * fHCalTowerFractions[number];
[82575a3]444
[00e8dca]445 fECalTowerEnergy += ecalEnergy;
446 fHCalTowerEnergy += hcalEnergy;
[82575a3]447
[839deb7]448 if(ecalEnergy > fTimingEnergyMin && fTower)
449 {
[341014c]450 if(abs(particle->PID) != 11 || !fElectronsFromTrack)
[839deb7]451 {
452 fTower->ECalEnergyTimePairs.push_back(make_pair<Float_t, Float_t>(ecalEnergy, particle->Position.T()));
[3db5282]453 }
454 }
[82575a3]455
[3079350]456 fTower->AddCandidate(particle);
[d1678fd]457 fTower->Position = position;
[d7d2da3]458 }
459
460 // finalize last tower
461 FinalizeTower();
462}
463
464//------------------------------------------------------------------------------
465
466void Calorimeter::FinalizeTower()
467{
[e2dd4c5]468 Candidate *track, *tower, *mother;
[d1678fd]469 Double_t energy, pt, eta, phi, r;
[82575a3]470 Double_t ecalEnergy, hcalEnergy;
[04290b1]471 Double_t ecalNeutralEnergy, hcalNeutralEnergy;
[341014c]472
[82575a3]473 Double_t ecalSigma, hcalSigma;
[04290b1]474 Double_t ecalNeutralSigma, hcalNeutralSigma;
[e2dd4c5]475
[04290b1]476 Double_t weightTrack, weightCalo, bestEnergyEstimate, rescaleFactor;
[341014c]477
[a98c7ef]478 TLorentzVector momentum;
479 TFractionMap::iterator itFractionMap;
[e2dd4c5]480
[839deb7]481 Float_t weight, sumWeightedTime, sumWeight;
482
[d7d2da3]483 if(!fTower) return;
484
[00e8dca]485 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fECalTowerEnergy);
486 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, fHCalTowerEnergy);
[4600a41]487
[00e8dca]488 ecalEnergy = LogNormal(fECalTowerEnergy, ecalSigma);
489 hcalEnergy = LogNormal(fHCalTowerEnergy, hcalSigma);
[82575a3]490
[4b9a2dc]491 ecalSigma = fECalResolutionFormula->Eval(0.0, fTowerEta, 0.0, ecalEnergy);
492 hcalSigma = fHCalResolutionFormula->Eval(0.0, fTowerEta, 0.0, hcalEnergy);
493
[341014c]494 if(ecalEnergy < fECalEnergyMin || ecalEnergy < fECalEnergySignificanceMin * ecalSigma) ecalEnergy = 0.0;
495 if(hcalEnergy < fHCalEnergyMin || hcalEnergy < fHCalEnergySignificanceMin * hcalSigma) hcalEnergy = 0.0;
[4b9a2dc]496
[82575a3]497 energy = ecalEnergy + hcalEnergy;
[839deb7]498
[4e09c3a]499 if(fSmearTowerCenter)
[a221d1f]500 {
[38bf1ae]501 eta = gRandom->Uniform(fTowerEdges[0], fTowerEdges[1]);
502 phi = gRandom->Uniform(fTowerEdges[2], fTowerEdges[3]);
[a221d1f]503 }
504 else
505 {
[38bf1ae]506 eta = fTowerEta;
507 phi = fTowerPhi;
[a221d1f]508 }
[d7d2da3]509
510 pt = energy / TMath::CosH(eta);
511
[3db5282]512 // Time calculation for tower
[839deb7]513 fTower->NTimeHits = 0;
514 sumWeightedTime = 0.0;
515 sumWeight = 0.0;
516
517 for(size_t i = 0; i < fTower->ECalEnergyTimePairs.size(); ++i)
[3db5282]518 {
[d1678fd]519 weight = TMath::Power((fTower->ECalEnergyTimePairs[i].first),2);
[839deb7]520 sumWeightedTime += weight * fTower->ECalEnergyTimePairs[i].second;
521 sumWeight += weight;
522 fTower->NTimeHits++;
[3db5282]523 }
[839deb7]524
[5eda6767]525 // check whether barrel or endcap tower
526 if (fTower->Position.Perp() < fTowerRmax && TMath::Abs(eta) > 0.)
527 r = fTower->Position.Z()/TMath::SinH(eta);
528 else
529 r = fTower->Position.Pt();
[d1678fd]530
[839deb7]531 if(sumWeight > 0.0)
532 {
[d1678fd]533 fTower->Position.SetPtEtaPhiE(r, eta, phi, sumWeightedTime / sumWeight);
[839deb7]534 }
535 else
536 {
[d1678fd]537 fTower->Position.SetPtEtaPhiE(r, eta, phi, 999999.9);
[3db5282]538 }
539
[d7d2da3]540 fTower->Momentum.SetPtEtaPhiE(pt, eta, phi, energy);
[82575a3]541 fTower->Eem = ecalEnergy;
542 fTower->Ehad = hcalEnergy;
543
[d7d2da3]544 fTower->Edges[0] = fTowerEdges[0];
545 fTower->Edges[1] = fTowerEdges[1];
546 fTower->Edges[2] = fTowerEdges[2];
547 fTower->Edges[3] = fTowerEdges[3];
548
[38bf1ae]549 if(energy > 0.0)
[82575a3]550 {
551 if(fTowerPhotonHits > 0 && fTowerTrackHits == 0)
552 {
553 fPhotonOutputArray->Add(fTower);
554 }
[a221d1f]555
[82575a3]556 fTowerOutputArray->Add(fTower);
557 }
[341014c]558
[f6b9fec]559 // fill energy flow candidates
[04290b1]560 fECalTrackSigma = TMath::Sqrt(fECalTrackSigma);
561 fHCalTrackSigma = TMath::Sqrt(fHCalTrackSigma);
562
563 //compute neutral excesses
[341014c]564 ecalNeutralEnergy = max((ecalEnergy - fECalTrackEnergy), 0.0);
565 hcalNeutralEnergy = max((hcalEnergy - fHCalTrackEnergy), 0.0);
566
567 ecalNeutralSigma = ecalNeutralEnergy / TMath::Sqrt(fECalTrackSigma * fECalTrackSigma + ecalSigma * ecalSigma);
568 hcalNeutralSigma = hcalNeutralEnergy / TMath::Sqrt(fHCalTrackSigma * fHCalTrackSigma + hcalSigma * hcalSigma);
569
570 // if ecal neutral excess is significant, simply create neutral EflowPhoton tower and clone each track into eflowtrack
[04290b1]571 if(ecalNeutralEnergy > fECalEnergyMin && ecalNeutralSigma > fECalEnergySignificanceMin)
[00e8dca]572 {
[fd4b326]573 // create new photon tower assuming null mass
[341014c]574 tower = static_cast<Candidate *>(fTower->Clone());
575 pt = ecalNeutralEnergy / TMath::CosH(eta);
576
[04290b1]577 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, ecalNeutralEnergy);
578 tower->Eem = ecalNeutralEnergy;
579 tower->Ehad = 0.0;
[efac6f9]580 tower->PID = 22;
[341014c]581
[04290b1]582 fEFlowPhotonOutputArray->Add(tower);
[341014c]583
[04290b1]584 //clone tracks
585 fItECalTowerTrackArray->Reset();
[341014c]586 while((track = static_cast<Candidate *>(fItECalTowerTrackArray->Next())))
[04290b1]587 {
588 mother = track;
[341014c]589 track = static_cast<Candidate *>(track->Clone());
[04290b1]590 track->AddCandidate(mother);
[e2dd4c5]591
[04290b1]592 fEFlowTrackOutputArray->Add(track);
593 }
[82575a3]594 }
[341014c]595
[04290b1]596 // if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
597 else if(fECalTrackEnergy > 0.0)
[00e8dca]598 {
[341014c]599 weightTrack = (fECalTrackSigma > 0.0) ? 1 / (fECalTrackSigma * fECalTrackSigma) : 0.0;
600 weightCalo = (ecalSigma > 0.0) ? 1 / (ecalSigma * ecalSigma) : 0.0;
601
602 bestEnergyEstimate = (weightTrack * fECalTrackEnergy + weightCalo * ecalEnergy) / (weightTrack + weightCalo);
603 rescaleFactor = bestEnergyEstimate / fECalTrackEnergy;
[04290b1]604
605 //rescale tracks
606 fItECalTowerTrackArray->Reset();
[341014c]607 while((track = static_cast<Candidate *>(fItECalTowerTrackArray->Next())))
608 {
[04290b1]609 mother = track;
[341014c]610 track = static_cast<Candidate *>(track->Clone());
[04290b1]611 track->AddCandidate(mother);
612
613 track->Momentum *= rescaleFactor;
614
615 fEFlowTrackOutputArray->Add(track);
616 }
[00e8dca]617 }
[e2dd4c5]618
[04290b1]619 // if hcal neutral excess is significant, simply create neutral EflowNeutralHadron tower and clone each track into eflowtrack
620 if(hcalNeutralEnergy > fHCalEnergyMin && hcalNeutralSigma > fHCalEnergySignificanceMin)
[2dab783]621 {
[d4c4d9d]622 // create new photon tower
[341014c]623 tower = static_cast<Candidate *>(fTower->Clone());
624 pt = hcalNeutralEnergy / TMath::CosH(eta);
625
[04290b1]626 tower->Momentum.SetPtEtaPhiE(pt, eta, phi, hcalNeutralEnergy);
627 tower->Ehad = hcalNeutralEnergy;
628 tower->Eem = 0.0;
[341014c]629
[04290b1]630 fEFlowNeutralHadronOutputArray->Add(tower);
[341014c]631
[04290b1]632 //clone tracks
633 fItHCalTowerTrackArray->Reset();
[341014c]634 while((track = static_cast<Candidate *>(fItHCalTowerTrackArray->Next())))
[04290b1]635 {
636 mother = track;
[341014c]637 track = static_cast<Candidate *>(track->Clone());
[04290b1]638 track->AddCandidate(mother);
[0d5f77c]639
[04290b1]640 fEFlowTrackOutputArray->Add(track);
641 }
[82575a3]642 }
[341014c]643
[04290b1]644 // if neutral excess is not significant, rescale eflow tracks, such that the total charged equals the best measurement given by the calorimeter and tracking
645 else if(fHCalTrackEnergy > 0.0)
[82575a3]646 {
[341014c]647 weightTrack = (fHCalTrackSigma > 0.0) ? 1 / (fHCalTrackSigma * fHCalTrackSigma) : 0.0;
648 weightCalo = (hcalSigma > 0.0) ? 1 / (hcalSigma * hcalSigma) : 0.0;
649
650 bestEnergyEstimate = (weightTrack * fHCalTrackEnergy + weightCalo * hcalEnergy) / (weightTrack + weightCalo);
[04290b1]651 rescaleFactor = bestEnergyEstimate / fHCalTrackEnergy;
652
653 //rescale tracks
[b6e6d36]654 fItHCalTowerTrackArray->Reset();
[341014c]655 while((track = static_cast<Candidate *>(fItHCalTowerTrackArray->Next())))
656 {
[04290b1]657 mother = track;
[341014c]658 track = static_cast<Candidate *>(track->Clone());
[04290b1]659 track->AddCandidate(mother);
660 track->Momentum *= rescaleFactor;
[fd4b326]661 track->Momentum.SetPtEtaPhiM(track->Momentum.Pt()*rescaleFactor, track->Momentum.Eta(), track->Momentum.Phi(), track->Momentum.M());
[04290b1]662
663 fEFlowTrackOutputArray->Add(track);
664 }
[d7d2da3]665 }
666}
667
668//------------------------------------------------------------------------------
[39022b6]669
[4600a41]670Double_t Calorimeter::LogNormal(Double_t mean, Double_t sigma)
671{
672 Double_t a, b;
673
674 if(mean > 0.0)
[39022b6]675 {
[341014c]676 b = TMath::Sqrt(TMath::Log((1.0 + (sigma * sigma) / (mean * mean))));
677 a = TMath::Log(mean) - 0.5 * b * b;
[4600a41]678
[341014c]679 return TMath::Exp(a + b * gRandom->Gaus(0.0, 1.0));
[39022b6]680 }
[4600a41]681 else
682 {
683 return 0.0;
684 }
685}
Note: See TracBrowser for help on using the repository browser.