1 | #include "TrkUtil.h"
|
---|
2 | #include <iostream>
|
---|
3 | #include <algorithm>
|
---|
4 | #include <TSpline.h>
|
---|
5 | #include <TDecompChol.h>
|
---|
6 |
|
---|
7 | // Constructor
|
---|
8 | TrkUtil::TrkUtil(Double_t Bz)
|
---|
9 | {
|
---|
10 | fBz = Bz;
|
---|
11 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
12 | fRmin = 0.0; // Lower DCH radius
|
---|
13 | fRmax = 0.0; // Higher DCH radius
|
---|
14 | fZmin = 0.0; // Lower DCH z
|
---|
15 | fZmax = 0.0; // Higher DCH z
|
---|
16 | }
|
---|
17 | TrkUtil::TrkUtil()
|
---|
18 | {
|
---|
19 | fBz = 0.0;
|
---|
20 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
21 | fRmin = 0.0; // Lower DCH radius
|
---|
22 | fRmax = 0.0; // Higher DCH radius
|
---|
23 | fZmin = 0.0; // Lower DCH z
|
---|
24 | fZmax = 0.0; // Higher DCH z
|
---|
25 | }
|
---|
26 | //
|
---|
27 | // Destructor
|
---|
28 | TrkUtil::~TrkUtil()
|
---|
29 | {
|
---|
30 | fBz = 0.0;
|
---|
31 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
32 | fRmin = 0.0; // Lower DCH radius
|
---|
33 | fRmax = 0.0; // Higher DCH radius
|
---|
34 | fZmin = 0.0; // Lower DCH z
|
---|
35 | fZmax = 0.0; // Higher DCH z
|
---|
36 | }
|
---|
37 | //
|
---|
38 | // Distance between two lines
|
---|
39 | //
|
---|
40 | void TrkUtil::LineDistance(TVector3 x0, TVector3 y0, TVector3 dirx, TVector3 diry, Double_t &sx, Double_t &sy, Double_t &distance)
|
---|
41 | {
|
---|
42 | TMatrixDSym M(2);
|
---|
43 | M(0,0) = dirx.Mag2();
|
---|
44 | M(1,1) = diry.Mag2();
|
---|
45 | M(0,1) = -dirx.Dot(diry);
|
---|
46 | M(1,0) = M(0,1);
|
---|
47 | M.Invert();
|
---|
48 | TVectorD c(2);
|
---|
49 | c(0) = dirx.Dot(y0-x0);
|
---|
50 | c(1) = diry.Dot(x0-y0);
|
---|
51 | TVectorD st = M*c;
|
---|
52 | //
|
---|
53 | // Fill output
|
---|
54 | sx = st(0);
|
---|
55 | sy = st(1);
|
---|
56 | //
|
---|
57 | TVector3 x = x0+sx*dirx;
|
---|
58 | TVector3 y = y0+sy*diry;
|
---|
59 | TVector3 d = x-y;
|
---|
60 | distance = d.Mag();
|
---|
61 | }
|
---|
62 | //
|
---|
63 | // Covariance smearing
|
---|
64 | //
|
---|
65 | TVectorD TrkUtil::CovSmear(TVectorD x, TMatrixDSym C)
|
---|
66 | {
|
---|
67 | //
|
---|
68 | // Check arrays
|
---|
69 | //
|
---|
70 | // Consistency of dimensions
|
---|
71 | Int_t Nvec = x.GetNrows();
|
---|
72 | Int_t Nmat = C.GetNrows();
|
---|
73 | if (Nvec != Nmat || Nvec == 0)
|
---|
74 | {
|
---|
75 | std::cout << "TrkUtil::CovSmear: vector/matrix mismatch. Aborting." << std::endl;
|
---|
76 | exit(EXIT_FAILURE);
|
---|
77 | }
|
---|
78 | // Positive diagonal elements
|
---|
79 | for (Int_t i = 0; i < Nvec; i++)
|
---|
80 | {
|
---|
81 | if (C(i, i) <= 0.0)
|
---|
82 | {
|
---|
83 | std::cout << "TrkUtil::CovSmear: covariance matrix has negative diagonal elements. Aborting." << std::endl;
|
---|
84 | exit(EXIT_FAILURE);
|
---|
85 | }
|
---|
86 | }
|
---|
87 | //
|
---|
88 | // Do a Choleski decomposition and random number extraction, with appropriate stabilization
|
---|
89 | //
|
---|
90 | TMatrixDSym CvN = C;
|
---|
91 | TMatrixDSym DCv(Nvec); DCv.Zero();
|
---|
92 | TMatrixDSym DCvInv(Nvec); DCvInv.Zero();
|
---|
93 | for (Int_t id = 0; id < Nvec; id++)
|
---|
94 | {
|
---|
95 | Double_t dVal = TMath::Sqrt(C(id, id));
|
---|
96 | DCv(id, id) = dVal;
|
---|
97 | DCvInv(id, id) = 1.0 / dVal;
|
---|
98 | }
|
---|
99 | CvN.Similarity(DCvInv); // Normalize diagonal to 1
|
---|
100 | TDecompChol Chl(CvN);
|
---|
101 | Bool_t OK = Chl.Decompose(); // Choleski decomposition of normalized matrix
|
---|
102 | if (!OK)
|
---|
103 | {
|
---|
104 | std::cout << "TrkUtil::CovSmear: covariance matrix is not positive definite. Aborting." << std::endl;
|
---|
105 | exit(EXIT_FAILURE);
|
---|
106 | }
|
---|
107 | TMatrixD U = Chl.GetU(); // Get Upper triangular matrix
|
---|
108 | TMatrixD Ut(TMatrixD::kTransposed, U); // Transposed of U (lower triangular)
|
---|
109 | TVectorD r(Nvec);
|
---|
110 | for (Int_t i = 0; i < Nvec; i++)r(i) = gRandom->Gaus(0.0, 1.0); // Array of normal random numbers
|
---|
111 | TVectorD xOut = x + DCv * (Ut * r); // Observed parameter vector
|
---|
112 | //
|
---|
113 | return xOut;
|
---|
114 | }
|
---|
115 | //
|
---|
116 | // Helix parameters from position and momentum
|
---|
117 | // static
|
---|
118 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz)
|
---|
119 | {
|
---|
120 | //
|
---|
121 | TVectorD Par(5);
|
---|
122 | // Transverse parameters
|
---|
123 | Double_t a = -Q * Bz * cSpeed(); // Units are Tesla, GeV and meters
|
---|
124 | Double_t pt = p.Pt();
|
---|
125 | Double_t C = a / (2 * pt); // Half curvature
|
---|
126 | //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl;
|
---|
127 | Double_t r2 = x(0) * x(0) + x(1) * x(1);
|
---|
128 | Double_t cross = x(0) * p(1) - x(1) * p(0);
|
---|
129 | Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2);
|
---|
130 | Double_t phi0 = TMath::ATan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0
|
---|
131 | Double_t D; // Impact parameter D
|
---|
132 | if (pt < 10.0) D = (T - pt) / a;
|
---|
133 | else D = (-2 * cross + a * r2) / (T + pt);
|
---|
134 | //
|
---|
135 | Par(0) = D; // Store D
|
---|
136 | Par(1) = phi0; // Store phi0
|
---|
137 | Par(2) = C; // Store C
|
---|
138 | //Longitudinal parameters
|
---|
139 | Double_t B = C * TMath::Sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D));
|
---|
140 | Double_t st = TMath::ASin(B) / C;
|
---|
141 | Double_t ct = p(2) / pt;
|
---|
142 | Double_t z0;
|
---|
143 | Double_t dot = x(0) * p(0) + x(1) * p(1);
|
---|
144 | if (dot > 0.0) z0 = x(2) - ct * st;
|
---|
145 | else z0 = x(2) + ct * st;
|
---|
146 | //
|
---|
147 | Par(3) = z0; // Store z0
|
---|
148 | Par(4) = ct; // Store cot(theta)
|
---|
149 | //
|
---|
150 | return Par;
|
---|
151 | }
|
---|
152 | // non-static
|
---|
153 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q)
|
---|
154 | {
|
---|
155 | //
|
---|
156 | TVectorD Par(5);
|
---|
157 | Double_t Bz = fBz;
|
---|
158 | Par = XPtoPar(x, p, Q, Bz);
|
---|
159 | //
|
---|
160 | return Par;
|
---|
161 | }
|
---|
162 | //
|
---|
163 | TVector3 TrkUtil::ParToX(TVectorD Par)
|
---|
164 | {
|
---|
165 | Double_t D = Par(0);
|
---|
166 | Double_t phi0 = Par(1);
|
---|
167 | Double_t z0 = Par(3);
|
---|
168 | //
|
---|
169 | TVector3 Xval;
|
---|
170 | Xval(0) = -D * sin(phi0);
|
---|
171 | Xval(1) = D * cos(phi0);
|
---|
172 | Xval(2) = z0;
|
---|
173 | //
|
---|
174 | return Xval;
|
---|
175 | }
|
---|
176 | //
|
---|
177 | TVector3 TrkUtil::ParToP(TVectorD Par)
|
---|
178 | {
|
---|
179 | if (fBz == 0.0)std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl;
|
---|
180 | //
|
---|
181 | return ParToP(Par, fBz);
|
---|
182 | }
|
---|
183 | //
|
---|
184 | TVector3 TrkUtil::ParToP(TVectorD Par, Double_t Bz)
|
---|
185 | {
|
---|
186 | Double_t C = Par(2);
|
---|
187 | Double_t phi0 = Par(1);
|
---|
188 | Double_t ct = Par(4);
|
---|
189 | //
|
---|
190 | TVector3 Pval;
|
---|
191 | Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C);
|
---|
192 | Pval(0) = pt * cos(phi0);
|
---|
193 | Pval(1) = pt * sin(phi0);
|
---|
194 | Pval(2) = pt * ct;
|
---|
195 | //
|
---|
196 | return Pval;
|
---|
197 | }
|
---|
198 | //
|
---|
199 | Double_t TrkUtil::ParToQ(TVectorD Par)
|
---|
200 | {
|
---|
201 | return TMath::Sign(1.0, -Par(2));
|
---|
202 | }
|
---|
203 |
|
---|
204 | //
|
---|
205 | // Parameter conversion to ACTS format
|
---|
206 | TVectorD TrkUtil::ParToACTS(TVectorD Par)
|
---|
207 | {
|
---|
208 | TVectorD pACTS(6); // Return vector
|
---|
209 | //
|
---|
210 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
211 | pACTS(0) = 1000 * Par(0); // D from m to mm
|
---|
212 | pACTS(1) = 1000 * Par(3); // z0 from m to mm
|
---|
213 | pACTS(2) = Par(1); // Phi0 is unchanged
|
---|
214 | pACTS(3) = atan2(1.0, Par(4)); // Theta in [0, pi] range
|
---|
215 | pACTS(4) = Par(2) / (b * sqrt(1 + Par(4) * Par(4))); // q/p in GeV
|
---|
216 | pACTS(5) = 0.0; // Time: currently undefined
|
---|
217 | //
|
---|
218 | return pACTS;
|
---|
219 | }
|
---|
220 | // Covariance conversion to ACTS format
|
---|
221 | TMatrixDSym TrkUtil::CovToACTS(TVectorD Par, TMatrixDSym Cov)
|
---|
222 | {
|
---|
223 | TMatrixDSym cACTS(6); cACTS.Zero();
|
---|
224 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
225 | //
|
---|
226 | // Fill derivative matrix
|
---|
227 | TMatrixD A(5, 5); A.Zero();
|
---|
228 | Double_t ct = Par(4); // cot(theta)
|
---|
229 | Double_t C = Par(2); // half curvature
|
---|
230 | A(0, 0) = 1000.; // D-D conversion to mm
|
---|
231 | A(1, 2) = 1.0; // phi0-phi0
|
---|
232 | A(2, 4) = 1.0 / (sqrt(1.0 + ct * ct) * b); // q/p-C
|
---|
233 | A(3, 1) = 1000.; // z0-z0 conversion to mm
|
---|
234 | A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta)
|
---|
235 | A(4, 4) = -C * ct / (b * pow(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta)
|
---|
236 | //
|
---|
237 | TMatrixDSym Cv = Cov;
|
---|
238 | TMatrixD At(5, 5);
|
---|
239 | At.Transpose(A);
|
---|
240 | Cv.Similarity(At);
|
---|
241 | TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv;
|
---|
242 | cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes
|
---|
243 | //
|
---|
244 | return cACTS;
|
---|
245 | }
|
---|
246 | //
|
---|
247 | // Parameter conversion to ILC format
|
---|
248 | TVectorD TrkUtil::ParToILC(TVectorD Par)
|
---|
249 | {
|
---|
250 | TVectorD pILC(5); // Return vector
|
---|
251 | //
|
---|
252 | pILC(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
253 | pILC(1) = Par(1); // phi0 is unchanged
|
---|
254 | pILC(2) = -2 * Par(2) * 1.0e-3; // w in mm^-1
|
---|
255 | pILC(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
256 | pILC(4) = Par(4); // tan(lambda) = cot(theta)
|
---|
257 | //
|
---|
258 | return pILC;
|
---|
259 | }
|
---|
260 | // Covariance conversion to ILC format
|
---|
261 | TMatrixDSym TrkUtil::CovToILC(TMatrixDSym Cov)
|
---|
262 | {
|
---|
263 | TMatrixDSym cILC(5); cILC.Zero();
|
---|
264 | //
|
---|
265 | // Fill derivative matrix
|
---|
266 | TMatrixD A(5, 5); A.Zero();
|
---|
267 | //
|
---|
268 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
269 | A(1, 1) = 1.0; // phi0-phi0
|
---|
270 | A(2, 2) = -2.0e-3; // w-C
|
---|
271 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
272 | A(4, 4) = 1.0; // tan(lambda) - cot(theta)
|
---|
273 | //
|
---|
274 | TMatrixDSym Cv = Cov;
|
---|
275 | TMatrixD At(5, 5);
|
---|
276 | At.Transpose(A);
|
---|
277 | Cv.Similarity(At);
|
---|
278 | cILC = Cv;
|
---|
279 | //
|
---|
280 | return cILC;
|
---|
281 | }
|
---|
282 | //
|
---|
283 | // Conversion from meters to mm
|
---|
284 | TVectorD TrkUtil::ParToMm(TVectorD Par) // Parameter conversion
|
---|
285 | {
|
---|
286 | TVectorD Pmm(5); // Return vector
|
---|
287 | //
|
---|
288 | Pmm(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
289 | Pmm(1) = Par(1); // phi0 is unchanged
|
---|
290 | Pmm(2) = Par(2) * 1.0e-3; // C in mm^-1
|
---|
291 | Pmm(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
292 | Pmm(4) = Par(4); // tan(lambda) = cot(theta) unchanged
|
---|
293 | //
|
---|
294 | return Pmm;
|
---|
295 | }
|
---|
296 | TMatrixDSym TrkUtil::CovToMm(TMatrixDSym Cov) // Covariance conversion
|
---|
297 | {
|
---|
298 | TMatrixDSym Cmm(5); Cmm.Zero();
|
---|
299 | //
|
---|
300 | // Fill derivative matrix
|
---|
301 | TMatrixD A(5, 5); A.Zero();
|
---|
302 | //
|
---|
303 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
304 | A(1, 1) = 1.0; // phi0-phi0
|
---|
305 | A(2, 2) = 1.0e-3; // C-C
|
---|
306 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
307 | A(4, 4) = 1.0; // lambda - cot(theta)
|
---|
308 | //
|
---|
309 | TMatrixDSym Cv = Cov;
|
---|
310 | TMatrixD At(5, 5);
|
---|
311 | At.Transpose(A);
|
---|
312 | Cv.Similarity(At);
|
---|
313 | Cmm = Cv;
|
---|
314 | //
|
---|
315 | return Cmm;
|
---|
316 | }//
|
---|
317 | // Regularized symmetric matrix inversion
|
---|
318 | //
|
---|
319 | TMatrixDSym TrkUtil::RegInv(TMatrixDSym& Min)
|
---|
320 | {
|
---|
321 | TMatrixDSym M = Min; // Decouple from input
|
---|
322 | Int_t N = M.GetNrows(); // Matrix size
|
---|
323 | TMatrixDSym D(N); D.Zero(); // Normaliztion matrix
|
---|
324 | TMatrixDSym R(N); // Normarized matrix
|
---|
325 | TMatrixDSym Rinv(N); // Inverse of R
|
---|
326 | TMatrixDSym Minv(N); // Inverse of M
|
---|
327 | //
|
---|
328 | // Check for 0's and normalize
|
---|
329 | for (Int_t i = 0; i < N; i++)
|
---|
330 | {
|
---|
331 | if (M(i, i) != 0.0) D(i, i) = 1. / TMath::Sqrt(TMath::Abs(M(i, i)));
|
---|
332 | else D(i, i) = 1.0;
|
---|
333 | }
|
---|
334 | R = M.Similarity(D);
|
---|
335 | //
|
---|
336 | // Recursive algorithms stops when N = 2
|
---|
337 | //
|
---|
338 | //****************
|
---|
339 | // case N = 2 ***
|
---|
340 | //****************
|
---|
341 | if (N == 2)
|
---|
342 | {
|
---|
343 | Double_t det = R(0, 0) * R(1, 1) - R(0, 1) * R(1, 0);
|
---|
344 | if (det == 0)
|
---|
345 | {
|
---|
346 | std::cout << "VertexFit::RegInv: null determinant for N = 2" << std::endl;
|
---|
347 | Rinv.Zero(); // Return null matrix
|
---|
348 | }
|
---|
349 | else
|
---|
350 | {
|
---|
351 | // invert matrix
|
---|
352 | Rinv(0, 0) = R(1, 1);
|
---|
353 | Rinv(0, 1) = -R(0, 1);
|
---|
354 | Rinv(1, 0) = Rinv(0, 1);
|
---|
355 | Rinv(1, 1) = R(0, 0);
|
---|
356 | Rinv *= 1. / det;
|
---|
357 | }
|
---|
358 | }
|
---|
359 | //****************
|
---|
360 | // case N > 2 ***
|
---|
361 | //****************
|
---|
362 | else
|
---|
363 | {
|
---|
364 | // Break up matrix
|
---|
365 | TMatrixDSym Q = R.GetSub(0, N - 2, 0, N - 2); // Upper left
|
---|
366 | TVectorD p(N - 1);
|
---|
367 | for (Int_t i = 0; i < N - 1; i++)p(i) = R(N - 1, i);
|
---|
368 | Double_t q = R(N - 1, N - 1);
|
---|
369 | //Invert pieces and re-assemble
|
---|
370 | TMatrixDSym Ainv(N - 1);
|
---|
371 | TMatrixDSym A(N - 1);
|
---|
372 | if (TMath::Abs(q) > 1.0e-15)
|
---|
373 | {
|
---|
374 | // Case |q| > 0
|
---|
375 | Ainv.Rank1Update(p, -1.0 / q);
|
---|
376 | Ainv += Q;
|
---|
377 | A = RegInv(Ainv); // Recursive call
|
---|
378 | TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A;
|
---|
379 | //
|
---|
380 | TVectorD b = (-1.0 / q) * (A * p);
|
---|
381 | for (Int_t i = 0; i < N - 1; i++)
|
---|
382 | {
|
---|
383 | Rinv(N - 1, i) = b(i);
|
---|
384 | Rinv(i, N - 1) = b(i);
|
---|
385 | }
|
---|
386 | //
|
---|
387 | Double_t pdotb = 0.;
|
---|
388 | for (Int_t i = 0; i < N - 1; i++)pdotb += p(i) * b(i);
|
---|
389 | Double_t c = (1.0 - pdotb) / q;
|
---|
390 | Rinv(N - 1, N - 1) = c;
|
---|
391 | }
|
---|
392 | else
|
---|
393 | {
|
---|
394 | // case q = 0
|
---|
395 | TMatrixDSym Qinv = RegInv(Q); // Recursive call
|
---|
396 | Double_t a = Qinv.Similarity(p);
|
---|
397 | Double_t c = -1.0 / a;
|
---|
398 | Rinv(N - 1, N - 1) = c;
|
---|
399 | //
|
---|
400 | TVectorD b = (1.0 / a) * (Qinv * p);
|
---|
401 | for (Int_t i = 0; i < N - 1; i++)
|
---|
402 | {
|
---|
403 | Rinv(N - 1, i) = b(i);
|
---|
404 | Rinv(i, N - 1) = b(i);
|
---|
405 | }
|
---|
406 | //
|
---|
407 | A.Rank1Update(p, -1 / a);
|
---|
408 | A += Q;
|
---|
409 | A.Similarity(Qinv);
|
---|
410 | TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A;
|
---|
411 | }
|
---|
412 | }
|
---|
413 | Minv = Rinv.Similarity(D);
|
---|
414 | return Minv;
|
---|
415 | }
|
---|
416 | //
|
---|
417 | // Track tracjectory
|
---|
418 | //
|
---|
419 | TVector3 TrkUtil::Xtrack(TVectorD par, Double_t s)
|
---|
420 | {
|
---|
421 | //
|
---|
422 | // unpack parameters
|
---|
423 | Double_t D = par(0);
|
---|
424 | Double_t p0 = par(1);
|
---|
425 | Double_t C = par(2);
|
---|
426 | Double_t z0 = par(3);
|
---|
427 | Double_t ct = par(4);
|
---|
428 | //
|
---|
429 | Double_t x = -D * TMath::Sin(p0) + (TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C);
|
---|
430 | Double_t y = D * TMath::Cos(p0) - (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C);
|
---|
431 | Double_t z = z0 + ct * s / (2 * C);
|
---|
432 | //
|
---|
433 | TVector3 Xt(x, y, z);
|
---|
434 | return Xt;
|
---|
435 | }
|
---|
436 | //
|
---|
437 | // Track derivatives
|
---|
438 | //
|
---|
439 | // Constant radius
|
---|
440 | // R-Phi
|
---|
441 | TVectorD TrkUtil::derRphi_R(TVectorD par, Double_t R)
|
---|
442 | {
|
---|
443 | TVectorD dRphi(5); // return vector
|
---|
444 | //
|
---|
445 | // unpack parameters
|
---|
446 | Double_t D = par(0);
|
---|
447 | Double_t C = par(2);
|
---|
448 | //
|
---|
449 | Double_t s = 2 * TMath::ASin(C * TMath::Sqrt((R * R - D * D)/(1 + 2 * C * D)));
|
---|
450 | TVector3 X = Xtrack(par, s); // Intersection point
|
---|
451 | TVector3 v(-X.y()/R, X.x()/R, 0.); // measurement direction
|
---|
452 | TMatrixD derX = derXdPar(par, s); // dX/dp
|
---|
453 | TVectorD derXs = derXds(par, s); // dX/ds
|
---|
454 | TVectorD ders = dsdPar_R(par, R); // ds/dp
|
---|
455 | //
|
---|
456 | for (Int_t i = 0; i < 5; i++)
|
---|
457 | {
|
---|
458 | dRphi(i) = 0.;
|
---|
459 | for (Int_t j = 0; j < 3; j++)
|
---|
460 | {
|
---|
461 | dRphi(i) += v(j) * (derX(j, i) + derXs(j) * ders(i));
|
---|
462 | }
|
---|
463 | }
|
---|
464 | //
|
---|
465 | return dRphi;
|
---|
466 | }
|
---|
467 | // z
|
---|
468 | TVectorD TrkUtil::derZ_R(TVectorD par, Double_t R)
|
---|
469 | {
|
---|
470 |
|
---|
471 | TVectorD dZ(5); // return vector
|
---|
472 | //
|
---|
473 | // unpack parameters
|
---|
474 | Double_t D = par(0);
|
---|
475 | Double_t C = par(2);
|
---|
476 | //
|
---|
477 | Double_t s = 2 * TMath::ASin(C * TMath::Sqrt((R * R - D * D)/(1 + 2 * C * D))); // phase
|
---|
478 | TVector3 v(0., 0., 1.); // measurement direction
|
---|
479 | TMatrixD derX = derXdPar(par, s); // dX/dp
|
---|
480 | TVectorD derXs = derXds(par, s); // dX/ds
|
---|
481 | TVectorD ders = dsdPar_R(par, R); // ds/dp
|
---|
482 | //
|
---|
483 | for (Int_t i = 0; i < 5; i++)
|
---|
484 | {
|
---|
485 | dZ(i) = 0.;
|
---|
486 | for (Int_t j = 0; j < 3; j++)
|
---|
487 | {
|
---|
488 | dZ(i) += v(j) * (derX(j, i) + derXs(j) * ders(i));
|
---|
489 | }
|
---|
490 | }
|
---|
491 | //
|
---|
492 | return dZ;
|
---|
493 | }
|
---|
494 | //
|
---|
495 | // constant z
|
---|
496 | // R-Phi
|
---|
497 | TVectorD TrkUtil::derRphi_Z(TVectorD par, Double_t z)
|
---|
498 | {
|
---|
499 | TVectorD dRphi(5); // return vector
|
---|
500 | //
|
---|
501 | // unpack parameters
|
---|
502 | Double_t C = par(2);
|
---|
503 | Double_t z0 = par(3);
|
---|
504 | Double_t ct = par(4);
|
---|
505 | //
|
---|
506 | Double_t s = 2 * C * (z - z0) / ct;
|
---|
507 | TVector3 X = Xtrack(par, s); // Intersection point
|
---|
508 | TVector3 v(-X.y() / X.Pt(), X.x() / X.Pt(), 0.); // measurement direction
|
---|
509 | TMatrixD derX = derXdPar(par, s); // dX/dp
|
---|
510 | TVectorD derXs = derXds(par, s); // dX/ds
|
---|
511 | TVectorD ders = dsdPar_z(par, z); // ds/dp
|
---|
512 | //
|
---|
513 | for (Int_t i = 0; i < 5; i++)
|
---|
514 | {
|
---|
515 | dRphi(i) = 0.;
|
---|
516 | for (Int_t j = 0; j < 3; j++)
|
---|
517 | {
|
---|
518 | dRphi(i) += v(j) * (derX(j, i) + derXs(j) * ders(i));
|
---|
519 | }
|
---|
520 | }
|
---|
521 | //
|
---|
522 | return dRphi;
|
---|
523 |
|
---|
524 | }
|
---|
525 | // R
|
---|
526 | TVectorD TrkUtil::derR_Z(TVectorD par, Double_t z)
|
---|
527 | {
|
---|
528 | TVectorD dR(5); // return vector
|
---|
529 | //
|
---|
530 | // unpack parameters
|
---|
531 | Double_t C = par(2);
|
---|
532 | Double_t z0 = par(3);
|
---|
533 | Double_t ct = par(4);
|
---|
534 | //
|
---|
535 | Double_t s = 2 * C * (z - z0) / ct;
|
---|
536 | TVector3 X = Xtrack(par, s); // Intersection point
|
---|
537 | TVector3 v(X.x() / X.Pt(), X.y() / X.Pt(), 0.); // measurement direction
|
---|
538 | TMatrixD derX = derXdPar(par, s); // dX/dp
|
---|
539 | TVectorD derXs = derXds(par, s); // dX/ds
|
---|
540 | TVectorD ders = dsdPar_z(par, z); // ds/dp
|
---|
541 | //
|
---|
542 | for (Int_t i = 0; i < 5; i++)
|
---|
543 | {
|
---|
544 | dR(i) = 0.;
|
---|
545 | for (Int_t j = 0; j < 3; j++)
|
---|
546 | {
|
---|
547 | dR(i) += v(j) * (derX(j, i) + derXs(j) * ders(i));
|
---|
548 | }
|
---|
549 | }
|
---|
550 | //
|
---|
551 | return dR;
|
---|
552 |
|
---|
553 | }
|
---|
554 | //
|
---|
555 | // derivatives of track trajectory
|
---|
556 | //
|
---|
557 | // dX/dPar
|
---|
558 | TMatrixD TrkUtil::derXdPar(TVectorD par, Double_t s)
|
---|
559 | {
|
---|
560 | TMatrixD dxdp(3, 5); // return matrix
|
---|
561 | //
|
---|
562 | // unpack parameters
|
---|
563 | Double_t D = par(0);
|
---|
564 | Double_t p0 = par(1);
|
---|
565 | Double_t C = par(2);
|
---|
566 | Double_t z0 = par(3);
|
---|
567 | Double_t ct = par(4);
|
---|
568 | //
|
---|
569 | // derivatives
|
---|
570 | // dx/dD
|
---|
571 | dxdp(0, 0) = -TMath::Sin(p0);
|
---|
572 | dxdp(1, 0) = TMath::Cos(p0);
|
---|
573 | dxdp(2, 0) = 0.;
|
---|
574 | // dx/dphi0
|
---|
575 | dxdp(0, 1) = -D * TMath::Cos(p0) + (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C);
|
---|
576 | dxdp(1, 1) = -D * TMath::Sin(p0) + (TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C);
|
---|
577 | dxdp(2, 1) = 0;
|
---|
578 | // dx/dC
|
---|
579 | dxdp(0, 2) = -(TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C * C);
|
---|
580 | dxdp(1, 2) = (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C * C);
|
---|
581 | dxdp(2, 2) = -ct * s / (2 * C * C);
|
---|
582 | // dx/dz0
|
---|
583 | dxdp(0, 3) = 0;
|
---|
584 | dxdp(1, 3) = 0;
|
---|
585 | dxdp(2, 3) = 1.;
|
---|
586 | // dx/dCtg
|
---|
587 | dxdp(0, 4) = 0;
|
---|
588 | dxdp(1, 4) = 0;
|
---|
589 | dxdp(2, 4) = s / (2 * C);
|
---|
590 | //
|
---|
591 | return dxdp;
|
---|
592 | }
|
---|
593 | //
|
---|
594 | // dX/ds
|
---|
595 | //
|
---|
596 | TVectorD TrkUtil::derXds(TVectorD par, Double_t s)
|
---|
597 | {
|
---|
598 | TVectorD dxds(3); // return vector
|
---|
599 | //
|
---|
600 | // unpack parameters
|
---|
601 | Double_t p0 = par(1);
|
---|
602 | Double_t C = par(2);
|
---|
603 | Double_t ct = par(4);
|
---|
604 | //
|
---|
605 | // dX/ds
|
---|
606 | dxds(0) = TMath::Cos(s + p0) / (2 * C);
|
---|
607 | dxds(1) = TMath::Sin(s + p0) / (2 * C);
|
---|
608 | dxds(2) = ct / (2 * C);
|
---|
609 | //
|
---|
610 | return dxds;
|
---|
611 | }
|
---|
612 | //
|
---|
613 | // derivative of trajectory phase s
|
---|
614 | //Constant R
|
---|
615 | TVectorD TrkUtil::dsdPar_R(TVectorD par, Double_t R)
|
---|
616 | {
|
---|
617 | TVectorD dsdp(5); // return vector
|
---|
618 | //
|
---|
619 | // unpack parameters
|
---|
620 | Double_t D = par(0);
|
---|
621 | Double_t p0 = par(1);
|
---|
622 | Double_t C = par(2);
|
---|
623 | //
|
---|
624 | // derivatives
|
---|
625 | Double_t opCD = 1. + 2 * C * D;
|
---|
626 | Double_t A = C*TMath::Sqrt((R*R-D*D)/opCD);
|
---|
627 | Double_t sqA0 = TMath::Sqrt(1. - A * A);
|
---|
628 | Double_t dMin = 0.01;
|
---|
629 | Double_t sqA = TMath::Max(dMin, sqA0); // Protect against divergence
|
---|
630 | //
|
---|
631 | dsdp(0) = -2 * C * C * (D * (1. + C * D) + C * R * R) / (A * sqA * opCD * opCD);
|
---|
632 | dsdp(1) = 0;
|
---|
633 | dsdp(2) = 2 * A * (1 + C * D) / (C * sqA * opCD);
|
---|
634 | dsdp(3) = 0;
|
---|
635 | dsdp(4) = 0;
|
---|
636 | //
|
---|
637 | return dsdp;
|
---|
638 | }
|
---|
639 | // Constant z
|
---|
640 | TVectorD TrkUtil::dsdPar_z(TVectorD par, Double_t z)
|
---|
641 | {
|
---|
642 | TVectorD dsdp(5); // return vector
|
---|
643 | //
|
---|
644 | // unpack parameters
|
---|
645 | Double_t C = par(2);
|
---|
646 | Double_t z0 = par(3);
|
---|
647 | Double_t ct = par(4);
|
---|
648 | //
|
---|
649 | // derivatives
|
---|
650 | //
|
---|
651 | dsdp(0) = 0;
|
---|
652 | dsdp(1) = 0;
|
---|
653 | dsdp(2) = 2*(z-z0)/ct;
|
---|
654 | dsdp(3) = -2*C/ct;
|
---|
655 | dsdp(4) = -2*C*(z-z0)/(ct*ct);
|
---|
656 | //
|
---|
657 | return dsdp;
|
---|
658 | }
|
---|
659 | //
|
---|
660 | // Setup chamber volume
|
---|
661 | void TrkUtil::SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax)
|
---|
662 | {
|
---|
663 | fRmin = Rmin; // Lower DCH radius
|
---|
664 | fRmax = Rmax; // Higher DCH radius
|
---|
665 | fZmin = Zmin; // Lower DCH z
|
---|
666 | fZmax = Zmax; // Higher DCH z
|
---|
667 | }
|
---|
668 | //
|
---|
669 | // Get Trakck length inside DCH volume
|
---|
670 | Double_t TrkUtil::TrkLen(TVectorD Par)
|
---|
671 | {
|
---|
672 | Double_t tLength = 0.0;
|
---|
673 | // Check if geometry is initialized
|
---|
674 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
675 | {
|
---|
676 | // No geometry set so send a warning and return 0
|
---|
677 | std::cout << "TrkUtil::TrkLen() called without a DCH volume defined" << std::endl;
|
---|
678 | }
|
---|
679 | else
|
---|
680 | {
|
---|
681 | //******************************************************************
|
---|
682 | // Determine the track length inside the chamber ****
|
---|
683 | //******************************************************************
|
---|
684 | //
|
---|
685 | // Track pararameters
|
---|
686 | Double_t D = Par(0); // Transverse impact parameter
|
---|
687 | Double_t phi0 = Par(1); // Transverse direction at minimum approach
|
---|
688 | Double_t C = Par(2); // Half curvature
|
---|
689 | Double_t z0 = Par(3); // Z at minimum approach
|
---|
690 | Double_t ct = Par(4); // cot(theta)
|
---|
691 | //std::cout << "TrkUtil:: parameters: D= " << D << ", phi0= " << phi0
|
---|
692 | // << ", C= " << C << ", z0= " << z0 << ", ct= " << ct << std::endl;
|
---|
693 | //
|
---|
694 | // Track length per unit phase change
|
---|
695 | Double_t Scale = sqrt(1.0 + ct * ct) / (2.0 * TMath::Abs(C));
|
---|
696 | //
|
---|
697 | // Find intersections with chamber boundaries
|
---|
698 | //
|
---|
699 | Double_t phRin = 0.0; // phase of inner cylinder
|
---|
700 | Double_t phRin2 = 0.0; // phase of inner cylinder intersection (2nd branch)
|
---|
701 | Double_t phRhi = 0.0; // phase of outer cylinder intersection
|
---|
702 | Double_t phZmn = 0.0; // phase of left wall intersection
|
---|
703 | Double_t phZmx = 0.0; // phase of right wall intersection
|
---|
704 | // ... with inner cylinder
|
---|
705 | Double_t Rtop = TMath::Abs((1.0 + C * D) / C);
|
---|
706 |
|
---|
707 | if (Rtop > fRmin && TMath::Abs(D) < fRmin) // *** don't treat large D tracks for the moment ***
|
---|
708 | {
|
---|
709 | Double_t ph = 2 * asin(C * sqrt((fRmin * fRmin - D * D) / (1.0 + 2.0 * C * D)));
|
---|
710 | Double_t z = z0 + ct * ph / (2.0 * C);
|
---|
711 |
|
---|
712 | //std::cout << "Rin intersection: ph = " << ph<<", z= "<<z << std::endl;
|
---|
713 |
|
---|
714 | if (z < fZmax && z > fZmin) phRin = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
715 | //
|
---|
716 | // Include second branch of loopers
|
---|
717 | Double_t Pi = 3.14159265358979323846;
|
---|
718 | Double_t ph2 = 2 * Pi - TMath::Abs(ph);
|
---|
719 | if (ph < 0)ph2 = -ph2;
|
---|
720 | z = z0 + ct * ph2 / (2.0 * C);
|
---|
721 | if (z < fZmax && z > fZmin) phRin2 = TMath::Abs(ph2); // Intersection inside chamber volume
|
---|
722 | }
|
---|
723 | // ... with outer cylinder
|
---|
724 | if (Rtop > fRmax && TMath::Abs(D) < fRmax) // *** don't treat large D tracks for the moment ***
|
---|
725 | {
|
---|
726 | Double_t ph = 2 * asin(C * sqrt((fRmax * fRmax - D * D) / (1.0 + 2.0 * C * D)));
|
---|
727 | Double_t z = z0 + ct * ph / (2.0 * C);
|
---|
728 | if (z < fZmax && z > fZmin) phRhi = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
729 | }
|
---|
730 | // ... with left wall
|
---|
731 | Double_t Zdir = (fZmin - z0) / ct;
|
---|
732 | if (Zdir > 0.0)
|
---|
733 | {
|
---|
734 | Double_t ph = 2.0 * C * Zdir;
|
---|
735 | Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C));
|
---|
736 | if (Rint < fRmax && Rint > fRmin) phZmn = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
737 | }
|
---|
738 | // ... with right wall
|
---|
739 | Zdir = (fZmax - z0) / ct;
|
---|
740 | if (Zdir > 0.0)
|
---|
741 | {
|
---|
742 | Double_t ph = 2.0 * C * Zdir;
|
---|
743 | Double_t Rint = sqrt(D * D + (1.0 + 2.0 * C * D) * pow(sin(ph / 2), 2) / (C * C));
|
---|
744 | if (Rint < fRmax && Rint > fRmin) phZmx = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
745 | }
|
---|
746 | //
|
---|
747 | // Order phases and keep the lowest two non-zero ones
|
---|
748 | //
|
---|
749 | const Int_t Nint = 5;
|
---|
750 | Double_t dPhase = 0.0; // Phase difference between two close intersections
|
---|
751 | Double_t ph_arr[Nint] = { phRin, phRin2, phRhi, phZmn, phZmx };
|
---|
752 | std::sort(ph_arr, ph_arr + Nint);
|
---|
753 | Int_t iPos = -1; // First element > 0
|
---|
754 | for (Int_t i = 0; i < Nint; i++)
|
---|
755 | {
|
---|
756 | if (ph_arr[i] <= 0.0) iPos = i;
|
---|
757 | }
|
---|
758 |
|
---|
759 | if (iPos < Nint - 2)
|
---|
760 | {
|
---|
761 | dPhase = ph_arr[iPos + 2] - ph_arr[iPos + 1];
|
---|
762 | tLength = dPhase * Scale;
|
---|
763 | }
|
---|
764 | }
|
---|
765 | return tLength;
|
---|
766 | }
|
---|
767 | //
|
---|
768 | // Return number of ionization clusters
|
---|
769 | Bool_t TrkUtil::IonClusters(Double_t& Ncl, Double_t mass, TVectorD Par)
|
---|
770 | {
|
---|
771 | //
|
---|
772 | // Units are meters/Tesla/GeV
|
---|
773 | //
|
---|
774 | Ncl = 0.0;
|
---|
775 | Bool_t Signal = kFALSE;
|
---|
776 | Double_t tLen = 0;
|
---|
777 | // Check if geometry is initialized
|
---|
778 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
779 | {
|
---|
780 | // No geometry set so send a warning and return 0
|
---|
781 | std::cout << "TrkUtil::IonClusters() called without a volume defined" << std::endl;
|
---|
782 | }
|
---|
783 | else tLen = TrkLen(Par);
|
---|
784 |
|
---|
785 | //******************************************************************
|
---|
786 | // Now get the number of clusters ****
|
---|
787 | //******************************************************************
|
---|
788 | //
|
---|
789 | Double_t muClu = 0.0; // mean number of clusters
|
---|
790 | Double_t bg = 0.0; // beta*gamma
|
---|
791 | Ncl = 0.0;
|
---|
792 | if (tLen > 0.0)
|
---|
793 | {
|
---|
794 | Signal = kTRUE;
|
---|
795 | //
|
---|
796 | // Find beta*gamma
|
---|
797 | if (fBz == 0.0)
|
---|
798 | {
|
---|
799 | Signal = kFALSE;
|
---|
800 | std::cout << "TrkUtil::IonClusters: Please set Bz!!!" << std::endl;
|
---|
801 | }
|
---|
802 | else
|
---|
803 | {
|
---|
804 | TVector3 p = ParToP(Par);
|
---|
805 | bg = p.Mag() / mass;
|
---|
806 | muClu = Nclusters(bg) * tLen; // Avg. number of clusters
|
---|
807 |
|
---|
808 | Ncl = gRandom->PoissonD(muClu); // Actual number of clusters
|
---|
809 | }
|
---|
810 |
|
---|
811 | }
|
---|
812 | //
|
---|
813 | return Signal;
|
---|
814 | }
|
---|
815 | //
|
---|
816 | //
|
---|
817 | Double_t TrkUtil::Nclusters(Double_t begam)
|
---|
818 | {
|
---|
819 | Int_t Opt = fGasSel;
|
---|
820 | Double_t Nclu = Nclusters(begam, Opt);
|
---|
821 | //
|
---|
822 | return Nclu;
|
---|
823 | }
|
---|
824 | //
|
---|
825 | Double_t TrkUtil::Nclusters(Double_t begam, Int_t Opt) {
|
---|
826 | //
|
---|
827 | // Opt = 0: He 90 - Isobutane 10
|
---|
828 | // = 1: pure He
|
---|
829 | // = 2: Argon 50 - Ethane 50
|
---|
830 | // = 3: pure Argon
|
---|
831 | //
|
---|
832 | //
|
---|
833 | const Int_t Npt = 18;
|
---|
834 | Double_t bg[Npt] = { 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10.,
|
---|
835 | 12., 15., 20., 50., 100., 200., 500., 1000., 10000. };
|
---|
836 | //
|
---|
837 | // He 90 - Isobutane 10
|
---|
838 | Double_t ncl_He_Iso[Npt] = { 42.94, 23.6,18.97,12.98,12.2,12.13,
|
---|
839 | 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98, 16.98 };
|
---|
840 | //
|
---|
841 | // pure He
|
---|
842 | Double_t ncl_He[Npt] = { 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63,
|
---|
843 | 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89, 4.89 };
|
---|
844 | //
|
---|
845 | // Argon 50 - Ethane 50
|
---|
846 | Double_t ncl_Ar_Eth[Npt] = { 130.04,71.55,57.56,39.44,37.08,36.9,
|
---|
847 | 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93,48.93 };
|
---|
848 | //
|
---|
849 | // pure Argon
|
---|
850 | Double_t ncl_Ar[Npt] = { 88.69,48.93,39.41,27.09,25.51,25.43,25.69,
|
---|
851 | 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68, 34.68 };
|
---|
852 | //
|
---|
853 | Double_t ncl[Npt];
|
---|
854 | switch (Opt)
|
---|
855 | {
|
---|
856 | case 0: std::copy(ncl_He_Iso, ncl_He_Iso + Npt, ncl); // He-Isobutane
|
---|
857 | break;
|
---|
858 | case 1: std::copy(ncl_He, ncl_He + Npt, ncl); // pure He
|
---|
859 | break;
|
---|
860 | case 2: std::copy(ncl_Ar_Eth, ncl_Ar_Eth + Npt, ncl); // Argon - Ethane
|
---|
861 | break;
|
---|
862 | case 3: std::copy(ncl_Ar, ncl_Ar + Npt, ncl); // pure Argon
|
---|
863 | break;
|
---|
864 | }
|
---|
865 | //
|
---|
866 | Double_t interp = 0.0;
|
---|
867 | TSpline3* sp3 = new TSpline3("sp3", bg, ncl, Npt);
|
---|
868 | if (begam > bg[0] && begam < bg[Npt - 1]) interp = sp3->Eval(begam);
|
---|
869 | return 100 * interp;
|
---|
870 | }
|
---|
871 | //
|
---|
872 | Double_t TrkUtil::funcNcl(Double_t* xp, Double_t* par) {
|
---|
873 | Double_t bg = xp[0];
|
---|
874 | return Nclusters(bg);
|
---|
875 | }
|
---|
876 | //
|
---|
877 | void TrkUtil::SetGasMix(Int_t Opt)
|
---|
878 | {
|
---|
879 | if (Opt < 0 || Opt > 3)
|
---|
880 | {
|
---|
881 | std::cout << "TrkUtil::SetGasMix Gas option not allowed. No action."
|
---|
882 | << std::endl;
|
---|
883 | }
|
---|
884 | else fGasSel = Opt;
|
---|
885 | }
|
---|