Changeset ebf40fd in git
- Timestamp:
- Nov 29, 2021, 3:18:22 PM (3 years ago)
- Branches:
- master
- Children:
- bd376e3
- Parents:
- 9a7ea36
- Files:
-
- 15 edited
Legend:
- Unmodified
- Added
- Removed
-
cards/delphes_card_IDEA.tcl
r9a7ea36 rebf40fd 917 917 918 918 add Branch EFlowTrackMerger/eflowTracks EFlowTrack Track 919 add Branch TrackSmearing/tracks Track Track 919 920 add Branch Calorimeter/eflowPhotons EFlowPhoton Tower 920 921 add Branch TimeOfFlightNeutralHadron/eflowNeutralHadrons EFlowNeutralHadron Tower -
examples/Pythia8/ee_zh.cmnd
r9a7ea36 rebf40fd 1 1 2 2 ! number of events to generate 3 Main:numberOfEvents = 1000 3 Main:numberOfEvents = 1000 ! number of events to generate 4 4 5 5 Beams:idA = 11 ! first beam, e- = -11 -
external/TrackCovariance/AcceptanceClx.cc
r9a7ea36 rebf40fd 1 1 #include <TVector3.h> 2 2 #include "AcceptanceClx.h" 3 #include <iostream>4 3 // 5 4 // Pt splitting routine … … 59 58 // Initializations 60 59 // 61 // std::cout << "Entered constructor of AccpeptanceClx" << std::endl;60 //cout << "Entered constructor of AccpeptanceClx" << endl; 62 61 // Setup grid 63 62 // Start grid parameters … … 74 73 TVectorF Tha(NpThInp, ThInit); 75 74 Int_t NpTh = Tha.GetNrows(); // Nr. of starting theta points 76 // std::cout << "AcceptanceClv:: Pta and Tha arrays defined" << std::endl;75 //cout << "AcceptanceClv:: Pta and Tha arrays defined" << endl; 77 76 // 78 77 // Grid splitting parameters … … 128 127 // Pt split 129 128 if (dPt > dPtMin && dAp > dAmin && Nsplits < MaxSplits) { 130 //std::cout << "Pt(" << ipt << ") = " << Pta(ipt) << ", dAp = " << dAp << std::endl;131 129 NsplitCnt++; // Total splits counter 132 130 Nsplits++; // Increase splits/cycle 133 NpPt++; // Increase #pt points 134 //std::cout << "New pt split: dAp = " << dAp << ", dPt = " << dPt << 135 // ", Nsplits = " << Nsplits << ", NpPt = " << NpPt << std::endl; 131 NpPt++; // Increase #pt points 136 132 Float_t newPt = 0.5 * (Pta(ipt + 1) + Pta(ipt)); 137 133 VecInsert(ipt, newPt, Pta); … … 156 152 // Theta split 157 153 if (dTh > dThMin && dAt > dAmin && Nsplits < MaxSplits) { 158 // std::cout << "Th(" << ith << ") = " << Tha(ith) << ", dAt = " << dAt << std::endl;154 //cout << "Th(" << ith << ") = " << Tha(ith) << ", dAt = " << dAt << endl; 159 155 NsplitCnt++; // Total splits counter 160 156 Nsplits++; // Increase splits 161 NpTh++; // Increase #pt points 162 //std::cout << "New th split: dAt = " << dAt << ", dTh = " << dTh << 163 // ", Nsplits = " << Nsplits << ", NpTh = " << NpTh << std::endl; 157 NpTh++; // Increase #pt points 164 158 Float_t newTh = 0.5 * (Tha(ith + 1) + Tha(ith)); 165 159 VecInsert(ith, newTh, Tha); … … 202 196 fThArray = Tha; // Array of Theta nodes 203 197 // 204 std::cout << "AcceptanceClx:: Acceptance encoding with " << fNPtNodes198 std::cout << "AcceptanceClx:: Acceptance encoding with " << fNPtNodes 205 199 <<" pt nodes and "<< fNThNodes <<" theta nodes"<< std::endl; 206 200 Int_t Nrows = fAcc.GetNrows(); 207 201 Int_t Ncols = fAcc.GetNcols(); 208 //std::cout<<"AcceptanceClx:: fAcc rows: "<<Nrows<<", cols: "<<Ncols<<std::endl;209 //std::cout<<"AcceptanceClx:: Pta size: "<<Pta.GetNrows()<<", Tha size: "<<Tha.GetNrows()<<std::endl;;210 //std::cout<<"AcceptanceClx:: pt nodes"<<std::endl; fPtArray.Print();211 //std::cout<<"AcceptanceClx:: th nodes"<<std::endl; fThArray.Print();212 202 } 213 203 … … 290 280 // 291 281 // Protect against values out of range 292 //std::cout << "AcceptanceClx::HitNumber: just in pt= " << pt << ", theta = " << theta << std::endl;293 //std::cout << "AcceptanceClx::HitNumber: ptArr(0)= " << fPtArray(0) << ", thArr(0) = " << fThArray(0) << std::endl;294 //std::cout << "AcceptanceClx::HitNumber: ptArr(E)= " << fPtArray(fNPtNodes - 1)295 // << ", thArr(E) = " << fThArray(fNThNodes - 1) << std::endl;296 282 Float_t eps = 1.0e-4; 297 283 Float_t pt0 = (Float_t)pt; … … 311 297 { 312 298 std::cout << "Search error: (ip, pt) = (" << ip << ", " << pt << "), pt0 = " << pt0 << std::endl; 313 std::cout << "Search error: pt nodes = " << fNPtNodes 299 std::cout << "Search error: pt nodes = " << fNPtNodes 314 300 << " , last value = " << fPtArray(fNPtNodes - 1) << std::endl; 315 301 } … … 343 329 } 344 330 // 331 -
external/TrackCovariance/AcceptanceClx.h
r9a7ea36 rebf40fd 23 23 private: 24 24 TMatrixF fAcc; // Acceptance matrix 25 Int_t fNPtNodes; // Numer of Pt nodes 25 Int_t fNPtNodes; // Numer of Pt nodes 26 26 TVectorF fPtArray; // Array of Pt nodes 27 Int_t fNThNodes; // Numer of Theta nodes 27 Int_t fNThNodes; // Numer of Theta nodes 28 28 TVectorF fThArray; // Array of Theta nodes (Theta in degrees) 29 29 // 30 30 // Service routines 31 31 void VecInsert(Int_t i, Float_t x, TVectorF& Vec); 32 void SplitPt(Int_t i, TVectorF &AccPt); 32 void SplitPt(Int_t i, TVectorF &AccPt); 33 33 void SplitTh(Int_t i, TVectorF &AccTh); 34 34 public: … … 44 44 Int_t GetNrPt() { return fNPtNodes; } 45 45 Int_t GetNrTh() { return fNThNodes; } 46 46 47 47 TVectorF* GetPtArray() { return &fPtArray; } 48 48 TVectorF* GetThArray() { return &fThArray; } -
external/TrackCovariance/ObsTrk.cc
r9a7ea36 rebf40fd 6 6 #include <TRandom.h> 7 7 #include <iostream> 8 #include "SolGeom.h" 8 9 #include "SolGridCov.h" 9 10 #include "ObsTrk.h" … … 11 12 // Constructors 12 13 // 13 // x(3) track origin, p(3) track momentum at origin, Q charge, B ma gnetic field in Tesla14 ObsTrk::ObsTrk(TVector3 x, TVector3 p, Double_t Q, Double_t B, SolGridCov *GC)14 // x(3) track origin, p(3) track momentum at origin, Q charge, B ma gnetic field in Tesla 15 ObsTrk::ObsTrk(TVector3 x, TVector3 p, Double_t Q, SolGridCov *GC, SolGeom *G) 15 16 { 16 SetB(B); 17 fB = G->B(); 18 SetB(fB); 19 fG = G; 17 20 fGC = GC; 18 21 fGenX = x; 19 22 fGenP = p; 20 23 fGenQ = Q; 21 fB = B;22 24 fGenPar.ResizeTo(5); 23 25 fGenParMm.ResizeTo(5); … … 36 38 fGenParACTS = ParToACTS(fGenPar); 37 39 fGenParILC = ParToILC(fGenPar); 38 /* 39 cout << "ObsTrk::ObsTrk: fGenPar"; 40 for (Int_t i = 0; i < 5; i++)cout << fGenPar(i) << ", "; 41 cout << endl; 42 */ 43 fObsPar = GenToObsPar(fGenPar, fGC); 40 // 41 fObsPar = GenToObsPar(fGenPar); 44 42 fObsParMm = ParToMm(fObsPar); 45 43 fObsParACTS = ParToACTS(fObsPar); … … 54 52 // 55 53 // x[3] track origin, p[3] track momentum at origin, Q charge, B magnetic field in Tesla 56 ObsTrk::ObsTrk(Double_t *x, Double_t *p, Double_t Q, Double_t B, SolGridCov* GC)54 ObsTrk::ObsTrk(Double_t *x, Double_t *p, Double_t Q, SolGridCov* GC, SolGeom *G) 57 55 { 58 SetB(B); 56 fB = G->B(); 57 SetB(fB); 58 fG = G; 59 59 fGC = GC; 60 60 fGenX.SetXYZ(x[0],x[1],x[2]); 61 61 fGenP.SetXYZ(p[0],p[1],p[2]); 62 62 fGenQ = Q; 63 fB = B;64 63 fGenPar.ResizeTo(5); 65 64 fGenParMm.ResizeTo(5); … … 77 76 fGenParACTS = ParToACTS(fGenPar); 78 77 fGenParILC = ParToILC(fGenPar); 79 /* 80 cout << "ObsTrk::ObsTrk: fGenPar"; 81 for (Int_t i = 0; i < 5; i++)cout << fGenPar(i) << ", "; 82 cout << endl; 83 */ 84 fObsPar = GenToObsPar(fGenPar, fGC); 78 // 79 fObsPar = GenToObsPar(fGenPar); 85 80 fObsParACTS = ParToACTS(fObsPar); 86 81 fObsParILC = ParToILC(fObsPar); … … 113 108 } 114 109 // 115 TVectorD ObsTrk::GenToObsPar(TVectorD gPar , SolGridCov *GC)110 TVectorD ObsTrk::GenToObsPar(TVectorD gPar) 116 111 { 117 TVector3 p = ParToP(gPar);118 Double_t pt = p.Pt();119 Double_t tanTh = 1.0 / TMath::Abs(gPar(4));120 Double_t angd = TMath::ATan(tanTh)*180. / TMath::Pi();121 112 // 122 113 // Check ranges 123 Double_t minPt = GC->GetMinPt();124 //if (pt < minPt) cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is below grid range of " << minPt <<endl;125 Double_t maxPt = GC->GetMaxPt();126 //if (pt > maxPt) cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is above grid range of " << maxPt <<endl;127 Double_t minAn = GC->GetMinAng();128 //if (angd < minAn) cout << "Warning ObsTrk::GenToObsPar: angle " << angd129 // << " is below grid range of " << minAn << endl;130 Double_t maxAn = GC->GetMaxAng();131 //if (angd > maxAn) cout << "Warning ObsTrk::GenToObsPar: angle " << angd132 // << " is above grid range of " << maxAn << endl;114 Double_t minPt = fGC->GetMinPt(); 115 //if (pt < minPt) std::cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is below grid range of " << minPt << std::endl; 116 Double_t maxPt = fGC->GetMaxPt(); 117 //if (pt > maxPt) std::cout << "Warning ObsTrk::GenToObsPar: pt " << pt << " is above grid range of " << maxPt << std::endl; 118 Double_t minAn = fGC->GetMinAng(); 119 //if (angd < minAn) std::cout << "Warning ObsTrk::GenToObsPar: angle " << angd 120 // << " is below grid range of " << minAn << std::endl; 121 Double_t maxAn = fGC->GetMaxAng(); 122 //if (angd > maxAn) std::cout << "Warning ObsTrk::GenToObsPar: angle " << angd 123 // << " is above grid range of " << maxAn << std::endl; 133 124 // 134 TMatrixDSym Cov = GC->GetCov(pt, angd); 125 TMatrixDSym Cov(5); 126 // 127 // Check if track origin is inside beampipe and betwen the first disks 128 // 129 Double_t Rin = fG->GetRmin(); 130 Double_t ZinPos = fG->GetZminPos(); 131 Double_t ZinNeg = fG->GetZminNeg(); 132 Bool_t inside = TrkUtil::IsInside(fGenX, Rin, ZinNeg, ZinPos); // Check if in inner box 133 if (inside) 134 { 135 //std::cout<<"ObsTrk:: inside: x= "<<fGenX(0)<<", y= "<<fGenX(1) 136 // <<", z= "<<fGenX(2)<<std::endl; 137 // Observed track parameters 138 Double_t pt = fGenP.Pt(); 139 Double_t angd = fGenP.Theta() * 180. / TMath::Pi(); 140 Cov = fGC->GetCov(pt, angd); // Track covariance 141 } 142 else 143 { 144 //std::cout<<"ObsTrk:: outside: x= "<<fGenX(0)<<", y= "<<fGenX(1) 145 // <<", z= "<<fGenX(2)<<std::endl; 146 SolTrack* trk = new SolTrack(fGenX, fGenP, fG); 147 Bool_t Res = kTRUE; Bool_t MS = kTRUE; 148 trk->CovCalc(Res, MS); // Calculate covariance matrix 149 Cov = trk->Cov(); // Track covariance 150 delete trk; 151 } 152 // 135 153 fCov = Cov; 136 154 // 137 155 // Now do Choleski decomposition and random number extraction, with appropriate stabilization 138 156 // 139 TMatrixDSym CvN = Cov; 140 TMatrixDSym DCv(5); DCv.Zero(); 141 TMatrixDSym DCvInv(5); DCvInv.Zero(); 142 for (Int_t id = 0; id < 5; id++) 143 { 144 Double_t dVal = TMath::Sqrt(Cov(id, id)); 145 DCv (id, id) = dVal; 146 DCvInv(id, id) = 1.0 / dVal; 147 } 148 CvN.Similarity(DCvInv); // Normalize diagonal to 1 149 TDecompChol Chl(CvN); 150 Bool_t OK = Chl.Decompose(); // Choleski decomposition of normalized matrix 151 TMatrixD U = Chl.GetU(); // Get Upper triangular matrix 152 TMatrixD Ut(TMatrixD::kTransposed, U); // Transposed of U (lower triangular) 153 TVectorD r(5); 154 for (Int_t i = 0; i < 5; i++)r(i) = gRandom->Gaus(0.0, 1.0); // Array of normal random numbers 155 TVectorD oPar = gPar + DCv*(Ut*r); // Observed parameter vector 157 TVectorD oPar = TrkUtil::CovSmear(gPar, Cov); 156 158 // 157 159 return oPar; -
external/TrackCovariance/ObsTrk.h
r9a7ea36 rebf40fd 6 6 #include <TMatrixDSym.h> 7 7 #include <TDecompChol.h> 8 #include "SolGeom.h" 8 9 #include "TrkUtil.h" 9 10 #include "SolGridCov.h" … … 23 24 private: 24 25 Double_t fB; // Solenoid magnetic field 25 SolGridCov *fGC; // Covariance matrix grid 26 SolGridCov* fGC; // Covariance matrix grid 27 SolGeom* fG; // Tracker geometry 26 28 Double_t fGenQ; // Generated track charge 27 29 Double_t fObsQ; // Observed track charge … … 47 49 // Service routines 48 50 // 49 TVectorD GenToObsPar(TVectorD gPar , SolGridCov* GC);51 TVectorD GenToObsPar(TVectorD gPar); 50 52 // 51 53 public: … … 53 55 // Constructors 54 56 // x(3) track origin, p(3) track momentum at origin, Q charge, B magnetic field in Tesla 55 ObsTrk(TVector3 x, TVector3 p, Double_t Q, Double_t B, SolGridCov *GC); // Initialize and generate smeared56 ObsTrk(Double_t *x, Double_t *p, Double_t Q, Double_t B, SolGridCov* GC); // Initialize and generate smeared track57 ObsTrk(TVector3 x, TVector3 p, Double_t Q, SolGridCov *GC, SolGeom *G); // Initialize and generate smeared 58 ObsTrk(Double_t *x, Double_t *p, Double_t Q, SolGridCov* GC, SolGeom *G); // Initialize and generate smeared track 57 59 // Destructor 58 60 ~ObsTrk(); -
external/TrackCovariance/SolGeom.cc
r9a7ea36 rebf40fd 87 87 if (flLay == 1) fNm++; 88 88 } 89 // 90 // Define inner box for fast tracking 91 // 92 SetMinBoundaries(); 89 93 } 90 94 … … 104 108 delete[] fflLay; 105 109 } 110 111 // 112 // Get inner boundaries of cylindrical box for fast simulation 113 // 114 void SolGeom::SetMinBoundaries() 115 { 116 // Get radius of first barrel layer 117 fRmin = 1000000.0; 118 fZminPos = 1000000.0; 119 fZminNeg = -1000000.0; 120 for (Int_t i = 0; i < fNlay; i++){ 121 if (ftyLay[i] == 1) { // Cylinders 122 if (frPos[i] < fRmin) fRmin = frPos[i]; 123 } 124 if (ftyLay[i] == 2) { // Disks 125 if (frPos[i] > 0.0 && frPos[i] < fZminPos) fZminPos = frPos[i]; // Positive direction 126 if (frPos[i] < 0.0 && frPos[i] > fZminNeg) fZminNeg = frPos[i]; // Negative direction 127 } 128 } 129 } -
external/TrackCovariance/SolGeom.h
r9a7ea36 rebf40fd 6 6 7 7 // Class to create geometry for solenoid geometry 8 // Simplified implementations with cylindrical and disk layers 9 // 10 // Author: F. Bedeschi, INFN - Pisa 8 11 9 12 class SolGeom{ … … 37 40 Double_t *fsgLayL; // Resolution Lower side (meters) - 0 = no measurement 38 41 Bool_t *fflLay; // measurement flag = T, scattering only = F 42 // 43 // 44 Double_t fRmin; // Radius of first barrel layer 45 Double_t fZminPos; // Z of first disk in positive direction 46 Double_t fZminNeg; // Z of first disk in negative direction 47 void SetMinBoundaries(); // define inner box for fast simulation 39 48 40 49 public: … … 61 70 Double_t lSgL(Int_t nlayer) { return fsgLayL[nlayer]; } 62 71 Bool_t isMeasure(Int_t nlayer) { return fflLay[nlayer]; } 72 // 73 // Define cylindrical box to use for fast simulation 74 // 75 Double_t GetRmin() { return fRmin; } 76 Double_t GetZminPos() { return fZminPos; } 77 Double_t GetZminNeg() { return fZminNeg; } 63 78 }; 64 79 -
external/TrackCovariance/SolGridCov.cc
r9a7ea36 rebf40fd 103 103 return Accept; 104 104 } 105 106 105 // 106 // Detailed acceptance check 107 // 108 Bool_t SolGridCov::IsAccepted(TVector3 x, TVector3 p, SolGeom* G) 109 { 110 Bool_t Accept = kFALSE; 111 // 112 // Check if track origin is inside beampipe and betwen the first disks 113 // 114 Double_t Rin = G->GetRmin(); 115 Double_t ZinPos = G->GetZminPos(); 116 Double_t ZinNeg = G->GetZminNeg(); 117 Bool_t inside = TrkUtil::IsInside(x, Rin, ZinNeg, ZinPos); // Check if in inner box 118 if (inside) Accept = IsAccepted(p); 119 else 120 { 121 SolTrack* trk = new SolTrack(x, p, G); 122 if (trk->nmHit() >= fNminHits)Accept = kTRUE; 123 delete trk; 124 } 125 // 126 return Accept; 127 } 128 129 // 107 130 // Find bin in grid 108 131 Int_t SolGridCov::GetMinIndex(Double_t xval, Int_t N, TVectorD x) … … 193 216 if (!Chl.Decompose()) 194 217 { 195 cout << "SolGridCov::GetCov: Interpolated matrix not positive definite. Recovering ...." <<endl;218 std::cout << "SolGridCov::GetCov: Interpolated matrix not positive definite. Recovering ...." << std::endl; 196 219 TMatrixDSym rCv = MakePosDef(CvN); CvN = rCv; 197 220 TMatrixDSym DCv(5); DCv.Zero(); -
external/TrackCovariance/SolGridCov.h
r9a7ea36 rebf40fd 18 18 TVectorD fAnga; // Array of angle points in degrees 19 19 TMatrixDSym *fCov; // Pointers to grid of covariance matrices 20 AcceptanceClx *fAcc;// Pointer to acceptance class21 Int_t fNminHits;// Minimum number of hits to accept track20 AcceptanceClx *fAcc; // Pointer to acceptance class 21 Int_t fNminHits; // Minimum number of hits to accept track 22 22 // Service routines 23 23 Int_t GetMinIndex(Double_t xval, Int_t N, TVectorD x); // Find bin … … 40 40 void SetMinHits(Int_t MinHits) { fNminHits = MinHits; }; // Set minimum number of hits to accept (default = 6) 41 41 Int_t GetMinHits() { return fNminHits; }; 42 Bool_t IsAccepted(Double_t pt, Double_t Theta); // From pt (GeV) and theta (degrees) 43 Bool_t IsAccepted(Double_t *p); // From momentum components (GeV) 44 Bool_t IsAccepted(TVector3 p); // As above in Vector3 format 42 Bool_t IsAccepted(Double_t pt, Double_t Theta); // From pt (GeV) and theta (degrees) 43 Bool_t IsAccepted(Double_t *p); // From momentum components (GeV) 44 Bool_t IsAccepted(TVector3 p); // As above in Vector3 format 45 Bool_t IsAccepted(TVector3 x, TVector3 p, SolGeom *G); // As above checking track origin 45 46 46 47 }; -
external/TrackCovariance/SolTrack.cc
r9a7ea36 rebf40fd 1 #include <iostream>2 1 2 #include "SolGeom.h" 3 #include "SolTrack.h" 3 4 #include <TString.h> 4 5 #include <TMath.h> … … 7 8 #include <TDecompChol.h> 8 9 #include <TMatrixDSymEigen.h> 9 10 #include "SolGeom.h" 11 #include "SolTrack.h" 12 13 using namespace std; 14 10 #include <TGraph.h> 11 #include <iostream> 12 // 13 // Constructors 15 14 SolTrack::SolTrack(Double_t *x, Double_t *p, SolGeom *G) 16 15 { 17 fG = G; 18 // Store momentum 19 fp[0] = p[0]; fp[1] = p[1]; fp[2] = p[2]; 20 Double_t px = p[0]; Double_t py = p[1]; Double_t pz = p[2]; 21 fx[0] = x[0]; fx[1] = x[1]; fx[2] = x[2]; 22 Double_t xx = x[0]; Double_t yy = x[1]; Double_t zz = x[2]; 23 // Store parameters 24 Double_t pt = TMath::Sqrt(px*px + py*py); 25 Double_t Charge = 1.0; // Don't worry about charge for now 26 Double_t a = -Charge*G->B()*0.2998; // Normalized speed of light 27 Double_t C = a / (2 * pt); // pt in GeV, B in Tesla, C in meters 28 Double_t r2 = xx*xx + yy*yy; 29 Double_t cross = xx*py - yy*px; 30 Double_t T = TMath::Sqrt(pt*pt - 2 * a*cross + a*a*r2); 31 Double_t phi0 = TMath::ATan2((py - a*xx) / T, (px + a*yy) / T); 32 Double_t D; 33 if (pt < 10.0) D = (T - pt) / a; 34 else D = (-2 * cross + a*r2) / (T + pt); 35 Double_t B = C*TMath::Sqrt((r2 - D*D) / (1 + 2 * C*D)); 36 Double_t st = TMath::ASin(B) / C; 37 Double_t ct = pz / pt; 38 Double_t z0 = zz - ct*st; 39 fpar[0] = D; 40 fpar[1] = phi0; 41 fpar[2] = C; 42 fpar[3] = z0; 43 fpar[4] = ct; 44 // Init covariances 45 fCov.ResizeTo(5, 5); 16 // Set B field 17 fG = G; // Store geometry 18 Double_t B = G->B(); 19 SetB(B); 20 // Store momentum and position 21 fp[0] = p[0]; fp[1] = p[1]; fp[2] = p[2]; 22 fx[0] = x[0]; fx[1] = x[1]; fx[2] = x[2]; 23 // Get generated parameters 24 TVector3 xv(fx); 25 TVector3 pv(fp); 26 Double_t Charge = 1.0; // Don't worry about charge for now 27 TVectorD gPar = XPtoPar(xv, pv, Charge); 28 // Store parameters 29 fpar[0] = gPar(0); 30 fpar[1] = gPar(1); 31 fpar[2] = gPar(2); 32 fpar[3] = gPar(3); 33 fpar[4] = gPar(4); 34 //cout << "SolTrack:: C = " << C << ", fpar[2] = " << fpar[2] << endl; 35 // 36 // Init covariances 37 // 38 fCov.ResizeTo(5, 5); 46 39 } 47 40 SolTrack::SolTrack(TVector3 x, TVector3 p, SolGeom* G) 48 41 { 49 fG = G; 42 // set B field 43 fG = G; // Store geometry 44 Double_t B = G->B(); 45 SetB(B); 50 46 // Store momentum 51 47 fp[0] = p(0); fp[1] = p(1); fp[2] = p(2); 52 Double_t px = p(0); Double_t py = p(1); Double_t pz = p(2);53 48 fx[0] = x(0); fx[1] = x(1); fx[2] = x(2); 54 Double_t xx = x(0); Double_t yy = x(1); Double_t zz = x(2); 49 // Get generated parameters 50 Double_t Charge = 1.0; // Don't worry about charge for now 51 TVectorD gPar = XPtoPar(x, p, Charge); 55 52 // Store parameters 56 Double_t pt = TMath::Sqrt(px * px + py * py); 57 Double_t Charge = 1.0; // Don't worry about charge for now 58 Double_t a = -Charge * G->B() * 0.2998; // Normalized speed of light 59 Double_t C = a / (2 * pt); // pt in GeV, B in Tesla, C in meters 60 Double_t r2 = xx * xx + yy * yy; 61 Double_t cross = xx * py - yy * px; 62 Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2); 63 Double_t phi0 = TMath::ATan2((py - a * xx) / T, (px + a * yy) / T); 64 Double_t D; 65 if (pt < 10.0) D = (T - pt) / a; 66 else D = (-2 * cross + a * r2) / (T + pt); 67 Double_t B = C * TMath::Sqrt((r2 - D * D) / (1 + 2 * C * D)); 68 Double_t st = TMath::ASin(B) / C; 69 Double_t ct = pz / pt; 70 Double_t z0 = zz - ct * st; 53 fpar[0] = gPar(0); 54 fpar[1] = gPar(1); 55 fpar[2] = gPar(2); 56 fpar[3] = gPar(3); 57 fpar[4] = gPar(4); 58 //cout << "SolTrack:: C = " << C << ", fpar[2] = " << fpar[2] << endl; 59 // 60 // Init covariances 61 // 62 fCov.ResizeTo(5, 5); 63 } 64 // 65 SolTrack::SolTrack(Double_t D, Double_t phi0, Double_t C, Double_t z0, Double_t ct, SolGeom *G) 66 { 67 fG = G; 68 Double_t B = G->B(); 69 SetB(B); 70 // Store parameters 71 71 fpar[0] = D; 72 72 fpar[1] = phi0; … … 74 74 fpar[3] = z0; 75 75 fpar[4] = ct; 76 //cout << "SolTrack:: C = " << C << ", fpar[2] = " << fpar[2] << endl; 76 // Store momentum 77 Double_t pt = B * TrkUtil::cSpeed() / TMath::Abs(2 * C); 78 Double_t px = pt*TMath::Cos(phi0); 79 Double_t py = pt*TMath::Sin(phi0); 80 Double_t pz = pt*ct; 81 // 82 fp[0] = px; fp[1] = py; fp[2] = pz; 83 fx[0] = -D*TMath::Sin(phi0); fx[1] = D*TMath::Cos(phi0); fx[2] = z0; 77 84 // 78 85 // Init covariances 79 86 // 80 87 fCov.ResizeTo(5, 5); 81 }82 83 SolTrack::SolTrack(Double_t D, Double_t phi0, Double_t C, Double_t z0, Double_t ct, SolGeom *G)84 {85 fG = G;86 // Store parameters87 fpar[0] = D;88 fpar[1] = phi0;89 fpar[2] = C;90 fpar[3] = z0;91 fpar[4] = ct;92 // Store momentum93 Double_t pt = G->B()*0.2998 / TMath::Abs(2 * C);94 Double_t px = pt*TMath::Cos(phi0);95 Double_t py = pt*TMath::Sin(phi0);96 Double_t pz = pt*ct;97 98 fp[0] = px; fp[1] = py; fp[2] = pz;99 fx[0] = -D*TMath::Sin(phi0); fx[1] = D*TMath::Cos(phi0); fx[2] = z0;100 // Init covariances101 fCov.ResizeTo(5, 5);102 88 } 103 89 // Destructor 104 90 SolTrack::~SolTrack() 105 91 { 106 delete[] & fp; 107 delete[] & fpar; 108 fCov.Clear(); 109 } 92 fCov.Clear(); 93 } 94 // 110 95 // Calculate intersection with given layer 111 96 Bool_t SolTrack::HitLayer(Int_t il, Double_t &R, Double_t &phi, Double_t &zz) 112 97 { 113 Double_t Di = D(); 114 Double_t phi0i = phi0(); 115 Double_t Ci = C(); 116 Double_t z0i = z0(); 117 Double_t cti = ct(); 118 119 R = 0; phi = 0; zz = 0; 120 121 Bool_t val = kFALSE; 122 if (fG->lTyp(il) == 1) // Cylinder: layer at constant R 123 { 124 R = fG->lPos(il); 125 Double_t argph = (Ci*R + (1 + Ci*Di)*Di / R) / (1. + 2.*Ci*Di); 126 if (TMath::Abs(argph) < 1.0) 127 { 128 Double_t argz = Ci*TMath::Sqrt((R*R - Di*Di) / (1 + 2 * Ci*Di)); 129 if (TMath::Abs(argz) < 1.0) 130 { 131 zz = z0i + cti*TMath::ASin(argz) / Ci; 132 if (zz > fG->lxMin(il) && zz < fG->lxMax(il)) 133 { 134 phi = phi0i + TMath::ASin(argph); 135 val = kTRUE; 136 } 137 } 138 } 139 } 140 else if (fG->lTyp(il) == 2) // disk: layer at constant z 141 { 142 zz = fG->lPos(il); 143 Double_t arg = Ci*(zz - z0i) / cti; 144 if (TMath::Abs(arg) < 1.0 && (zz - z0i) / cti > 0) 145 { 146 R = TMath::Sqrt(Di*Di + (1. + 2.*Ci*Di)*pow(TMath::Sin(arg), 2) / (Ci*Ci)); 147 if (R > fG->lxMin(il) && R < fG->lxMax(il)) 148 { 149 Double_t arg1 = (Ci*R + (1 + Ci*Di)*Di / R) / (1. + 2.*Ci*Di); 150 if (TMath::Abs(arg1) < 1.0) 151 { 152 phi = phi0i + TMath::ASin(arg1); 153 val = kTRUE; 154 } 155 } 156 } 157 } 158 // 159 return val; 160 } 98 Double_t Di = D(); 99 Double_t phi0i = phi0(); 100 Double_t Ci = C(); 101 Double_t z0i = z0(); 102 Double_t cti = ct(); 103 // 104 R = 0; phi = 0; zz = 0; 105 Bool_t val = kFALSE; 106 Double_t Rmin = TMath::Sqrt(fx[0] * fx[0] + fx[1] * fx[1]); // Smallest track radius 107 if (Rmin < TMath::Abs(Di)) return val; 108 // 109 Double_t ArgzMin = Ci * TMath::Sqrt((Rmin * Rmin - Di * Di) / (1 + 2 * Ci * Di)); 110 Double_t stMin = TMath::ASin(ArgzMin) / Ci; // Arc length at track origin 111 // 112 if (fG->lTyp(il) == 1) // Cylinder: layer at constant R 113 { 114 R = fG->lPos(il); 115 Double_t argph = (Ci*R + (1 + Ci*Di)*Di / R) / (1. + 2.*Ci*Di); 116 if (TMath::Abs(argph) < 1.0 && R > Rmin) 117 { 118 Double_t argz = Ci*TMath::Sqrt((R*R - Di*Di) / (1 + 2 * Ci*Di)); 119 if (TMath::Abs(argz) < 1.0) 120 { 121 zz = z0i + cti*TMath::ASin(argz) / Ci; 122 if (zz > fG->lxMin(il) && zz < fG->lxMax(il)) 123 { 124 phi = phi0i + TMath::ASin(argph); 125 val = kTRUE; 126 } 127 } 128 } 129 } 130 else if (fG->lTyp(il) == 2) // disk: layer at constant z 131 { 132 zz = fG->lPos(il); 133 Double_t st = (zz - z0i) / cti; 134 if (TMath::Abs(Ci * st) < 1.0 && st > stMin) 135 { 136 R = TMath::Sqrt(Di * Di + (1. + 2. * Ci * Di) * pow(TMath::Sin(Ci * st), 2) / (Ci * Ci)); 137 if (R > fG->lxMin(il) && R < fG->lxMax(il)) 138 { 139 Double_t arg1 = (Ci*R + (1 + Ci*Di)*Di / R) / (1. + 2.*Ci*Di); 140 if (TMath::Abs(arg1) < 1.0) 141 { 142 phi = phi0i + TMath::ASin(arg1); 143 val = kTRUE; 144 } 145 } 146 } 147 } 148 // 149 return val; 150 } 151 // 161 152 // # of layers hit 162 153 Int_t SolTrack::nHit() 163 154 { 164 165 166 167 168 169 170 } 171 155 Int_t kh = 0; 156 Double_t R; Double_t phi; Double_t zz; 157 for (Int_t i = 0; i < fG->Nl(); i++) 158 if (HitLayer(i, R, phi, zz))kh++; 159 // 160 return kh; 161 } 162 // 172 163 // # of measurement layers hit 173 164 Int_t SolTrack::nmHit() … … 181 172 } 182 173 // 183 184 185 174 // List of layers hit with intersections 186 175 Int_t SolTrack::HitList(Int_t *&ihh, Double_t *&rhh, Double_t *&zhh) 187 176 { 188 // Return lists of hits associated to a track including all scattering layers. 189 // Return value is the total number of measurement hits 190 // kmh = total number of measurement layers hit for given type 191 // ihh = pointer to layer number 192 // rhh = radius of hit 193 // zhh = z of hit 194 195 // ***** NB: double layers with stereo on lower layer not included 196 197 Int_t kh = 0; // Number of layers hit 198 Int_t kmh = 0; // Number of measurement layers of given type 199 for (Int_t i = 0; i < fG->Nl(); i++) 200 { 201 Double_t R; Double_t phi; Double_t zz; 202 if (HitLayer(i, R, phi, zz)) // Only barrel type layers 203 { 204 zhh[kh] = zz; 205 rhh[kh] = R; 206 ihh[kh] = i; 207 if (fG->isMeasure(i))kmh++; 208 kh++; 209 } 210 } 211 212 return kmh; 213 } 214 177 // 178 // Return lists of hits associated to a track including all scattering layers. 179 // Return value is the total number of measurement hits 180 // kmh = total number of measurement layers hit for given type 181 // ihh = pointer to layer number 182 // rhh = radius of hit 183 // zhh = z of hit 184 // 185 // ***** NB: double layers with stereo on lower layer not included 186 // 187 Int_t kh = 0; // Number of layers hit 188 Int_t kmh = 0; // Number of measurement layers of given type 189 for (Int_t i = 0; i < fG->Nl(); i++) 190 { 191 Double_t R; Double_t phi; Double_t zz; 192 if (HitLayer(i, R, phi, zz)) 193 { 194 zhh[kh] = zz; 195 rhh[kh] = R; 196 ihh[kh] = i; 197 if (fG->isMeasure(i))kmh++; 198 kh++; 199 } 200 } 201 // 202 return kmh; 203 } 204 // 215 205 // List of XYZ measurements without any error 216 206 Int_t SolTrack::HitListXYZ(Int_t *&ihh, Double_t *&Xh, Double_t *&Yh, Double_t *&Zh) 217 207 { 218 208 // 219 // Return lists of hits associated to a track for all measurement layers. 209 // Return lists of hits associated to a track for all measurement layers. 220 210 // Return value is the total number of measurement hits 221 211 // kmh = total number of measurement layers hit for given type … … 244 234 } 245 235 // 236 // Track plot 237 // 238 TGraph *SolTrack::TrkPlot() 239 { 240 // 241 // Fill list of layers hit 242 // 243 Int_t Nhit = nHit(); // Total number of layers hit 244 //cout << "Nhit = " << Nhit << endl; 245 Double_t *zh = new Double_t[Nhit]; // z of hit 246 Double_t *rh = new Double_t[Nhit]; // r of hit 247 Int_t *ih = new Int_t [Nhit]; // true index of layer 248 Int_t kmh; // Number of measurement layers hit 249 // 250 kmh = HitList(ih, rh, zh); // hit layer list 251 //for (Int_t j = 0; j < Nhit; j++) cout << "r = " << rh[j] << ", z = " << zh[j] << endl; 252 Double_t *dh = new Double_t[Nhit]; // Hit distance from origin 253 for(Int_t i=0; i<Nhit; i++)dh[i] = TMath::ASin(C() * TMath::Sqrt((rh[i] * rh[i] - D() * D()) / (1. + 2 * C() * D()))) / C(); // Arc length traveled; 254 // 255 Int_t *hord = new Int_t[Nhit]; 256 TMath::Sort(Nhit, dh, hord, kFALSE); // Order by increasing phase 257 Double_t *z = new Double_t[Nhit]; // z of ordered hit 258 Double_t *r = new Double_t[Nhit]; // r of ordered hit 259 for (Int_t i = 0; i < Nhit; i++) 260 { 261 z[i] = zh[hord[i]]; 262 r[i] = rh[hord[i]]; 263 } 264 //cout << "After ordering" << endl; 265 //for (Int_t j = 0; j < Nhit; j++) cout << "r = " << rh[j] << ", z = " << zh[j] << endl; 266 TGraph *gr = new TGraph(Nhit, z, r); // graph intersection with layers 267 gr->SetMarkerStyle(kCircle); 268 gr->SetMarkerColor(kMagenta); 269 gr->SetMarkerSize(1); 270 gr->SetLineColor(kMagenta); 271 // 272 // clean up 273 // 274 delete[] zh; 275 delete[] rh; 276 delete[] ih; 277 delete[] hord; 278 return gr; 279 } 280 // 246 281 // Covariance matrix estimation 247 282 // … … 250 285 // 251 286 // 252 // Input flags: 287 // Input flags: 253 288 // Res = .TRUE. turn on resolution effects/Use standard resolutions 254 289 // .FALSE. set all resolutions to 0 … … 265 300 Int_t ntry = 0; 266 301 Int_t ntrymax = 0; 267 Int_t Nhit = nHit(); 302 Int_t Nhit = nHit(); // Total number of layers hit 268 303 Double_t *zhh = new Double_t[Nhit]; // z of hit 269 304 Double_t *rhh = new Double_t[Nhit]; // r of hit 270 305 Double_t *dhh = new Double_t[Nhit]; // distance of hit from origin 271 306 Int_t *ihh = new Int_t[Nhit]; // true index of layer 272 Int_t kmh; 307 Int_t kmh; // Number of measurement layers hit 273 308 // 274 309 kmh = HitList(ihh, rhh, zhh); // hit layer list 275 Int_t mTot = 0; 310 Int_t mTot = 0; // Total number of measurements 276 311 for (Int_t i = 0; i < Nhit; i++) 277 312 { 278 dhh[i] = TMath::Sqrt(rhh[i] * rhh[i] + zhh[i] * zhh[i]); 313 Double_t rr = rhh[i]; 314 dhh[i] = TMath::ASin(C() * TMath::Sqrt((rr * rr - D() * D()) / (1. + 2 * C() * D()))) / C(); // Arc length traveled 279 315 if (fG->isMeasure(ihh[i])) mTot += fG->lND(ihh[i]); // Count number of measurements 280 316 } 281 317 // 282 // Order hit list by increasing distance from origin318 // Order hit list by increasing arc length 283 319 // 284 320 Int_t *hord = new Int_t[Nhit]; // hit order by increasing distance from origin 285 TMath::Sort(Nhit, dhh, hord, kFALSE); // Order by increasing distance from origin321 TMath::Sort(Nhit, dhh, hord, kFALSE); // Order by increasing distance from origin 286 322 Double_t *zh = new Double_t[Nhit]; // d-ordered z of hit 287 323 Double_t *rh = new Double_t[Nhit]; // d-ordered r of hit … … 297 333 // Store interdistances and multiple scattering angles 298 334 // 299 Double_t sn2t = 1.0 / (1 + ct()*ct()); //sin^2 theta of track335 Double_t sn2t = 1.0 / (1.0 + ct()*ct()); //sin^2 theta of track 300 336 Double_t cs2t = 1.0 - sn2t; //cos^2 theta 301 337 Double_t snt = TMath::Sqrt(sn2t); // sin theta … … 306 342 // 307 343 TMatrixDSym dik(Nhit); dik.Zero(); // Distances between layers 308 Double_t *thms = new Double_t[Nhit]; // Scattering angles/plane 309 Double_t *cs = new Double_t[Nhit]; // Cosine of angle with layer normal 344 Double_t *thms = new Double_t[Nhit]; // Scattering angles/plane 345 Double_t* cs = new Double_t[Nhit]; // Cosine of angle with normal in transverse plane 346 // 310 347 for (Int_t ii = 0; ii < Nhit; ii++) // Hit layer loop 311 348 { 312 349 Int_t i = ih[ii]; // Get true layer number 350 Int_t il = hord[ii]; // Unordered layer 313 351 Double_t B = C()*TMath::Sqrt((rh[ii] * rh[ii] - D()*D()) / (1 + 2 * C()*D())); 352 // 314 353 Double_t pxi = px0*(1-2*B*B)-2*py0*B*TMath::Sqrt(1-B*B); // Momentum at scattering layer 315 354 Double_t pyi = py0*(1-2*B*B)+2*px0*B*TMath::Sqrt(1-B*B); 316 355 Double_t pzi = pz0; 317 356 Double_t ArgRp = (rh[ii]*C() + (1 + C() * D())*D() / rh[ii]) / (1 + 2 * C()*D()); 357 // 318 358 Double_t phi = phi0() + TMath::ASin(ArgRp); 319 359 Double_t nx = TMath::Cos(phi); // Barrel layer normal 320 360 Double_t ny = TMath::Sin(phi); 321 361 Double_t nz = 0.0; 322 if (fG->lTyp(i) == 2) // this is Z layer 362 cs[ii] = TMath::Abs((pxi * nx + pyi * ny) / pt()); 363 // 364 if (fG->lTyp(i) == 2) // this is Z layer 323 365 { 324 366 nx = 0.0; … … 326 368 nz = 1.0; 327 369 } 328 Double_t corr = (pxi*nx + pyi * ny + pzi * nz) / p(); 329 cs[ii] = corr; 330 Double_t Rlf = fG->lTh(i) / (corr*fG->lX0(i)); // Rad. length fraction 370 Double_t corr = TMath::Abs(pxi*nx + pyi * ny + pzi * nz) / p(); 371 Double_t Rlf = fG->lTh(i) / (corr*fG->lX0(i)); // Rad. length fraction 331 372 thms[ii] = 0.0136*TMath::Sqrt(Rlf)*(1.0 + 0.038*TMath::Log(Rlf)) / p(); // MS angle 332 373 if (!MS)thms[ii] = 0; … … 334 375 for (Int_t kk = 0; kk < ii; kk++) // Fill distances between layers 335 376 { 336 //dik(ii, kk) = TMath::Sqrt(pow(rh[ii] - rh[kk], 2) + pow(zh[ii] - zh[kk], 2)); 337 Double_t Ci = C(); 338 dik(ii, kk) = (TMath::ASin(Ci*rh[ii])-TMath::ASin(Ci*rh[kk]))/(Ci*snt); 377 Int_t kl = hord[kk]; // Unordered layer 378 dik(ii, kk) = TMath::Abs(dhh[il] - dhh[kl])/snt; 339 379 dik(kk, ii) = dik(ii, kk); 340 380 } 341 //342 // Store momentum components for resolution correction cosines343 //344 Double_t *pRi = new Double_t[Nhit];345 pRi[ii] = TMath::Abs(pxi * TMath::Cos(phi) + pyi * TMath::Sin(phi)); // Radial component346 Double_t *pPhi = new Double_t[Nhit];347 pPhi[ii] = TMath::Abs(pxi * TMath::Sin(phi) - pyi * TMath::Cos(phi)); // Phi component348 381 } 349 382 // 350 383 // Fill measurement covariance 351 384 // 352 Int_t *mTl = new Int_t[mTot]; // Pointer from measurement number to true layer number 385 TVectorD tPar(5,fpar); 386 // 353 387 TMatrixDSym Sm(mTot); Sm.Zero(); // Measurement covariance 354 TMatrixD Rm(mTot, 5); 355 Int_t im = 0; 388 TMatrixD Rm(mTot, 5); // Derivative matrix 389 Int_t im = 0; // Initialize number of measurement counter 356 390 // 357 391 // Fill derivatives and error matrix with MS 358 392 // 359 Double_t AngMax = 90.; Double_t AngMx = AngMax * TMath::Pi() / 180.;360 Double_t csMin = TMath::Cos(AngMx); // Set maximum angle wrt normal361 //362 393 for (Int_t ii = 0; ii < Nhit; ii++) 363 394 { 364 Int_t i = ih[ii]; 395 Int_t i = ih[ii]; // True layer number 365 396 Int_t ityp = fG->lTyp(i); // Layer type Barrel or Z 366 397 Int_t nmeai = fG->lND(i); // # measurements in layer 367 if (fG->isMeasure(i) && nmeai >0 && cs[ii] > csMin) 368 { 369 Double_t Di = D(); // Get true track parameters 370 Double_t phi0i = phi0(); 371 Double_t Ci = C(); 372 Double_t z0i = z0(); 373 Double_t cti = ct(); 374 // 375 Double_t Ri = rh[ii]; 376 Double_t ArgRp = (Ri*Ci + (1 + Ci * Di)*Di / Ri) / (1 + 2 * Ci*Di); 377 Double_t ArgRz = Ci * TMath::Sqrt((Ri*Ri - Di * Di) / (1 + 2 * Ci*Di)); 378 TVectorD dRphi(5); dRphi.Zero(); // R-phi derivatives @ const. R 379 TVectorD dRz(5); dRz.Zero(); // z derivatives @ const. R 380 // 381 // Derivative overflow protection 382 Double_t dMin = 0.8; 383 dRphi(0) = (1 - 2 * Ci*Ci*Ri*Ri) / 384 TMath::Max(dMin,TMath::Sqrt(1 - ArgRp * ArgRp)); // D derivative 385 dRphi(1) = Ri; // phi0 derivative 386 dRphi(2) = Ri * Ri / 387 TMath::Max(dMin,TMath::Sqrt(1 - ArgRp * ArgRp)); // C derivative 388 dRphi(3) = 0.0; // z0 derivative 389 dRphi(4) = 0.0; // cot(theta) derivative 390 // 391 dRz(0) = -cti * Di / 392 (Ri*TMath::Max(dMin,TMath::Sqrt(1 - Ci * Ci*Ri*Ri))); // D 393 dRz(1) = 0.0; // Phi0 394 dRz(2) = cti * (Ri*Ci / TMath::Sqrt(1-Ri*Ri*Ci*Ci) - // C 395 TMath::ASin(Ri*Ci)) / (Ci*Ci); 396 dRz(3) = 1.0; // Z0 397 dRz(4) = TMath::ASin(ArgRz) / Ci; // Cot(theta) 398 399 if (fG->isMeasure(i)) 400 { 401 Double_t Ri = rh[ii]; 402 Double_t zi = zh[ii]; 398 403 // 399 404 for (Int_t nmi = 0; nmi < nmeai; nmi++) 400 405 { 401 mTl[im] = i; 402 Double_t stri = 0; 403 Double_t sig = 0; 406 Double_t stri = 0; // Stereo angle 407 Double_t sig = 0; // Layer resolution 408 // Constant R derivatives 409 TVectorD dRphi(5); dRphi.Zero(); // R-phi derivatives @ const. R 410 TVectorD dRz(5); dRz.Zero(); // z derivatives @ const. R 411 // 404 412 if (nmi + 1 == 1) // Upper layer measurements 405 413 { … … 407 415 Double_t csa = TMath::Cos(stri); 408 416 Double_t ssa = TMath::Sin(stri); 417 // 409 418 sig = fG->lSgU(i); // Resolution 410 419 if (ityp == 1) // Barrel type layer (Measure R-phi, stereo or z at const. R) 411 420 { 412 421 // 413 // Almost exact solution (CD<<1, D<<R) 422 // Exact solution 423 dRphi = derRphi_R(tPar, Ri); 424 dRz = derZ_R (tPar, Ri); 425 // 414 426 Rm(im, 0) = csa * dRphi(0) - ssa * dRz(0); // D derivative 415 427 Rm(im, 1) = csa * dRphi(1) - ssa * dRz(1); // phi0 derivative 416 428 Rm(im, 2) = csa * dRphi(2) - ssa * dRz(2); // C derivative 417 429 Rm(im, 3) = csa * dRphi(3) - ssa * dRz(3); // z0 derivative 418 Rm(im, 4) = csa * dRphi(4) - ssa * dRz(4); // cot(theta) derivative 430 Rm(im, 4) = csa * dRphi(4) - ssa * dRz(4); // cot(theta) derivative 419 431 } 420 if (ityp == 2) // Z type layer (Measure phi at const. Z)432 if (ityp == 2) // Z type layer (Measure R-phi at const. Z) 421 433 { 422 Rm(im, 0) = 1.0; // D derivative 423 Rm(im, 1) = rh[ii]; // phi0 derivative 424 Rm(im, 2) = rh[ii] * rh[ii]; // C derivative 425 Rm(im, 3) = 0; // z0 derivative 426 Rm(im, 4) = 0; // cot(theta) derivative 434 TVectorD dRphz(5); dRphz.Zero(); // R-phi derivatives @ const. z 435 dRphz = derRphi_Z(tPar, zi); 436 // 437 Rm(im, 0) = dRphz(0); // D derivative 438 Rm(im, 1) = dRphz(1); // phi0 derivative 439 Rm(im, 2) = dRphz(2); // C derivative 440 Rm(im, 3) = dRphz(3); // z0 derivative 441 Rm(im, 4) = dRphz(4); // cot(theta) derivative 427 442 } 428 443 } … … 436 451 { 437 452 // 438 // Almost exact solution (CD<<1, D<<R) 453 // Exact solution 454 dRphi = derRphi_R(tPar, Ri); 455 dRz = derZ_R (tPar, Ri); 456 // 439 457 Rm(im, 0) = csa * dRphi(0) - ssa * dRz(0); // D derivative 440 458 Rm(im, 1) = csa * dRphi(1) - ssa * dRz(1); // phi0 derivative … … 445 463 if (ityp == 2) // Z type layer (Measure R at const. z) 446 464 { 447 Rm(im, 0) = 0; // D derivative 448 Rm(im, 1) = 0; // phi0 derivative 449 Rm(im, 2) = 0; // C derivative 450 Rm(im, 3) = -1.0 / ct(); // z0 derivative 451 Rm(im, 4) = -rh[ii] / ct(); // cot(theta) derivative 465 TVectorD dRRz(5); dRRz.Zero(); // R derivatives @ const. z 466 dRRz = derR_Z(tPar, zi); 467 // 468 Rm(im, 0) = dRRz(0); // D derivative 469 Rm(im, 1) = dRRz(1); // phi0 derivative 470 Rm(im, 2) = dRRz(2); // C derivative 471 Rm(im, 3) = dRRz(3); // z0 derivative 472 Rm(im, 4) = dRRz(4); // cot(theta) derivative 452 473 } 453 474 } … … 457 478 // 458 479 Int_t km = 0; 480 Double_t CosMin = TMath::Sin(TMath::Pi() / 9.); // Protect for derivative explosion 459 481 for (Int_t kk = 0; kk <= ii; kk++) 460 482 { 461 Int_t k = ih[kk]; 462 Int_t ktyp = fG->lTyp(k); // Layer type Barrel or 483 Int_t k = ih[kk]; // True layer number 484 Int_t ktyp = fG->lTyp(k); // Layer type Barrel or disk 463 485 Int_t nmeak = fG->lND(k); // # measurements in layer 464 if (fG->isMeasure(k) && nmeak > 0 &&cs[kk] > csMin)486 if (fG->isMeasure(k)) 465 487 { 466 488 for (Int_t nmk = 0; nmk < nmeak; nmk++) 467 489 { 468 490 Double_t strk = 0; 469 if (nmk + 1 == 1) strk = fG->lStU(k); // Stereo angle 470 if (nmk + 1 == 2) strk = fG->lStL(k); // Stereo angle 471 if (im == km && Res) Sm(im, km) += sig*sig; // Detector resolution on diagonal 491 if (nmk + 1 == 1) strk = fG->lStU(k); // Stereo angle upper 492 if (nmk + 1 == 2) strk = fG->lStL(k); // Stereo angle lower 493 //if (im == km && Res) Sm(im, km) += sig*sig; // Detector resolution on diagonal 494 if (im == km && Res) { 495 Double_t sg = sig; 496 if(TMath::Abs(strk) < TMath::Pi()/6. && cs[kk] < CosMin) 497 TMath::Min(1000.*sig,sg = sig/pow(cs[kk],4)); 498 Sm(im, km) += sg * sg; // Detector resolution on diagonal 499 } 472 500 // 473 501 // Loop on all layers below for MS contributions 474 for (Int_t jj = 0; jj < kk; jj++) 502 for (Int_t jj = 0; jj < kk; jj++) 475 503 { 476 504 Double_t di = dik(ii, jj); … … 482 510 if (ktyp == 1) msk = ms / snt; // Barrel 483 511 else if (ktyp == 2) msk = ms / cst; // Disk 484 Double_t ci = TMath:: Cos(stri); Double_t si = TMath::Sin(stri);485 Double_t ck = TMath:: Cos(strk); Double_t sk = TMath::Sin(strk);486 Sm(im, km) += di*dk*(ci*ck*ms*ms + si*sk*msi*msk); 512 Double_t ci = TMath::Abs(TMath::Cos(stri)); Double_t si = TMath::Abs(TMath::Sin(stri)); 513 Double_t ck = TMath::Abs(TMath::Cos(strk)); Double_t sk = TMath::Abs(TMath::Sin(strk)); 514 Sm(im, km) += di*dk*(ci*ck*ms*ms + si*sk*msi*msk); // Ms contribution 487 515 } 488 516 // … … 497 525 } 498 526 Sm.ResizeTo(mTot, mTot); 527 TMatrixDSym SmTemp = Sm; 499 528 Rm.ResizeTo(mTot, 5); 500 529 // … … 506 535 for (Int_t id = 0; id < mTot; id++) DSmInv(id, id) = 1.0 / TMath::Sqrt(Sm(id, id)); 507 536 TMatrixDSym SmN = Sm.Similarity(DSmInv); // Normalize diagonal to 1 508 //SmN.Invert();509 537 // 510 538 // Protected matrix inversions 511 539 // 512 TDecompChol Chl(SmN );540 TDecompChol Chl(SmN,1.e-12); 513 541 TMatrixDSym SmNinv = SmN; 514 542 if (Chl.Decompose()) … … 519 547 else 520 548 { 521 cout << "SolTrack::CovCalc: Error matrix not positive definite. Recovering ...." << endl; 549 std::cout << "SolTrack::CovCalc: Error matrix not positive definite. Recovering ...." << std::endl; 550 //cout << "pt = " << pt() << endl; 522 551 if (ntry < ntrymax) 523 552 { … … 525 554 ntry++; 526 555 } 556 // 527 557 TMatrixDSym rSmN = MakePosDef(SmN); SmN = rSmN; 528 558 TDecompChol rChl(SmN); … … 533 563 Sm = SmNinv.Similarity(DSmInv); // Error matrix inverted 534 564 TMatrixDSym H = Sm.SimilarityT(Rm); // Calculate half Hessian 535 // Normalize before inversion536 565 const Int_t Npar = 5; 537 566 TMatrixDSym DHinv(Npar); DHinv.Zero(); … … 541 570 Hnrm.Invert(); 542 571 fCov = Hnrm.Similarity(DHinv); 543 } 544 572 // 573 // debug 574 // 575 if(TMath::IsNaN(fCov(0,0))) 576 { 577 std::cout<<"SolTrack::CovCalc: NaN found in covariance matrix"<<std::endl; 578 } 579 // 580 // Lots of cleanup to do 581 delete[] zhh; 582 delete[] rhh; 583 delete[] dhh; 584 delete[] ihh; 585 delete[] hord; 586 delete[] zh; 587 delete[] rh; 588 delete[] ih; 589 delete[] cs; 590 delete[] thms; 591 } 592 // 545 593 // Force positive definitness in normalized matrix 546 594 TMatrixDSym SolTrack::MakePosDef(TMatrixDSym NormMat) … … 558 606 if (Check) 559 607 { 560 cout << "SolTrack::MakePosDef: input matrix doesn ot have 1 on diagonal. Abort." <<endl;608 std::cout << "SolTrack::MakePosDef: input matrix doesn ot have 1 on diagonal. Abort." << std::endl; 561 609 return rMatN; 562 610 } … … 566 614 TMatrixD U = Eign.GetEigenVectors(); 567 615 TVectorD lambda = Eign.GetEigenValues(); 616 //cout << "Eigenvalues:"; lambda.Print(); 617 //cout << "Input matrix: "; NormMat.Print(); 568 618 // Reset negative eigenvalues to small positive value 569 619 TMatrixDSym D(Size); D.Zero(); Double_t eps = 1.0e-13; … … 587 637 } 588 638 } 639 //cout << "Rebuilt matrix: "; rMatN.Print(); 589 640 return rMatN; 590 641 } -
external/TrackCovariance/SolTrack.h
r9a7ea36 rebf40fd 1 // 1 2 #ifndef G__SOLTRK_H 2 3 #define G__SOLTRK_H 3 4 // 4 5 #include <TMath.h> 5 6 #include <TVector3.h> 6 7 #include <TMatrixDSym.h> 7 8 class SolGeom; 9 8 #include "SolGeom.h" 9 #include "TrkUtil.h" 10 #include <TGraph.h> 11 // 12 // 10 13 // Class to store track information 11 14 // Assumes that the geometry has been initialized 12 class SolTrack{ 13 // Track handling class 14 // Assume tracks originate from (0,0) for the time being 15 // 16 class SolTrack: public TrkUtil 17 { 18 // 19 // Track handling class 20 // Assume tracks originate from (0,0) for the time being 21 // 15 22 private: 16 Int_t fNl; // Actual number of layers 17 SolGeom *fG; // Geometry 18 Double_t fp[3]; // px, py, pz momentum 19 Double_t fx[3]; // x, y, z track origin 20 Double_t fpar[5]; // D, phi0, C, z0, cot(theta) 21 22 TMatrixDSym fCov; // Full covariance matrix 23 23 Int_t fNl; // Actual number of layers 24 SolGeom *fG; // Geometry 25 Double_t fp[3]; // px, py, pz momentum 26 Double_t fx[3]; // x, y, z track origin 27 Double_t fpar[5]; // D, phi0, C, z0, cot(theta) 28 // 29 TMatrixDSym fCov; // Full covariance matrix 30 // 31 // 24 32 public: 25 // Constructors 26 SolTrack(Double_t *x, Double_t *p, SolGeom *G); 33 // 34 // Constructors 35 SolTrack(Double_t *x, Double_t *p, SolGeom *G); 27 36 SolTrack(TVector3 x, TVector3 p, SolGeom* G); 28 SolTrack(Double_t D, Double_t phi0, Double_t C, Double_t z0, Double_t ct, SolGeom *G); 29 // Destructor 30 ~SolTrack(); 31 // Accessors 32 // Position (at minimum approach) 33 Double_t x() { return fx[0]; } 34 Double_t y() { return fx[1]; } 35 Double_t z() { return fx[2]; } 36 // Momentum (at minimum approach) 37 Double_t px() { return fp[0]; } 38 Double_t py() { return fp[1]; } 39 Double_t pz() { return fp[2]; } 40 Double_t pt() { return TMath::Sqrt(fp[0] * fp[0] + fp[1] * fp[1]); } 41 Double_t p() { return TMath::Sqrt(fp[0] * fp[0] + fp[1] * fp[1] + fp[2] * fp[2]); } 42 // Track parameters 43 Double_t D() { return fpar[0]; } 44 Double_t phi0() { return fpar[1]; } 45 Double_t C() { return fpar[2]; } 46 Double_t z0() { return fpar[3]; } 47 Double_t ct() { return fpar[4]; } 48 // Covariance 49 TMatrixDSym Cov() { return fCov; } 50 // Track parameter covariance calculation 51 void CovCalc(Bool_t Res, Bool_t MS); 52 // Parameter errors 53 Double_t s_D() { return TMath::Sqrt(fCov(0, 0)); } 54 Double_t s_phi0() { return TMath::Sqrt(fCov(1, 1)); } 55 Double_t s_C() { return TMath::Sqrt(fCov(2, 2)); } 56 Double_t s_pt() { return 2 * s_C()*pt() / (0.2998*fG->B()); } // Dpt/pt 57 Double_t s_z0() { return TMath::Sqrt(fCov(3, 3)); } 58 Double_t s_ct() { return TMath::Sqrt(fCov(4, 4)); } 59 // Track hit management 60 Int_t nHit(); 61 Int_t nmHit(); 62 Bool_t HitLayer(Int_t Layer, Double_t &R, Double_t &phi, Double_t &zz); 63 Int_t HitList(Int_t *&ihh, Double_t *&rhh, Double_t *&zhh); 64 Int_t HitListXYZ(Int_t *&ihh, Double_t *&Xh, Double_t *&Yh, Double_t *&Zh); 65 66 // Make normalized matrix positive definite 67 TMatrixDSym MakePosDef(TMatrixDSym NormMat); 37 SolTrack(Double_t D, Double_t phi0, Double_t C, Double_t z0, Double_t ct, SolGeom *G); 38 // Destructor 39 ~SolTrack(); 40 // Accessors 41 // Position (at minimum approach) 42 Double_t x() { return fx[0]; } 43 Double_t y() { return fx[1]; } 44 Double_t z() { return fx[2]; } 45 // Momentum (at minimum approach) 46 Double_t px() { return fp[0]; } 47 Double_t py() { return fp[1]; } 48 Double_t pz() { return fp[2]; } 49 Double_t pt() { return TMath::Sqrt(fp[0] * fp[0] + fp[1] * fp[1]); } 50 Double_t p() { return TMath::Sqrt(fp[0] * fp[0] + fp[1] * fp[1] + fp[2] * fp[2]); } 51 // Track parameters 52 Double_t D() { return fpar[0]; } 53 Double_t phi0() { return fpar[1]; } 54 Double_t C() { return fpar[2]; } 55 Double_t z0() { return fpar[3]; } 56 Double_t ct() { return fpar[4]; } 57 // Covariance 58 TMatrixDSym Cov() { return fCov; } 59 // Track parameter covariance calculation 60 void CovCalc(Bool_t Res, Bool_t MS); 61 // Parameter errors 62 Double_t s_D() { return TMath::Sqrt(fCov(0, 0)); } 63 Double_t s_phi0() { return TMath::Sqrt(fCov(1, 1)); } 64 Double_t s_C() { return TMath::Sqrt(fCov(2, 2)); } 65 Double_t s_pt() { return 2 * s_C()*pt() / (0.2998*fG->B()); } // Dpt/pt 66 Double_t s_z0() { return TMath::Sqrt(fCov(3, 3)); } 67 Double_t s_ct() { return TMath::Sqrt(fCov(4, 4)); } 68 // 69 // Track hit management 70 Int_t nHit(); 71 Int_t nmHit(); 72 Bool_t HitLayer(Int_t Layer, Double_t &R, Double_t &phi, Double_t &zz); 73 Int_t HitList(Int_t *&ihh, Double_t *&rhh, Double_t *&zhh); 74 Int_t HitListXYZ(Int_t *&ihh, Double_t *&Xh, Double_t *&Yh, Double_t *&Zh); 75 // 76 // Track graph 77 TGraph *TrkPlot(); // Graph with R-z plot of track trajectory 78 // 79 // Make normalized matrix positive definite 80 TMatrixDSym MakePosDef(TMatrixDSym NormMat); 68 81 }; 82 // 69 83 #endif -
external/TrackCovariance/TrkUtil.cc
r9a7ea36 rebf40fd 3 3 #include <algorithm> 4 4 #include <TSpline.h> 5 #include <TDecompChol.h> 5 6 6 7 // Constructor … … 33 34 fZmin = 0.0; // Lower DCH z 34 35 fZmax = 0.0; // Higher DCH z 36 } 37 // 38 // Distance between two lines 39 // 40 void TrkUtil::LineDistance(TVector3 x0, TVector3 y0, TVector3 dirx, TVector3 diry, Double_t &sx, Double_t &sy, Double_t &distance) 41 { 42 TMatrixDSym M(2); 43 M(0,0) = dirx.Mag2(); 44 M(1,1) = diry.Mag2(); 45 M(0,1) = -dirx.Dot(diry); 46 M(1,0) = M(0,1); 47 M.Invert(); 48 TVectorD c(2); 49 c(0) = dirx.Dot(y0-x0); 50 c(1) = diry.Dot(x0-y0); 51 TVectorD st = M*c; 52 // 53 // Fill output 54 sx = st(0); 55 sy = st(1); 56 // 57 TVector3 x = x0+sx*dirx; 58 TVector3 y = y0+sy*diry; 59 TVector3 d = x-y; 60 distance = d.Mag(); 61 } 62 // 63 // Covariance smearing 64 // 65 TVectorD TrkUtil::CovSmear(TVectorD x, TMatrixDSym C) 66 { 67 // 68 // Check arrays 69 // 70 // Consistency of dimensions 71 Int_t Nvec = x.GetNrows(); 72 Int_t Nmat = C.GetNrows(); 73 if (Nvec != Nmat || Nvec == 0) 74 { 75 std::cout << "TrkUtil::CovSmear: vector/matrix mismatch. Aborting." << std::endl; 76 exit(EXIT_FAILURE); 77 } 78 // Positive diagonal elements 79 for (Int_t i = 0; i < Nvec; i++) 80 { 81 if (C(i, i) <= 0.0) 82 { 83 std::cout << "TrkUtil::CovSmear: covariance matrix has negative diagonal elements. Aborting." << std::endl; 84 exit(EXIT_FAILURE); 85 } 86 } 87 // 88 // Do a Choleski decomposition and random number extraction, with appropriate stabilization 89 // 90 TMatrixDSym CvN = C; 91 TMatrixDSym DCv(Nvec); DCv.Zero(); 92 TMatrixDSym DCvInv(Nvec); DCvInv.Zero(); 93 for (Int_t id = 0; id < Nvec; id++) 94 { 95 Double_t dVal = TMath::Sqrt(C(id, id)); 96 DCv(id, id) = dVal; 97 DCvInv(id, id) = 1.0 / dVal; 98 } 99 CvN.Similarity(DCvInv); // Normalize diagonal to 1 100 TDecompChol Chl(CvN); 101 Bool_t OK = Chl.Decompose(); // Choleski decomposition of normalized matrix 102 if (!OK) 103 { 104 std::cout << "TrkUtil::CovSmear: covariance matrix is not positive definite. Aborting." << std::endl; 105 exit(EXIT_FAILURE); 106 } 107 TMatrixD U = Chl.GetU(); // Get Upper triangular matrix 108 TMatrixD Ut(TMatrixD::kTransposed, U); // Transposed of U (lower triangular) 109 TVectorD r(Nvec); 110 for (Int_t i = 0; i < Nvec; i++)r(i) = gRandom->Gaus(0.0, 1.0); // Array of normal random numbers 111 TVectorD xOut = x + DCv * (Ut * r); // Observed parameter vector 112 // 113 return xOut; 35 114 } 36 115 // … … 48 127 Double_t r2 = x(0) * x(0) + x(1) * x(1); 49 128 Double_t cross = x(0) * p(1) - x(1) * p(0); 50 Double_t T = sqrt(pt * pt - 2 * a * cross + a * a * r2);51 Double_t phi0 = atan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0129 Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2); 130 Double_t phi0 = TMath::ATan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0 52 131 Double_t D; // Impact parameter D 53 132 if (pt < 10.0) D = (T - pt) / a; … … 58 137 Par(2) = C; // Store C 59 138 //Longitudinal parameters 60 Double_t B = C * sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D));61 Double_t st = asin(B) / C;139 Double_t B = C * TMath::Sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D)); 140 Double_t st = TMath::ASin(B) / C; 62 141 Double_t ct = p(2) / pt; 63 142 Double_t z0; … … 235 314 // 236 315 return Cmm; 316 }// 317 // Regularized symmetric matrix inversion 318 // 319 TMatrixDSym TrkUtil::RegInv(TMatrixDSym& Min) 320 { 321 TMatrixDSym M = Min; // Decouple from input 322 Int_t N = M.GetNrows(); // Matrix size 323 TMatrixDSym D(N); D.Zero(); // Normaliztion matrix 324 TMatrixDSym R(N); // Normarized matrix 325 TMatrixDSym Rinv(N); // Inverse of R 326 TMatrixDSym Minv(N); // Inverse of M 327 // 328 // Check for 0's and normalize 329 for (Int_t i = 0; i < N; i++) 330 { 331 if (M(i, i) != 0.0) D(i, i) = 1. / TMath::Sqrt(TMath::Abs(M(i, i))); 332 else D(i, i) = 1.0; 333 } 334 R = M.Similarity(D); 335 // 336 // Recursive algorithms stops when N = 2 337 // 338 //**************** 339 // case N = 2 *** 340 //**************** 341 if (N == 2) 342 { 343 Double_t det = R(0, 0) * R(1, 1) - R(0, 1) * R(1, 0); 344 if (det == 0) 345 { 346 std::cout << "VertexFit::RegInv: null determinant for N = 2" << std::endl; 347 Rinv.Zero(); // Return null matrix 348 } 349 else 350 { 351 // invert matrix 352 Rinv(0, 0) = R(1, 1); 353 Rinv(0, 1) = -R(0, 1); 354 Rinv(1, 0) = Rinv(0, 1); 355 Rinv(1, 1) = R(0, 0); 356 Rinv *= 1. / det; 357 } 358 } 359 //**************** 360 // case N > 2 *** 361 //**************** 362 else 363 { 364 // Break up matrix 365 TMatrixDSym Q = R.GetSub(0, N - 2, 0, N - 2); // Upper left 366 TVectorD p(N - 1); 367 for (Int_t i = 0; i < N - 1; i++)p(i) = R(N - 1, i); 368 Double_t q = R(N - 1, N - 1); 369 //Invert pieces and re-assemble 370 TMatrixDSym Ainv(N - 1); 371 TMatrixDSym A(N - 1); 372 if (TMath::Abs(q) > 1.0e-15) 373 { 374 // Case |q| > 0 375 Ainv.Rank1Update(p, -1.0 / q); 376 Ainv += Q; 377 A = RegInv(Ainv); // Recursive call 378 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 379 // 380 TVectorD b = (-1.0 / q) * (A * p); 381 for (Int_t i = 0; i < N - 1; i++) 382 { 383 Rinv(N - 1, i) = b(i); 384 Rinv(i, N - 1) = b(i); 385 } 386 // 387 Double_t pdotb = 0.; 388 for (Int_t i = 0; i < N - 1; i++)pdotb += p(i) * b(i); 389 Double_t c = (1.0 - pdotb) / q; 390 Rinv(N - 1, N - 1) = c; 391 } 392 else 393 { 394 // case q = 0 395 TMatrixDSym Qinv = RegInv(Q); // Recursive call 396 Double_t a = Qinv.Similarity(p); 397 Double_t c = -1.0 / a; 398 Rinv(N - 1, N - 1) = c; 399 // 400 TVectorD b = (1.0 / a) * (Qinv * p); 401 for (Int_t i = 0; i < N - 1; i++) 402 { 403 Rinv(N - 1, i) = b(i); 404 Rinv(i, N - 1) = b(i); 405 } 406 // 407 A.Rank1Update(p, -1 / a); 408 A += Q; 409 A.Similarity(Qinv); 410 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 411 } 412 } 413 Minv = Rinv.Similarity(D); 414 return Minv; 415 } 416 // 417 // Track tracjectory 418 // 419 TVector3 TrkUtil::Xtrack(TVectorD par, Double_t s) 420 { 421 // 422 // unpack parameters 423 Double_t D = par(0); 424 Double_t p0 = par(1); 425 Double_t C = par(2); 426 Double_t z0 = par(3); 427 Double_t ct = par(4); 428 // 429 Double_t x = -D * TMath::Sin(p0) + (TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C); 430 Double_t y = D * TMath::Cos(p0) - (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C); 431 Double_t z = z0 + ct * s / (2 * C); 432 // 433 TVector3 Xt(x, y, z); 434 return Xt; 435 } 436 // 437 // Track derivatives 438 // 439 // Constant radius 440 // R-Phi 441 TVectorD TrkUtil::derRphi_R(TVectorD par, Double_t R) 442 { 443 TVectorD dRphi(5); // return vector 444 // 445 // unpack parameters 446 Double_t D = par(0); 447 Double_t C = par(2); 448 // 449 Double_t s = 2 * TMath::ASin(C * TMath::Sqrt((R * R - D * D)/(1 + 2 * C * D))); 450 TVector3 X = Xtrack(par, s); // Intersection point 451 TVector3 v(-X.y()/R, X.x()/R, 0.); // measurement direction 452 TMatrixD derX = derXdPar(par, s); // dX/dp 453 TVectorD derXs = derXds(par, s); // dX/ds 454 TVectorD ders = dsdPar_R(par, R); // ds/dp 455 // 456 for (Int_t i = 0; i < 5; i++) 457 { 458 dRphi(i) = 0.; 459 for (Int_t j = 0; j < 3; j++) 460 { 461 dRphi(i) += v(j) * (derX(j, i) + derXs(j) * ders(i)); 462 } 463 } 464 // 465 return dRphi; 466 } 467 // z 468 TVectorD TrkUtil::derZ_R(TVectorD par, Double_t R) 469 { 470 471 TVectorD dZ(5); // return vector 472 // 473 // unpack parameters 474 Double_t D = par(0); 475 Double_t C = par(2); 476 // 477 Double_t s = 2 * TMath::ASin(C * TMath::Sqrt((R * R - D * D)/(1 + 2 * C * D))); // phase 478 TVector3 v(0., 0., 1.); // measurement direction 479 TMatrixD derX = derXdPar(par, s); // dX/dp 480 TVectorD derXs = derXds(par, s); // dX/ds 481 TVectorD ders = dsdPar_R(par, R); // ds/dp 482 // 483 for (Int_t i = 0; i < 5; i++) 484 { 485 dZ(i) = 0.; 486 for (Int_t j = 0; j < 3; j++) 487 { 488 dZ(i) += v(j) * (derX(j, i) + derXs(j) * ders(i)); 489 } 490 } 491 // 492 return dZ; 493 } 494 // 495 // constant z 496 // R-Phi 497 TVectorD TrkUtil::derRphi_Z(TVectorD par, Double_t z) 498 { 499 TVectorD dRphi(5); // return vector 500 // 501 // unpack parameters 502 Double_t C = par(2); 503 Double_t z0 = par(3); 504 Double_t ct = par(4); 505 // 506 Double_t s = 2 * C * (z - z0) / ct; 507 TVector3 X = Xtrack(par, s); // Intersection point 508 TVector3 v(-X.y() / X.Pt(), X.x() / X.Pt(), 0.); // measurement direction 509 TMatrixD derX = derXdPar(par, s); // dX/dp 510 TVectorD derXs = derXds(par, s); // dX/ds 511 TVectorD ders = dsdPar_z(par, z); // ds/dp 512 // 513 for (Int_t i = 0; i < 5; i++) 514 { 515 dRphi(i) = 0.; 516 for (Int_t j = 0; j < 3; j++) 517 { 518 dRphi(i) += v(j) * (derX(j, i) + derXs(j) * ders(i)); 519 } 520 } 521 // 522 return dRphi; 523 524 } 525 // R 526 TVectorD TrkUtil::derR_Z(TVectorD par, Double_t z) 527 { 528 TVectorD dR(5); // return vector 529 // 530 // unpack parameters 531 Double_t C = par(2); 532 Double_t z0 = par(3); 533 Double_t ct = par(4); 534 // 535 Double_t s = 2 * C * (z - z0) / ct; 536 TVector3 X = Xtrack(par, s); // Intersection point 537 TVector3 v(X.x() / X.Pt(), X.y() / X.Pt(), 0.); // measurement direction 538 TMatrixD derX = derXdPar(par, s); // dX/dp 539 TVectorD derXs = derXds(par, s); // dX/ds 540 TVectorD ders = dsdPar_z(par, z); // ds/dp 541 // 542 for (Int_t i = 0; i < 5; i++) 543 { 544 dR(i) = 0.; 545 for (Int_t j = 0; j < 3; j++) 546 { 547 dR(i) += v(j) * (derX(j, i) + derXs(j) * ders(i)); 548 } 549 } 550 // 551 return dR; 552 553 } 554 // 555 // derivatives of track trajectory 556 // 557 // dX/dPar 558 TMatrixD TrkUtil::derXdPar(TVectorD par, Double_t s) 559 { 560 TMatrixD dxdp(3, 5); // return matrix 561 // 562 // unpack parameters 563 Double_t D = par(0); 564 Double_t p0 = par(1); 565 Double_t C = par(2); 566 Double_t z0 = par(3); 567 Double_t ct = par(4); 568 // 569 // derivatives 570 // dx/dD 571 dxdp(0, 0) = -TMath::Sin(p0); 572 dxdp(1, 0) = TMath::Cos(p0); 573 dxdp(2, 0) = 0.; 574 // dx/dphi0 575 dxdp(0, 1) = -D * TMath::Cos(p0) + (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C); 576 dxdp(1, 1) = -D * TMath::Sin(p0) + (TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C); 577 dxdp(2, 1) = 0; 578 // dx/dC 579 dxdp(0, 2) = -(TMath::Sin(s + p0) - TMath::Sin(p0)) / (2 * C * C); 580 dxdp(1, 2) = (TMath::Cos(s + p0) - TMath::Cos(p0)) / (2 * C * C); 581 dxdp(2, 2) = -ct * s / (2 * C * C); 582 // dx/dz0 583 dxdp(0, 3) = 0; 584 dxdp(1, 3) = 0; 585 dxdp(2, 3) = 1.; 586 // dx/dCtg 587 dxdp(0, 4) = 0; 588 dxdp(1, 4) = 0; 589 dxdp(2, 4) = s / (2 * C); 590 // 591 return dxdp; 592 } 593 // 594 // dX/ds 595 // 596 TVectorD TrkUtil::derXds(TVectorD par, Double_t s) 597 { 598 TVectorD dxds(3); // return vector 599 // 600 // unpack parameters 601 Double_t p0 = par(1); 602 Double_t C = par(2); 603 Double_t ct = par(4); 604 // 605 // dX/ds 606 dxds(0) = TMath::Cos(s + p0) / (2 * C); 607 dxds(1) = TMath::Sin(s + p0) / (2 * C); 608 dxds(2) = ct / (2 * C); 609 // 610 return dxds; 611 } 612 // 613 // derivative of trajectory phase s 614 //Constant R 615 TVectorD TrkUtil::dsdPar_R(TVectorD par, Double_t R) 616 { 617 TVectorD dsdp(5); // return vector 618 // 619 // unpack parameters 620 Double_t D = par(0); 621 Double_t p0 = par(1); 622 Double_t C = par(2); 623 // 624 // derivatives 625 Double_t opCD = 1. + 2 * C * D; 626 Double_t A = C*TMath::Sqrt((R*R-D*D)/opCD); 627 Double_t sqA0 = TMath::Sqrt(1. - A * A); 628 Double_t dMin = 0.01; 629 Double_t sqA = TMath::Max(dMin, sqA0); // Protect against divergence 630 // 631 dsdp(0) = -2 * C * C * (D * (1. + C * D) + C * R * R) / (A * sqA * opCD * opCD); 632 dsdp(1) = 0; 633 dsdp(2) = 2 * A * (1 + C * D) / (C * sqA * opCD); 634 dsdp(3) = 0; 635 dsdp(4) = 0; 636 // 637 return dsdp; 638 } 639 // Constant z 640 TVectorD TrkUtil::dsdPar_z(TVectorD par, Double_t z) 641 { 642 TVectorD dsdp(5); // return vector 643 // 644 // unpack parameters 645 Double_t C = par(2); 646 Double_t z0 = par(3); 647 Double_t ct = par(4); 648 // 649 // derivatives 650 // 651 dsdp(0) = 0; 652 dsdp(1) = 0; 653 dsdp(2) = 2*(z-z0)/ct; 654 dsdp(3) = -2*C/ct; 655 dsdp(4) = -2*C*(z-z0)/(ct*ct); 656 // 657 return dsdp; 237 658 } 238 659 // -
external/TrackCovariance/TrkUtil.h
r9a7ea36 rebf40fd 28 28 TVectorD XPtoPar(TVector3 x, TVector3 p, Double_t Q); 29 29 TVector3 ParToP(TVectorD Par); 30 TMatrixDSym RegInv(TMatrixDSym& Min); 31 // 32 // Track trajectory derivatives 33 TMatrixD derXdPar(TVectorD par, Double_t s); // derivatives of position wrt parameters 34 TVectorD derXds(TVectorD par, Double_t s); // derivatives of position wrt phase 35 TVectorD dsdPar_R(TVectorD par, Double_t R); // derivatives of phase at constant R 36 TVectorD dsdPar_z(TVectorD par, Double_t z); // derivatives of phase at constant z 30 37 // 31 38 // Conversion to ACTS parametrization … … 54 61 Double_t c = 2.99792458e8; // speed of light m/sec 55 62 //return TMath::C()*1.0e-9; // Incompatible with root5 56 return c*1.0e-9; // Reduced speed of light63 return c*1.0e-9; // Reduced speed of light 57 64 } 58 65 // … … 63 70 static TVector3 ParToP(TVectorD Par, Double_t Bz); // Get Momentum from track parameters 64 71 static Double_t ParToQ(TVectorD Par); // Get track charge 72 static void LineDistance(TVector3 x0, TVector3 y0, TVector3 dirx, TVector3 diry, Double_t &sx, Double_t &sy, Double_t &distance); 73 // 74 // Track trajectory 75 // 76 static TVector3 Xtrack(TVectorD par, Double_t s); // Parametric track trajectory 77 TVectorD derRphi_R(TVectorD par, Double_t R); // Derivatives of R-phi at constant R 78 TVectorD derZ_R(TVectorD par, Double_t R); // Derivatives of z at constant R 79 TVectorD derRphi_Z(TVectorD par, Double_t z); // Derivatives of R-phi at constant z 80 TVectorD derR_Z(TVectorD par, Double_t z); // Derivatives of R at constant z 81 // 82 // Smear with given covariance matrix 83 // 84 static TVectorD CovSmear(TVectorD x, TMatrixDSym C); 65 85 // 66 86 // Conversion from meters to mm … … 68 88 static TVectorD ParToMm(TVectorD Par); // Parameter conversion 69 89 static TMatrixDSym CovToMm(TMatrixDSym Cov); // Covariance conversion 90 // 91 // Inside cylindrical volume 92 // 93 static Bool_t IsInside(TVector3 x, Double_t Rout, Double_t Zmin, Double_t Zmax) 94 { 95 Bool_t Is = kFALSE; 96 if (x.Pt() <= Rout && x.z() >= Zmin && x.z() <= Zmax)Is = kTRUE; 97 return Is; 98 } 70 99 // 71 100 // Cluster counting in gas -
modules/TrackCovariance.cc
r9a7ea36 rebf40fd 103 103 Double_t mass, p, pt, q, ct; 104 104 Double_t dd0, ddz, dphi, dct, dp, dpt, dC; 105 // 106 // Get cylindrical box for fast track simulation 107 // 108 Double_t Rin = fGeometry->GetRmin(); 109 Double_t ZinPos = fGeometry->GetZminPos(); 110 Double_t ZinNeg = fGeometry->GetZminNeg(); 105 111 106 112 fItInputArray->Reset(); … … 115 121 const TLorentzVector &candidateMomentum = particle->Momentum; 116 122 117 if ( !fCovariance->IsAccepted(candidateMomentum.Vect()) ) continue; 123 Bool_t inside = TrkUtil::IsInside(candidatePosition.Vect(), Rin, ZinNeg, ZinPos); // Check if in inner box 124 Bool_t Accept = kTRUE; 125 if(inside) Accept = fCovariance->IsAccepted(candidateMomentum.Vect()); 126 else Accept = fCovariance->IsAccepted(candidatePosition.Vect(),candidateMomentum.Vect(), fGeometry); 127 if(!Accept) continue; 118 128 119 129 mass = candidateMomentum.M(); 120 130 121 ObsTrk track(candidatePosition.Vect(), candidateMomentum.Vect(), candidate->Charge, f Bz, fCovariance);131 ObsTrk track(candidatePosition.Vect(), candidateMomentum.Vect(), candidate->Charge, fCovariance, fGeometry); 122 132 123 133 mother = candidate;
Note:
See TracChangeset
for help on using the changeset viewer.