[35cdc46] | 1 | --------------------------------------------------------------------------------
|
---|
| 2 | Nsubjettiness Package
|
---|
| 3 | --------------------------------------------------------------------------------
|
---|
| 4 |
|
---|
| 5 | The Nsubjettiness package is based on the physics described in:
|
---|
| 6 |
|
---|
| 7 | Identifying Boosted Objects with N-subjettiness.
|
---|
| 8 | Jesse Thaler and Ken Van Tilburg.
|
---|
| 9 | JHEP 1103:015 (2011), arXiv:1011.2268.
|
---|
| 10 |
|
---|
| 11 | Maximizing Boosted Top Identification by Minimizing N-subjettiness.
|
---|
| 12 | Jesse Thaler and Ken Van Tilburg.
|
---|
| 13 | JHEP 1202:093 (2012), arXiv:1108.2701.
|
---|
| 14 |
|
---|
| 15 | New in v2.0 is the winner-take-all axis, which is described in:
|
---|
| 16 |
|
---|
[973b92a] | 17 | Jet Observables Without Jet Algorithms.
|
---|
| 18 | Daniele Bertolini, Tucker Chan, and Jesse Thaler.
|
---|
| 19 | JHEP 1404:013 (2014), arXiv:1310.7584.
|
---|
| 20 |
|
---|
[35cdc46] | 21 | Jet Shapes with the Broadening Axis.
|
---|
| 22 | Andrew J. Larkoski, Duff Neill, and Jesse Thaler.
|
---|
| 23 | JHEP 1404:017 (2014), arXiv:1401.2158.
|
---|
| 24 |
|
---|
[973b92a] | 25 | Unpublished work by Gavin Salam
|
---|
| 26 |
|
---|
| 27 | New in v2.2 are new measures used in the XCone jet algorithm, described in:
|
---|
| 28 |
|
---|
| 29 | XCone: N-jettiness as an Exclusive Cone Jet Algorithm.
|
---|
| 30 | Iain W. Stewart, Frank J. Tackmann, Jesse Thaler,
|
---|
| 31 | Christopher K. Vermilion, and Thomas F. Wilkason.
|
---|
| 32 | arXiv:1508.01516.
|
---|
| 33 |
|
---|
| 34 | Resolving Boosted Jets with XCone.
|
---|
| 35 | Jesse Thaler and Thomas F. Wilkason.
|
---|
| 36 | arXiv:1508.01518.
|
---|
[35cdc46] | 37 |
|
---|
| 38 | --------------------------------------------------------------------------------
|
---|
| 39 | Core Classes
|
---|
| 40 | --------------------------------------------------------------------------------
|
---|
| 41 |
|
---|
| 42 | There are various ways to access N-(sub)jettiness variables, described
|
---|
| 43 | in more detail below:
|
---|
| 44 |
|
---|
| 45 | Nsubjettiness [Nsubjettiness.hh]:
|
---|
[973b92a] | 46 | A FunctionOfPseudoJet<double> interface to measure the
|
---|
| 47 | N-subjettiness jet shape
|
---|
[35cdc46] | 48 | (Recommended for most users)
|
---|
[973b92a] | 49 |
|
---|
[35cdc46] | 50 | NsubjettinessRatio [Nsubjettiness.hh]:
|
---|
| 51 | A FunctionOfPseudoJet<double> interface to measure ratios of
|
---|
| 52 | two different N-subjettiness (i.e. tau3/tau2)
|
---|
[973b92a] | 53 | (Recommended for most users)
|
---|
| 54 |
|
---|
| 55 | XConePlugin [XConePlugin.hh]:
|
---|
| 56 | A FastJet plugin for using the XCone jet algorithm.
|
---|
| 57 | (Recommended for most users)
|
---|
| 58 |
|
---|
[35cdc46] | 59 | NjettinessPlugin [NjettinessPlugin.hh]:
|
---|
[973b92a] | 60 | A FastJet plugin for finding jets by minimizing N-jettiness.
|
---|
| 61 | Same basic philosophy as XCone, but many more options.
|
---|
| 62 | (Recommended for advanced users only.)
|
---|
| 63 |
|
---|
[35cdc46] | 64 | Njettiness [Njettiness.hh]:
|
---|
| 65 | Access to the core Njettiness code.
|
---|
| 66 | (Not recommended for users, since the interface might change)
|
---|
| 67 |
|
---|
[973b92a] | 68 | The code assumes that you have FastJet 3, but does not (yet) require FastJet 3.1
|
---|
[35cdc46] | 69 |
|
---|
| 70 | --------------------------------------------------------------------------------
|
---|
| 71 | Basic Usage: Nsubjettiness and NsubjettinessRatio [Nsubjettiness.hh]
|
---|
| 72 | --------------------------------------------------------------------------------
|
---|
| 73 |
|
---|
| 74 | Most users will only need to use the Nsubjettiness class. The basic
|
---|
| 75 | functionality is given by:
|
---|
| 76 |
|
---|
| 77 | Nsubjettiness nSub(N, AxesDefinition, MeasureDefinition)
|
---|
| 78 | // N specifies the number of (sub) jets to measure
|
---|
| 79 | // AxesDefinition is WTA_KT_Axes, OnePass_KT_Axes, etc.
|
---|
| 80 | // MeasureDefinition is UnnormalizedMeasure(beta),
|
---|
| 81 | // NormalizedMeasure(beta,R0), etc.
|
---|
| 82 |
|
---|
| 83 | // get tau value
|
---|
| 84 | double tauN = nSub.result(PseudoJet);
|
---|
| 85 |
|
---|
| 86 | Also available are ratios of N-subjettiness values
|
---|
| 87 | NsubjettinessRatio nSubRatio(N, M, AxesDefinition,
|
---|
| 88 | MeasureDefinition)
|
---|
| 89 | // N and M give tau_N / tau_M, all other options the same
|
---|
| 90 |
|
---|
[973b92a] | 91 | For example, if you just want the tau_2/tau_1 value of a jet, using recommended
|
---|
| 92 | parameter choices, do this:
|
---|
| 93 |
|
---|
| 94 | PseudoJet this_jet = /*from your favorite jet algorithm*/;
|
---|
| 95 | double beta = 1.0;
|
---|
| 96 | NsubjettinessRatio nSub21(2,1,
|
---|
| 97 | OnePass_WTA_KT_Axes(),
|
---|
| 98 | UnnormalizedMeasure(beta));
|
---|
| 99 | double tau21 = nSub21(this_jet);
|
---|
| 100 |
|
---|
[35cdc46] | 101 | --------------------------------------------------------------------------------
|
---|
| 102 | AxesDefinition [NjettinessDefinition.hh]
|
---|
| 103 | --------------------------------------------------------------------------------
|
---|
| 104 |
|
---|
| 105 | N-(sub)jettiness requires choosing axes as well as a measure (see below). There
|
---|
| 106 | are a number of axes choices available to the user, though modes with a (*) are
|
---|
| 107 | recommended. Arguments in parentheses are parameters that the user must set.
|
---|
| 108 |
|
---|
[973b92a] | 109 | Axes can be found using standard recursive clustering procedures. New in v2 is
|
---|
| 110 | the option to use the "winner-take-all" recombination scheme:
|
---|
| 111 | (*) KT_Axes // exclusive kt axes
|
---|
| 112 | CA_Axes // exclusive ca axes
|
---|
| 113 | AntiKT_Axes(R0) // inclusive hardest axes with antikt, R0 = radius
|
---|
| 114 | (*) WTA_KT_Axes // exclusive kt with winner-take-all recombination
|
---|
| 115 | WTA_CA_Axes // exclusive ca with winner-take-all recombination
|
---|
| 116 |
|
---|
| 117 | New in v2.2 are generalized recombination/clustering schemes:
|
---|
| 118 | GenET_GenKT_Axes(delta, p, R0 = inf)
|
---|
| 119 | WTA_GenKT_Axes(p, R0 = inf)
|
---|
| 120 | GenKT_Axes(p, R0 = inf)
|
---|
| 121 | Here, delta > 0 labels the generalized ET recombination scheme (delta = 1 for
|
---|
| 122 | standard ET scheme, delta = 2 for ET^2 scheme, delta = infinity for WTA scheme)
|
---|
| 123 | p >= 0 labels the generalized KT clustering metric (p = 0 for ca, p = 1 for kt),
|
---|
| 124 | R0 is the radius parameter, and the clustering is run in exclusive mode. The
|
---|
| 125 | GenKT_Axes mode uses standard E-scheme recombination. By default the value of
|
---|
| 126 | R0 is set to "infinity", namely fastjet::JetDefinition::max_allowable_R.
|
---|
| 127 |
|
---|
| 128 | Also new in v2.2 is option of identifying nExtra axes through exclusive
|
---|
| 129 | clustering and then looking at all (N + nExtra) choose N axes and finding the
|
---|
| 130 | one that gives the smallest N-(sub)jettiness value:
|
---|
| 131 | Comb_GenET_GenKT_Axes(nExtra, delta, p, R0 = inf)
|
---|
| 132 | Comb_WTA_GenKT_Axes(nExtra, p, R0 = inf)
|
---|
| 133 | Comb_GenKT_Axes(nExtra, p, R0 = inf)
|
---|
| 134 | These modes are not recommended for reasons of speed.
|
---|
| 135 |
|
---|
| 136 | Starting from any set of seed axes, one can run a minimization routine to find
|
---|
| 137 | a (local) minimum of N-(sub)jettiness. Note that the one-pass minimization
|
---|
| 138 | routine is tied to the choice of MeasureDefinition.
|
---|
[35cdc46] | 139 | (*) OnePass_KT_Axes // one-pass minimization from kt starting point
|
---|
| 140 | OnePass_CA_Axes // one-pass min. from ca starting point
|
---|
| 141 | OnePass_AntiKT(R0) // one-pass min. from antikt starting point,R0=rad
|
---|
| 142 | (*) OnePass_WTA_KT_Axes // one-pass min. from wta_kt starting point
|
---|
| 143 | OnePass_WTA_CA_Axes // one-pass min. from wta_ca starting point
|
---|
[973b92a] | 144 | OnePass_GenET_GenKT_Axes(delta, p, R0 = inf) // one-pass min. from GenET/KT
|
---|
| 145 | OnePass_WTA_GenKT_Axes(p, R0 = inf) // one-pass min from WTA/GenKT
|
---|
| 146 | OnePass_GenKT_Axes(p, R0 = inf) // one-pass min from GenKT
|
---|
[35cdc46] | 147 |
|
---|
[973b92a] | 148 | For one-pass minimization, OnePass_CA_Axes and OnePass_WTA_CA_Axes are not
|
---|
| 149 | recommended as they provide a poor choice of seed axes.
|
---|
| 150 |
|
---|
| 151 | In general, it is difficult to find the global minimum, but this mode attempts
|
---|
| 152 | to do so:
|
---|
| 153 | MultiPass_Axes(NPass) // axes that (attempt to) minimize N-subjettiness
|
---|
| 154 | // (NPass = 100 is typical)
|
---|
| 155 | This does multi-pass minimization from KT_Axes starting points.
|
---|
[35cdc46] | 156 |
|
---|
| 157 | Finally, one can set manual axes:
|
---|
[973b92a] | 158 | Manual_Axes // set your own axes with setAxes()
|
---|
| 159 | OnePass_Manual_Axes // one-pass minimization from manual starting point
|
---|
| 160 | MultiPass_Manual_Axes(Npass) // multi-pass min. from manual
|
---|
| 161 |
|
---|
| 162 | If one wants to change the number of passes used by any of the axes finders, one
|
---|
| 163 | can call the function
|
---|
| 164 | setNPass(NPass,nAttempts,accuracy,noise_range)
|
---|
| 165 | where NPass = 0 only uses the seed axes, NPass = 1 is one-pass minimization, and
|
---|
| 166 | NPass = 100 is the default multi-pass. nAttempts is the number of iterations to
|
---|
| 167 | use in each pass, accuracy is how close to the minimum one tries to get, and
|
---|
| 168 | noise_range is how much in rapidity/azimuth the random axes are jiggled.
|
---|
[35cdc46] | 169 |
|
---|
| 170 | For most cases, running with OnePass_KT_Axes or OnePass_WTA_KT_Axes gives
|
---|
| 171 | reasonable results (and the results are IRC safe). Because it uses random
|
---|
[973b92a] | 172 | number seeds, MultiPass_Axes is not IRC safe (and the code is rather slow).
|
---|
| 173 | Note that for the minimization routines, beta = 1.1 is faster than beta = 1,
|
---|
| 174 | with comparable performance.
|
---|
[35cdc46] | 175 |
|
---|
| 176 | --------------------------------------------------------------------------------
|
---|
| 177 | MeasureDefinition [NjettinessDefinition.hh]
|
---|
| 178 | --------------------------------------------------------------------------------
|
---|
| 179 |
|
---|
[973b92a] | 180 | The value of N-(sub)jettiness depends crucially on the choice of measure. Each
|
---|
| 181 | measure has a different number of parameters, so one has to be careful when
|
---|
| 182 | switching between measures The one indicated by (*) is the one recommended for
|
---|
| 183 | use by users new to Nsubjettiness.
|
---|
[35cdc46] | 184 |
|
---|
| 185 | The original N-subjettiness measures are:
|
---|
| 186 | NormalizedMeasure(beta,R0) //default normalized measure with
|
---|
| 187 | //parameters beta and R0 (dimensionless)
|
---|
| 188 | (*) UnnormalizedMeasure(beta) //default unnormalized measure with just
|
---|
| 189 | //parameter beta (dimensionful)
|
---|
| 190 |
|
---|
| 191 | There are also measures that incorporate a radial cutoff:
|
---|
| 192 | NormalizedCutoffMeasure(beta,R0,Rcutoff) //normalized measure with
|
---|
| 193 | //additional Rcutoff
|
---|
| 194 | UnnormalizedCutoffMeasure(beta,Rcutoff) //unnormalized measure with
|
---|
| 195 | //additional Rcutoff
|
---|
[973b92a] | 196 |
|
---|
| 197 | For all of the above measures, there is an optional argument to change from the
|
---|
| 198 | ordinary pt_R distance measure recommended for pp collisions to an
|
---|
| 199 | E_theta distance measure recommended for ee collisions. There are also
|
---|
| 200 | lorentz_dot and perp_lorentz_dot distance measures recommended only for
|
---|
| 201 | advanced users.
|
---|
| 202 |
|
---|
| 203 | New for v2.2 is a set of measures defined in arXiv:1508.01516. First, there is
|
---|
| 204 | the "conical measure":
|
---|
[35cdc46] | 205 |
|
---|
[973b92a] | 206 | ConicalMeasure(beta,R0) // same jets as UnnormalizedCutoffMeasure
|
---|
| 207 | // but differs in normalization and specifics
|
---|
| 208 | // of one-pass minimization
|
---|
| 209 |
|
---|
| 210 | Next, there is the geometric measure (as well as a modified version to yield
|
---|
| 211 | more conical jet regions):
|
---|
| 212 |
|
---|
| 213 | OriginalGeometricMeasure(R) // not recommended for analysis
|
---|
| 214 | ModifiedGeometricMeasure(R)
|
---|
| 215 |
|
---|
| 216 | (Prior to v2.2, there was a "GeometricMeasure" which unfortunately had the wrong
|
---|
| 217 | definition. These have been commented out in the code as
|
---|
| 218 | "DeprecatedGeometricMeasure" and "DeprecatedGeometricCutoffMeasure", but they
|
---|
| 219 | should not be used.)
|
---|
| 220 |
|
---|
| 221 | Next, there is a "conical geometric" measure:
|
---|
| 222 |
|
---|
| 223 | ConicalGeometricMeasure(beta, gamma, Rcutoff)
|
---|
| 224 |
|
---|
| 225 | This is a hybrid between the conical and geometric measures and is the basis for
|
---|
| 226 | the XCone jet algorithm. Finally, setting to the gamma = 1 default gives the
|
---|
| 227 | XCone default measure, which is used in the XConePlugin jet finder
|
---|
| 228 |
|
---|
| 229 | (*) XConeMeasure(beta,Rcutoff)
|
---|
| 230 |
|
---|
| 231 | where beta = 2 is the recommended default value and beta = 1 is the recoil-free
|
---|
| 232 | default.
|
---|
[35cdc46] | 233 |
|
---|
| 234 | --------------------------------------------------------------------------------
|
---|
| 235 | A note on beta dependence
|
---|
| 236 | --------------------------------------------------------------------------------
|
---|
| 237 |
|
---|
| 238 | The angular exponent in N-subjettiness is called beta. The original
|
---|
| 239 | N-subjettiness paper advocated beta = 1, but it is now understood that different
|
---|
| 240 | beta values can be useful in different contexts. The two main choices are:
|
---|
| 241 |
|
---|
| 242 | beta = 1: aka broadening/girth/width measure
|
---|
[973b92a] | 243 | the axes behave like the "median" in that they point to the hardest cluster
|
---|
[35cdc46] | 244 | wta_kt_axes are approximately the same as minimizing beta = 1 measure
|
---|
| 245 |
|
---|
| 246 | beta = 2: aka thrust/mass measure
|
---|
[973b92a] | 247 | the axes behave like the "mean" in that they point along the jet momentum
|
---|
[35cdc46] | 248 | kt_axes are approximately the same as minimizing beta = 2 measure
|
---|
| 249 |
|
---|
| 250 | N.B. The minimization routines are only valid for 1 < beta < 3.
|
---|
| 251 |
|
---|
| 252 | For quark/gluon discrimination with N = 1, beta~0.2 with wta_kt_axes appears
|
---|
| 253 | to be a good choice.
|
---|
| 254 |
|
---|
| 255 | --------------------------------------------------------------------------------
|
---|
[973b92a] | 256 | XConePlugin [XConePlugin.hh]
|
---|
[35cdc46] | 257 | --------------------------------------------------------------------------------
|
---|
| 258 |
|
---|
[973b92a] | 259 | The XCone FastJet plugin is an exclusive cone jet finder which yields a
|
---|
| 260 | fixed N number of jets which approximately conical boundaries. The algorithm
|
---|
| 261 | finds N axes, and jets are simply the sum of particles closest to a given axis
|
---|
| 262 | (or unclustered if they are closest to the beam). Unlike the NjettinessPlugin
|
---|
| 263 | below, the user is restricted to using the XConeMeasure.
|
---|
[35cdc46] | 264 |
|
---|
[973b92a] | 265 | XConePlugin plugin(N,R,beta=2);
|
---|
| 266 | JetDefinition def(&plugin);
|
---|
| 267 | ClusterSequence cs(vector<PseudoJet>,def);
|
---|
| 268 | vector<PseudoJet> jets = cs.inclusive_jets();
|
---|
[35cdc46] | 269 |
|
---|
[973b92a] | 270 | Note that despite being an exclusive jet algorithm, one finds the jets using the
|
---|
| 271 | inclusive_jets() call.
|
---|
[35cdc46] | 272 |
|
---|
[973b92a] | 273 | The AxesDefinition and MeasureDefinition are defaulted in this measure to
|
---|
| 274 | OnePass_GenET_GenKT_Axes and XConeMeasure, respectively. The parameters chosen
|
---|
| 275 | for the OnePass_GenET_GenKT_Axes are defined according to the chosen value of
|
---|
| 276 | beta as delta = 1/(beta - 1) and p = 1/beta. These have been shown to give the
|
---|
| 277 | optimal choice of seed axes. The R value for finding the axes is chosen to be
|
---|
| 278 | the same as the R for the jet algorithm, although in principle, these two radii
|
---|
| 279 | could be different.
|
---|
[35cdc46] | 280 |
|
---|
[973b92a] | 281 | N.B.: The order of the R, beta arguments is *reversed* from the XConeMeasure
|
---|
| 282 | itself, since this ordering is the more natural one to use for Plugins. We
|
---|
| 283 | apologize in advance for any confusion this might cause.
|
---|
[35cdc46] | 284 |
|
---|
| 285 | --------------------------------------------------------------------------------
|
---|
| 286 | Advanced Usage: NjettinessPlugin [NjettinessPlugin.hh]
|
---|
| 287 | --------------------------------------------------------------------------------
|
---|
| 288 |
|
---|
[973b92a] | 289 | Same as the XConePlugin, but the axes finding methods and measures are the same
|
---|
| 290 | as for Nsubjettiness, allowing more flexibility.
|
---|
[35cdc46] | 291 |
|
---|
| 292 | NjettinessPlugin plugin(N, AxesDefinition, MeasureDefinition);
|
---|
| 293 | JetDefinition def(&plugin);
|
---|
| 294 | ClusterSequence cs(vector<PseudoJet>,def);
|
---|
| 295 | vector<PseudoJet> jets = cs.inclusive_jets();
|
---|
| 296 |
|
---|
| 297 | --------------------------------------------------------------------------------
|
---|
| 298 | Very Advanced Usage: Njettiness [Njettiness.hh]
|
---|
| 299 | --------------------------------------------------------------------------------
|
---|
| 300 |
|
---|
| 301 | Most users will want to use the Nsubjettiness or NjettinessPlugin classes to
|
---|
| 302 | access N-(sub)jettiness information. For direct access to the Njettiness class,
|
---|
[973b92a] | 303 | one can use Njettiness.hh directly. This class is in constant evolution, so
|
---|
| 304 | users who wish to extend its functionality should contact the authors first.
|
---|
| 305 |
|
---|
| 306 | --------------------------------------------------------------------------------
|
---|
| 307 | TauComponents [MeasureDefinition.hh]
|
---|
| 308 | --------------------------------------------------------------------------------
|
---|
| 309 |
|
---|
| 310 | For most users, they will only need the value of N-subjettiness (i.e. tau)
|
---|
| 311 | itself. For advanced users, they can access individual tau components (i.e.
|
---|
| 312 | the individual numerator pieces, the denominator, etc.)
|
---|
| 313 |
|
---|
| 314 | TauComponents tauComp = nSub.component_result(jet);
|
---|
| 315 | vector<double> numer = tauComp.jet_pieces_numerator(); //tau for each subjet
|
---|
| 316 | double denom = tauComp.denominator(); //normalization factor
|
---|
| 317 |
|
---|
| 318 | --------------------------------------------------------------------------------
|
---|
| 319 | Extra Recombiners [ExtraRecombiners.hh]
|
---|
| 320 | --------------------------------------------------------------------------------
|
---|
| 321 |
|
---|
| 322 | New in v2.0 are winner-take-all axes. (These have now been included in
|
---|
| 323 | FastJet 3.1, but we have left the code here to allow the plugin to work under
|
---|
| 324 | FJ 3.0). These axes are found with the help of the WinnerTakeAllRecombiner.
|
---|
| 325 | This class defines a new recombination scheme for clustering particles. This
|
---|
| 326 | scheme recombines two PseudoJets into a PseudoJet with pT of the sum of the two
|
---|
| 327 | input PseudoJet pTs and direction of the harder PseudoJet. This is a
|
---|
| 328 | "recoil-free" recombination scheme that guarantees that the axes is aligned with
|
---|
| 329 | one of the input particles. It is IRC safe. Axes found with the standard
|
---|
| 330 | E-scheme recombiner at similar to the beta = 2 minimization, while
|
---|
| 331 | winner-take-all is similar to the beta = 1 measure.
|
---|
| 332 |
|
---|
| 333 | New in v2.2 is the GeneralEtSchemeRecombiner, as defined in arxiv:1506.XXXX.
|
---|
| 334 | This functions similarly to the Et-scheme defined in Fastjet, but the reweighting
|
---|
| 335 | of the sum of rap and phi is parameterized by an exponent delta. Thus, delta = 1
|
---|
| 336 | is the normal Et-scheme recombination, delta = 2 is Et^2 recombination, and
|
---|
| 337 | delta = infinity is the winner-take-all recombination. This recombination scheme
|
---|
| 338 | is used in GenET_GenKT_Axes, and we find that optimal seed axes for minimization
|
---|
| 339 | can be found by using delta = 1/(beta - 1).
|
---|
| 340 |
|
---|
| 341 | Note that the WinnerTakeAllRecombiner can be used outside of Nsubjettiness
|
---|
| 342 | itself for jet finding. For example, the direction of anti-kT jets found
|
---|
| 343 | with the WinnerTakeAllRecombiner is particularly robust against soft jet
|
---|
| 344 | contamination. That said, this functionality is now included in FJ 3.1, so this
|
---|
| 345 | code is likely to be deprecated in a future version.
|
---|
[35cdc46] | 346 |
|
---|
| 347 | --------------------------------------------------------------------------------
|
---|
| 348 | Technical Details
|
---|
| 349 | --------------------------------------------------------------------------------
|
---|
| 350 |
|
---|
| 351 | In general, the user will never need access to these header files. Here is a
|
---|
| 352 | brief description about how they are used to help the calculation of
|
---|
| 353 | N-(sub)jettiness:
|
---|
| 354 |
|
---|
[973b92a] | 355 | AxesDefinition.hh:
|
---|
[35cdc46] | 356 |
|
---|
[973b92a] | 357 | The AxesDefinition class (and derived classes) defines the axes used in the
|
---|
[35cdc46] | 358 | calculation of N-(sub)jettiness. These axes can be defined from the exclusive
|
---|
| 359 | jets from a kT or CA algorithm, the hardest jets from an anti-kT algorithm,
|
---|
| 360 | manually, or from minimization of N-jettiness. In the future, the user will be
|
---|
| 361 | able to write their own axes finder, though currently the interface is still
|
---|
| 362 | evolving. At the moment, the user should stick to the options allowed by
|
---|
| 363 | AxesDefinition.
|
---|
| 364 |
|
---|
[973b92a] | 365 | MeasureDefinition.hh:
|
---|
[35cdc46] | 366 |
|
---|
[973b92a] | 367 | The MeasureDefinition class (and derived classes) defines the measure by which
|
---|
[35cdc46] | 368 | N-(sub)jettiness is calculated. This measure is calculated between each
|
---|
| 369 | particle and its corresponding axis, and then summed and normalized to
|
---|
| 370 | produce N-(sub)jettiness. The default measure for this calculation is
|
---|
| 371 | pT*dR^beta, where dR is the rapidity-azimuth distance between the particle
|
---|
| 372 | and its axis, and beta is the angular exponent. Again, in the future the user
|
---|
| 373 | will be able to write their own measures, but for the time being, only the
|
---|
[973b92a] | 374 | predefined MeasureDefinition values should be used. Note that the one-pass
|
---|
| 375 | minimization algorithms are defined within MeasureDefinition, since they are
|
---|
| 376 | measure specific.
|
---|
[35cdc46] | 377 |
|
---|
| 378 | --------------------------------------------------------------------------------
|
---|
| 379 | Known Issues
|
---|
| 380 | --------------------------------------------------------------------------------
|
---|
| 381 |
|
---|
| 382 | -- The MultiPass_Axes mode gives different answers on different runs, since
|
---|
| 383 | random numbers are used.
|
---|
[973b92a] | 384 | -- For the default measures, in rare cases, one pass minimization can give a
|
---|
| 385 | larger value of Njettiness than without minimization. The reason is due
|
---|
| 386 | to the fact that axes in default measure are not defined as light-like
|
---|
| 387 | -- Nsubjettiness is not thread safe, since there are mutables in Njettiness.
|
---|
| 388 | -- If the AxesDefinition does not find N axes, then it adds zero vectors to the
|
---|
| 389 | list of axes to get the total up to N. This can lead to unpredictable
|
---|
| 390 | results (including divide by zero issues), and a warning is thrown to alert
|
---|
| 391 | the user.
|
---|
| 392 |
|
---|
| 393 | --------------------------------------------------------------------------------
|
---|
| 394 | --------------------------------------------------------------------------------
|
---|