1 | #include "TrkUtil.h"
|
---|
2 | #include <iostream>
|
---|
3 | #include <algorithm>
|
---|
4 | #include <TSpline.h>
|
---|
5 |
|
---|
6 | // Constructor
|
---|
7 | TrkUtil::TrkUtil(Double_t Bz)
|
---|
8 | {
|
---|
9 | fBz = Bz;
|
---|
10 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
11 | fRmin = 0.0; // Lower DCH radius
|
---|
12 | fRmax = 0.0; // Higher DCH radius
|
---|
13 | fZmin = 0.0; // Lower DCH z
|
---|
14 | fZmax = 0.0; // Higher DCH z
|
---|
15 | }
|
---|
16 | TrkUtil::TrkUtil()
|
---|
17 | {
|
---|
18 | fBz = 0.0;
|
---|
19 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
20 | fRmin = 0.0; // Lower DCH radius
|
---|
21 | fRmax = 0.0; // Higher DCH radius
|
---|
22 | fZmin = 0.0; // Lower DCH z
|
---|
23 | fZmax = 0.0; // Higher DCH z
|
---|
24 | }
|
---|
25 | //
|
---|
26 | // Destructor
|
---|
27 | TrkUtil::~TrkUtil()
|
---|
28 | {
|
---|
29 | fBz = 0.0;
|
---|
30 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
31 | fRmin = 0.0; // Lower DCH radius
|
---|
32 | fRmax = 0.0; // Higher DCH radius
|
---|
33 | fZmin = 0.0; // Lower DCH z
|
---|
34 | fZmax = 0.0; // Higher DCH z
|
---|
35 | }
|
---|
36 | //
|
---|
37 | // Helix parameters from position and momentum
|
---|
38 | // static
|
---|
39 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz)
|
---|
40 | {
|
---|
41 | //
|
---|
42 | TVectorD Par(5);
|
---|
43 | // Transverse parameters
|
---|
44 | Double_t a = -Q * Bz * cSpeed(); // Units are Tesla, GeV and meters
|
---|
45 | Double_t pt = p.Pt();
|
---|
46 | Double_t C = a / (2 * pt); // Half curvature
|
---|
47 | //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl;
|
---|
48 | Double_t r2 = x(0) * x(0) + x(1) * x(1);
|
---|
49 | Double_t cross = x(0) * p(1) - x(1) * p(0);
|
---|
50 | Double_t T = sqrt(pt * pt - 2 * a * cross + a * a * r2);
|
---|
51 | Double_t phi0 = atan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0
|
---|
52 | Double_t D; // Impact parameter D
|
---|
53 | if (pt < 10.0) D = (T - pt) / a;
|
---|
54 | else D = (-2 * cross + a * r2) / (T + pt);
|
---|
55 | //
|
---|
56 | Par(0) = D; // Store D
|
---|
57 | Par(1) = phi0; // Store phi0
|
---|
58 | Par(2) = C; // Store C
|
---|
59 | //Longitudinal parameters
|
---|
60 | Double_t B = C * sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D));
|
---|
61 | Double_t st = asin(B) / C;
|
---|
62 | Double_t ct = p(2) / pt;
|
---|
63 | Double_t z0;
|
---|
64 | Double_t dot = x(0) * p(0) + x(1) * p(1);
|
---|
65 | if (dot > 0.0) z0 = x(2) - ct * st;
|
---|
66 | else z0 = x(2) + ct * st;
|
---|
67 | //
|
---|
68 | Par(3) = z0; // Store z0
|
---|
69 | Par(4) = ct; // Store cot(theta)
|
---|
70 | //
|
---|
71 | return Par;
|
---|
72 | }
|
---|
73 | // non-static
|
---|
74 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q)
|
---|
75 | {
|
---|
76 | //
|
---|
77 | TVectorD Par(5);
|
---|
78 | Double_t Bz = fBz;
|
---|
79 | Par = XPtoPar(x, p, Q, Bz);
|
---|
80 | //
|
---|
81 | return Par;
|
---|
82 | }
|
---|
83 | //
|
---|
84 | TVector3 TrkUtil::ParToX(TVectorD Par)
|
---|
85 | {
|
---|
86 | Double_t D = Par(0);
|
---|
87 | Double_t phi0 = Par(1);
|
---|
88 | Double_t z0 = Par(3);
|
---|
89 | //
|
---|
90 | TVector3 Xval;
|
---|
91 | Xval(0) = -D * sin(phi0);
|
---|
92 | Xval(1) = D * cos(phi0);
|
---|
93 | Xval(2) = z0;
|
---|
94 | //
|
---|
95 | return Xval;
|
---|
96 | }
|
---|
97 | //
|
---|
98 | TVector3 TrkUtil::ParToP(TVectorD Par)
|
---|
99 | {
|
---|
100 | if (fBz == 0.0)std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl;
|
---|
101 | //
|
---|
102 | return ParToP(Par, fBz);
|
---|
103 | }
|
---|
104 | //
|
---|
105 | TVector3 TrkUtil::ParToP(TVectorD Par, Double_t Bz)
|
---|
106 | {
|
---|
107 | Double_t C = Par(2);
|
---|
108 | Double_t phi0 = Par(1);
|
---|
109 | Double_t ct = Par(4);
|
---|
110 | //
|
---|
111 | TVector3 Pval;
|
---|
112 | Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C);
|
---|
113 | Pval(0) = pt * cos(phi0);
|
---|
114 | Pval(1) = pt * sin(phi0);
|
---|
115 | Pval(2) = pt * ct;
|
---|
116 | //
|
---|
117 | return Pval;
|
---|
118 | }
|
---|
119 | //
|
---|
120 | Double_t TrkUtil::ParToQ(TVectorD Par)
|
---|
121 | {
|
---|
122 | return TMath::Sign(1.0, -Par(2));
|
---|
123 | }
|
---|
124 |
|
---|
125 | //
|
---|
126 | // Parameter conversion to ACTS format
|
---|
127 | TVectorD TrkUtil::ParToACTS(TVectorD Par)
|
---|
128 | {
|
---|
129 | TVectorD pACTS(6); // Return vector
|
---|
130 | //
|
---|
131 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
132 | pACTS(0) = 1000 * Par(0); // D from m to mm
|
---|
133 | pACTS(1) = 1000 * Par(3); // z0 from m to mm
|
---|
134 | pACTS(2) = Par(1); // Phi0 is unchanged
|
---|
135 | pACTS(3) = atan2(1.0, Par(4)); // Theta in [0, pi] range
|
---|
136 | pACTS(4) = Par(2) / (b * sqrt(1 + Par(4) * Par(4))); // q/p in GeV
|
---|
137 | pACTS(5) = 0.0; // Time: currently undefined
|
---|
138 | //
|
---|
139 | return pACTS;
|
---|
140 | }
|
---|
141 | // Covariance conversion to ACTS format
|
---|
142 | TMatrixDSym TrkUtil::CovToACTS(TVectorD Par, TMatrixDSym Cov)
|
---|
143 | {
|
---|
144 | TMatrixDSym cACTS(6); cACTS.Zero();
|
---|
145 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
146 | //
|
---|
147 | // Fill derivative matrix
|
---|
148 | TMatrixD A(5, 5); A.Zero();
|
---|
149 | Double_t ct = Par(4); // cot(theta)
|
---|
150 | Double_t C = Par(2); // half curvature
|
---|
151 | A(0, 0) = 1000.; // D-D conversion to mm
|
---|
152 | A(1, 2) = 1.0; // phi0-phi0
|
---|
153 | A(2, 4) = 1.0 / (sqrt(1.0 + ct * ct) * b); // q/p-C
|
---|
154 | A(3, 1) = 1000.; // z0-z0 conversion to mm
|
---|
155 | A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta)
|
---|
156 | A(4, 4) = -C * ct / (b * pow(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta)
|
---|
157 | //
|
---|
158 | TMatrixDSym Cv = Cov;
|
---|
159 | TMatrixD At(5, 5);
|
---|
160 | At.Transpose(A);
|
---|
161 | Cv.Similarity(At);
|
---|
162 | TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv;
|
---|
163 | cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes
|
---|
164 | //
|
---|
165 | return cACTS;
|
---|
166 | }
|
---|
167 | //
|
---|
168 | // Parameter conversion to ILC format
|
---|
169 | TVectorD TrkUtil::ParToILC(TVectorD Par)
|
---|
170 | {
|
---|
171 | TVectorD pILC(5); // Return vector
|
---|
172 | //
|
---|
173 | pILC(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
174 | pILC(1) = Par(1); // phi0 is unchanged
|
---|
175 | pILC(2) = -2 * Par(2) * 1.0e-3; // w in mm^-1
|
---|
176 | pILC(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
177 | pILC(4) = Par(4); // tan(lambda) = cot(theta)
|
---|
178 | //
|
---|
179 | return pILC;
|
---|
180 | }
|
---|
181 | // Covariance conversion to ILC format
|
---|
182 | TMatrixDSym TrkUtil::CovToILC(TMatrixDSym Cov)
|
---|
183 | {
|
---|
184 | TMatrixDSym cILC(5); cILC.Zero();
|
---|
185 | //
|
---|
186 | // Fill derivative matrix
|
---|
187 | TMatrixD A(5, 5); A.Zero();
|
---|
188 | //
|
---|
189 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
190 | A(1, 1) = 1.0; // phi0-phi0
|
---|
191 | A(2, 2) = -2.0e-3; // w-C
|
---|
192 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
193 | A(4, 4) = 1.0; // tan(lambda) - cot(theta)
|
---|
194 | //
|
---|
195 | TMatrixDSym Cv = Cov;
|
---|
196 | TMatrixD At(5, 5);
|
---|
197 | At.Transpose(A);
|
---|
198 | Cv.Similarity(At);
|
---|
199 | cILC = Cv;
|
---|
200 | //
|
---|
201 | return cILC;
|
---|
202 | }
|
---|
203 | //
|
---|
204 | // Conversion from meters to mm
|
---|
205 | TVectorD TrkUtil::ParToMm(TVectorD Par) // Parameter conversion
|
---|
206 | {
|
---|
207 | TVectorD Pmm(5); // Return vector
|
---|
208 | //
|
---|
209 | Pmm(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
210 | Pmm(1) = Par(1); // phi0 is unchanged
|
---|
211 | Pmm(2) = Par(2) * 1.0e-3; // C in mm^-1
|
---|
212 | Pmm(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
213 | Pmm(4) = Par(4); // tan(lambda) = cot(theta) unchanged
|
---|
214 | //
|
---|
215 | return Pmm;
|
---|
216 | }
|
---|
217 | TMatrixDSym TrkUtil::CovToMm(TMatrixDSym Cov) // Covariance conversion
|
---|
218 | {
|
---|
219 | TMatrixDSym Cmm(5); Cmm.Zero();
|
---|
220 | //
|
---|
221 | // Fill derivative matrix
|
---|
222 | TMatrixD A(5, 5); A.Zero();
|
---|
223 | //
|
---|
224 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
225 | A(1, 1) = 1.0; // phi0-phi0
|
---|
226 | A(2, 2) = 1.0e-3; // C-C
|
---|
227 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
228 | A(4, 4) = 1.0; // lambda - cot(theta)
|
---|
229 | //
|
---|
230 | TMatrixDSym Cv = Cov;
|
---|
231 | TMatrixD At(5, 5);
|
---|
232 | At.Transpose(A);
|
---|
233 | Cv.Similarity(At);
|
---|
234 | Cmm = Cv;
|
---|
235 | //
|
---|
236 | return Cmm;
|
---|
237 | }
|
---|
238 | //
|
---|
239 | // Setup chamber volume
|
---|
240 | void TrkUtil::SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax)
|
---|
241 | {
|
---|
242 | fRmin = Rmin; // Lower DCH radius
|
---|
243 | fRmax = Rmax; // Higher DCH radius
|
---|
244 | fZmin = Zmin; // Lower DCH z
|
---|
245 | fZmax = Zmax; // Higher DCH z
|
---|
246 | }
|
---|
247 | //
|
---|
248 | // Get Trakck length inside DCH volume
|
---|
249 | Double_t TrkUtil::TrkLen(TVectorD Par)
|
---|
250 | {
|
---|
251 | Double_t tLength = 0.0;
|
---|
252 | // Check if geometry is initialized
|
---|
253 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
254 | {
|
---|
255 | // No geometry set so send a warning and return 0
|
---|
256 | std::cout << "TrkUtil::TrkLen() called without a DCH volume defined" << std::endl;
|
---|
257 | }
|
---|
258 | else
|
---|
259 | {
|
---|
260 | //******************************************************************
|
---|
261 | // Determine the track length inside the chamber ****
|
---|
262 | //******************************************************************
|
---|
263 | //
|
---|
264 | // Track pararameters
|
---|
265 | Double_t D = Par(0); // Transverse impact parameter
|
---|
266 | Double_t phi0 = Par(1); // Transverse direction at minimum approach
|
---|
267 | Double_t C = Par(2); // Half curvature
|
---|
268 | Double_t z0 = Par(3); // Z at minimum approach
|
---|
269 | Double_t ct = Par(4); // cot(theta)
|
---|
270 | //std::cout << "TrkUtil:: parameters: D= " << D << ", phi0= " << phi0
|
---|
271 | // << ", C= " << C << ", z0= " << z0 << ", ct= " << ct << std::endl;
|
---|
272 | //
|
---|
273 | // Track length per unit phase change
|
---|
274 | Double_t Scale = sqrt(1.0 + ct * ct) / (2.0 * TMath::Abs(C));
|
---|
275 | //
|
---|
276 | // Find intersections with chamber boundaries
|
---|
277 | //
|
---|
278 | Double_t phRin = 0.0; // phase of inner cylinder
|
---|
279 | Double_t phRin2 = 0.0; // phase of inner cylinder intersection (2nd branch)
|
---|
280 | Double_t phRhi = 0.0; // phase of outer cylinder intersection
|
---|
281 | Double_t phZmn = 0.0; // phase of left wall intersection
|
---|
282 | Double_t phZmx = 0.0; // phase of right wall intersection
|
---|
283 | // ... with inner cylinder
|
---|
284 | Double_t Rtop = TMath::Abs((1.0 + C * D) / C);
|
---|
285 |
|
---|
286 | if (Rtop > fRmin && TMath::Abs(D) < fRmin) // *** don't treat large D tracks for the moment ***
|
---|
287 | {
|
---|
288 | Double_t ph = 2 * asin(C * sqrt((fRmin * fRmin - D * D) / (1.0 + 2.0 * C * D)));
|
---|
289 | Double_t z = z0 + ct * ph / (2.0 * C);
|
---|
290 |
|
---|
291 | //std::cout << "Rin intersection: ph = " << ph<<", z= "<<z << std::endl;
|
---|
292 |
|
---|
293 | if (z < fZmax && z > fZmin) phRin = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
294 | //
|
---|
295 | // Include second branch of loopers
|
---|
296 | Double_t Pi = 3.14159265358979323846;
|
---|
297 | Double_t ph2 = 2 * Pi - TMath::Abs(ph);
|
---|
298 | if (ph < 0)ph2 = -ph2;
|
---|
299 | z = z0 + ct * ph2 / (2.0 * C);
|
---|
300 | if (z < fZmax && z > fZmin) phRin2 = TMath::Abs(ph2); // Intersection inside chamber volume
|
---|
301 | }
|
---|
302 | // ... with outer cylinder
|
---|
303 | if (Rtop > fRmax && TMath::Abs(D) < fRmax) // *** don't treat large D tracks for the moment ***
|
---|
304 | {
|
---|
305 | Double_t ph = 2 * asin(C * sqrt((fRmax * fRmax - D * D) / (1.0 + 2.0 * C * D)));
|
---|
306 | Double_t z = z0 + ct * ph / (2.0 * C);
|
---|
307 | if (z < fZmax && z > fZmin) phRhi = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
308 | }
|
---|
309 | // ... with left wall
|
---|
310 | Double_t Zdir = (fZmin - z0) / ct;
|
---|
311 | if (Zdir > 0.0)
|
---|
312 | {
|
---|
313 | Double_t ph = 2.0 * C * Zdir;
|
---|
314 | Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C));
|
---|
315 | if (Rint < fRmax && Rint > fRmin) phZmn = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
316 | }
|
---|
317 | // ... with right wall
|
---|
318 | Zdir = (fZmax - z0) / ct;
|
---|
319 | if (Zdir > 0.0)
|
---|
320 | {
|
---|
321 | Double_t ph = 2.0 * C * Zdir;
|
---|
322 | Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C));
|
---|
323 | if (Rint < fRmax && Rint > fRmin) phZmx = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
324 | }
|
---|
325 | //
|
---|
326 | // Order phases and keep the lowest two non-zero ones
|
---|
327 | //
|
---|
328 | const Int_t Nint = 5;
|
---|
329 | Double_t dPhase = 0.0; // Phase difference between two close intersections
|
---|
330 | Double_t ph_arr[Nint] = { phRin, phRin2, phRhi, phZmn, phZmx };
|
---|
331 | std::sort(ph_arr, ph_arr + Nint);
|
---|
332 | Int_t iPos = -1; // First element > 0
|
---|
333 | for (Int_t i = 0; i < Nint; i++)
|
---|
334 | {
|
---|
335 | if (ph_arr[i] <= 0.0) iPos = i;
|
---|
336 | }
|
---|
337 |
|
---|
338 | if (iPos < Nint - 2)
|
---|
339 | {
|
---|
340 | dPhase = ph_arr[iPos + 2] - ph_arr[iPos + 1];
|
---|
341 | tLength = dPhase * Scale;
|
---|
342 | }
|
---|
343 | }
|
---|
344 | return tLength;
|
---|
345 | }
|
---|
346 | //
|
---|
347 | // Return number of ionization clusters
|
---|
348 | Bool_t TrkUtil::IonClusters(Double_t& Ncl, Double_t mass, TVectorD Par)
|
---|
349 | {
|
---|
350 | //
|
---|
351 | // Units are meters/Tesla/GeV
|
---|
352 | //
|
---|
353 | Ncl = 0.0;
|
---|
354 | Bool_t Signal = kFALSE;
|
---|
355 | Double_t tLen = 0;
|
---|
356 | // Check if geometry is initialized
|
---|
357 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
358 | {
|
---|
359 | // No geometry set so send a warning and return 0
|
---|
360 | std::cout << "TrkUtil::IonClusters() called without a volume defined" << std::endl;
|
---|
361 | }
|
---|
362 | else tLen = TrkLen(Par);
|
---|
363 |
|
---|
364 | //******************************************************************
|
---|
365 | // Now get the number of clusters ****
|
---|
366 | //******************************************************************
|
---|
367 | //
|
---|
368 | Double_t muClu = 0.0; // mean number of clusters
|
---|
369 | Double_t bg = 0.0; // beta*gamma
|
---|
370 | Ncl = 0.0;
|
---|
371 | if (tLen > 0.0)
|
---|
372 | {
|
---|
373 | Signal = kTRUE;
|
---|
374 | //
|
---|
375 | // Find beta*gamma
|
---|
376 | if (fBz == 0.0)
|
---|
377 | {
|
---|
378 | Signal = kFALSE;
|
---|
379 | std::cout << "TrkUtil::IonClusters: Please set Bz!!!" << std::endl;
|
---|
380 | }
|
---|
381 | else
|
---|
382 | {
|
---|
383 | TVector3 p = ParToP(Par);
|
---|
384 | bg = p.Mag() / mass;
|
---|
385 | muClu = Nclusters(bg) * tLen; // Avg. number of clusters
|
---|
386 |
|
---|
387 | Ncl = gRandom->PoissonD(muClu); // Actual number of clusters
|
---|
388 | }
|
---|
389 |
|
---|
390 | }
|
---|
391 | //
|
---|
392 | return Signal;
|
---|
393 | }
|
---|
394 | //
|
---|
395 | //
|
---|
396 | Double_t TrkUtil::Nclusters(Double_t begam)
|
---|
397 | {
|
---|
398 | Int_t Opt = fGasSel;
|
---|
399 | Double_t Nclu = Nclusters(begam, Opt);
|
---|
400 | //
|
---|
401 | return Nclu;
|
---|
402 | }
|
---|
403 | //
|
---|
404 | Double_t TrkUtil::Nclusters(Double_t begam, Int_t Opt) {
|
---|
405 | //
|
---|
406 | // Opt = 0: He 90 - Isobutane 10
|
---|
407 | // = 1: pure He
|
---|
408 | // = 2: Argon 50 - Ethane 50
|
---|
409 | // = 3: pure Argon
|
---|
410 | //
|
---|
411 | //
|
---|
412 | const Int_t Npt = 18;
|
---|
413 | Double_t bg[Npt] = { 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10.,
|
---|
414 | 12., 15., 20., 50., 100., 200., 500., 1000., 10000. };
|
---|
415 | //
|
---|
416 | // He 90 - Isobutane 10
|
---|
417 | Double_t ncl_He_Iso[Npt] = { 42.94, 23.6,18.97,12.98,12.2,12.13,
|
---|
418 | 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98, 16.98 };
|
---|
419 | //
|
---|
420 | // pure He
|
---|
421 | Double_t ncl_He[Npt] = { 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63,
|
---|
422 | 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89, 4.89 };
|
---|
423 | //
|
---|
424 | // Argon 50 - Ethane 50
|
---|
425 | Double_t ncl_Ar_Eth[Npt] = { 130.04,71.55,57.56,39.44,37.08,36.9,
|
---|
426 | 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93,48.93 };
|
---|
427 | //
|
---|
428 | // pure Argon
|
---|
429 | Double_t ncl_Ar[Npt] = { 88.69,48.93,39.41,27.09,25.51,25.43,25.69,
|
---|
430 | 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68, 34.68 };
|
---|
431 | //
|
---|
432 | Double_t ncl[Npt];
|
---|
433 | switch (Opt)
|
---|
434 | {
|
---|
435 | case 0: std::copy(ncl_He_Iso, ncl_He_Iso + Npt, ncl); // He-Isobutane
|
---|
436 | break;
|
---|
437 | case 1: std::copy(ncl_He, ncl_He + Npt, ncl); // pure He
|
---|
438 | break;
|
---|
439 | case 2: std::copy(ncl_Ar_Eth, ncl_Ar_Eth + Npt, ncl); // Argon - Ethane
|
---|
440 | break;
|
---|
441 | case 3: std::copy(ncl_Ar, ncl_Ar + Npt, ncl); // pure Argon
|
---|
442 | break;
|
---|
443 | }
|
---|
444 | //
|
---|
445 | Double_t interp = 0.0;
|
---|
446 | TSpline3* sp3 = new TSpline3("sp3", bg, ncl, Npt);
|
---|
447 | if (begam > bg[0] && begam < bg[Npt - 1]) interp = sp3->Eval(begam);
|
---|
448 | return 100 * interp;
|
---|
449 | }
|
---|
450 | //
|
---|
451 | Double_t TrkUtil::funcNcl(Double_t* xp, Double_t* par) {
|
---|
452 | Double_t bg = xp[0];
|
---|
453 | return Nclusters(bg);
|
---|
454 | }
|
---|
455 | //
|
---|
456 | void TrkUtil::SetGasMix(Int_t Opt)
|
---|
457 | {
|
---|
458 | if (Opt < 0 || Opt > 3)
|
---|
459 | {
|
---|
460 | std::cout << "TrkUtil::SetGasMix Gas option not allowed. No action."
|
---|
461 | << std::endl;
|
---|
462 | }
|
---|
463 | else fGasSel = Opt;
|
---|
464 | }
|
---|