1 | #include "TrkUtil.h"
|
---|
2 | #include <iostream>
|
---|
3 |
|
---|
4 | // Constructor
|
---|
5 | TrkUtil::TrkUtil(Double_t Bz)
|
---|
6 | {
|
---|
7 | fBz = Bz;
|
---|
8 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
9 | fRmin = 0.0; // Lower DCH radius
|
---|
10 | fRmax = 0.0; // Higher DCH radius
|
---|
11 | fZmin = 0.0; // Lower DCH z
|
---|
12 | fZmax = 0.0; // Higher DCH z
|
---|
13 | }
|
---|
14 | TrkUtil::TrkUtil()
|
---|
15 | {
|
---|
16 | fBz = 0.0;
|
---|
17 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
18 | fRmin = 0.0; // Lower DCH radius
|
---|
19 | fRmax = 0.0; // Higher DCH radius
|
---|
20 | fZmin = 0.0; // Lower DCH z
|
---|
21 | fZmax = 0.0; // Higher DCH z
|
---|
22 | }
|
---|
23 | //
|
---|
24 | // Destructor
|
---|
25 | TrkUtil::~TrkUtil()
|
---|
26 | {
|
---|
27 | fBz = 0.0;
|
---|
28 | fGasSel = 0; // Default is He-Isobuthane (90-10)
|
---|
29 | fRmin = 0.0; // Lower DCH radius
|
---|
30 | fRmax = 0.0; // Higher DCH radius
|
---|
31 | fZmin = 0.0; // Lower DCH z
|
---|
32 | fZmax = 0.0; // Higher DCH z
|
---|
33 | }
|
---|
34 | //
|
---|
35 | // Helix parameters from position and momentum
|
---|
36 | // static
|
---|
37 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz)
|
---|
38 | {
|
---|
39 | //
|
---|
40 | TVectorD Par(5);
|
---|
41 | // Transverse parameters
|
---|
42 | Double_t a = -Q * Bz * cSpeed(); // Units are Tesla, GeV and meters
|
---|
43 | Double_t pt = p.Pt();
|
---|
44 | Double_t C = a / (2 * pt); // Half curvature
|
---|
45 | //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl;
|
---|
46 | Double_t r2 = x.Perp2();
|
---|
47 | Double_t cross = x(0) * p(1) - x(1) * p(0);
|
---|
48 | Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2);
|
---|
49 | Double_t phi0 = TMath::ATan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0
|
---|
50 | Double_t D; // Impact parameter D
|
---|
51 | if (pt < 10.0) D = (T - pt) / a;
|
---|
52 | else D = (-2 * cross + a * r2) / (T + pt);
|
---|
53 | //
|
---|
54 | Par(0) = D; // Store D
|
---|
55 | Par(1) = phi0; // Store phi0
|
---|
56 | Par(2) = C; // Store C
|
---|
57 | //Longitudinal parameters
|
---|
58 | Double_t B = C * TMath::Sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D));
|
---|
59 | Double_t st = TMath::ASin(B) / C;
|
---|
60 | Double_t ct = p(2) / pt;
|
---|
61 | Double_t z0 = x(2) - ct * st;
|
---|
62 | //
|
---|
63 | Par(3) = z0; // Store z0
|
---|
64 | Par(4) = ct; // Store cot(theta)
|
---|
65 | //
|
---|
66 | return Par;
|
---|
67 | }
|
---|
68 | // non-static
|
---|
69 | TVectorD TrkUtil::XPtoPar(TVector3 x, TVector3 p, Double_t Q)
|
---|
70 | {
|
---|
71 | //
|
---|
72 | TVectorD Par(5);
|
---|
73 | Double_t Bz = fBz;
|
---|
74 | Par = XPtoPar(x, p, Q, Bz);
|
---|
75 | //
|
---|
76 | return Par;
|
---|
77 | }
|
---|
78 | //
|
---|
79 | TVector3 TrkUtil::ParToX(TVectorD Par)
|
---|
80 | {
|
---|
81 | Double_t D = Par(0);
|
---|
82 | Double_t phi0 = Par(1);
|
---|
83 | Double_t z0 = Par(3);
|
---|
84 | //
|
---|
85 | TVector3 Xval;
|
---|
86 | Xval(0) = -D * TMath::Sin(phi0);
|
---|
87 | Xval(1) = D * TMath::Cos(phi0);
|
---|
88 | Xval(2) = z0;
|
---|
89 | //
|
---|
90 | return Xval;
|
---|
91 | }
|
---|
92 | //
|
---|
93 | TVector3 TrkUtil::ParToP(TVectorD Par)
|
---|
94 | {
|
---|
95 | if (fBz == 0.0)std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl;
|
---|
96 | //
|
---|
97 | return ParToP(Par,fBz);
|
---|
98 | }
|
---|
99 | //
|
---|
100 | TVector3 TrkUtil::ParToP(TVectorD Par, Double_t Bz)
|
---|
101 | {
|
---|
102 | Double_t C = Par(2);
|
---|
103 | Double_t phi0 = Par(1);
|
---|
104 | Double_t ct = Par(4);
|
---|
105 | //
|
---|
106 | TVector3 Pval;
|
---|
107 | Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C);
|
---|
108 | Pval(0) = pt * TMath::Cos(phi0);
|
---|
109 | Pval(1) = pt * TMath::Sin(phi0);
|
---|
110 | Pval(2) = pt * ct;
|
---|
111 | //
|
---|
112 | return Pval;
|
---|
113 | }
|
---|
114 | //
|
---|
115 | Double_t TrkUtil::ParToQ(TVectorD Par)
|
---|
116 | {
|
---|
117 | return TMath::Sign(1.0, -Par(2));
|
---|
118 | }
|
---|
119 |
|
---|
120 | //
|
---|
121 | // Parameter conversion to ACTS format
|
---|
122 | TVectorD TrkUtil::ParToACTS(TVectorD Par)
|
---|
123 | {
|
---|
124 | TVectorD pACTS(6); // Return vector
|
---|
125 | //
|
---|
126 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
127 | pACTS(0) = 1000 * Par(0); // D from m to mm
|
---|
128 | pACTS(1) = 1000 * Par(3); // z0 from m to mm
|
---|
129 | pACTS(2) = Par(1); // Phi0 is unchanged
|
---|
130 | pACTS(3) = TMath::ATan2(1.0, Par(4)); // Theta in [0, pi] range
|
---|
131 | pACTS(4) = Par(2) / (b * TMath::Sqrt(1 + Par(4) * Par(4))); // q/p in GeV
|
---|
132 | pACTS(5) = 0.0; // Time: currently undefined
|
---|
133 | //
|
---|
134 | return pACTS;
|
---|
135 | }
|
---|
136 | // Covariance conversion to ACTS format
|
---|
137 | TMatrixDSym TrkUtil::CovToACTS(TVectorD Par, TMatrixDSym Cov)
|
---|
138 | {
|
---|
139 | TMatrixDSym cACTS(6); cACTS.Zero();
|
---|
140 | Double_t b = -cSpeed() * fBz / 2.;
|
---|
141 | //
|
---|
142 | // Fill derivative matrix
|
---|
143 | TMatrixD A(5, 5); A.Zero();
|
---|
144 | Double_t ct = Par(4); // cot(theta)
|
---|
145 | Double_t C = Par(2); // half curvature
|
---|
146 | A(0, 0) = 1000.; // D-D conversion to mm
|
---|
147 | A(1, 2) = 1.0; // phi0-phi0
|
---|
148 | A(2, 4) = 1.0 / (TMath::Sqrt(1.0 + ct * ct) * b); // q/p-C
|
---|
149 | A(3, 1) = 1000.; // z0-z0 conversion to mm
|
---|
150 | A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta)
|
---|
151 | A(4, 4) = -C * ct / (b * pow(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta)
|
---|
152 | //
|
---|
153 | TMatrixDSym Cv = Cov;
|
---|
154 | TMatrixD At(5, 5);
|
---|
155 | At.Transpose(A);
|
---|
156 | Cv.Similarity(At);
|
---|
157 | TMatrixDSub(cACTS, 0, 4, 0, 4) = Cv;
|
---|
158 | cACTS(5, 5) = 0.1; // Currently undefined: set to arbitrary value to avoid crashes
|
---|
159 | //
|
---|
160 | return cACTS;
|
---|
161 | }
|
---|
162 | //
|
---|
163 | // Parameter conversion to ILC format
|
---|
164 | TVectorD TrkUtil::ParToILC(TVectorD Par)
|
---|
165 | {
|
---|
166 | TVectorD pILC(5); // Return vector
|
---|
167 | //
|
---|
168 | pILC(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
169 | pILC(1) = Par(1); // phi0 is unchanged
|
---|
170 | pILC(2) = -2 * Par(2) * 1.0e-3; // w in mm^-1
|
---|
171 | pILC(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
172 | pILC(4) = Par(4); // tan(lambda) = cot(theta)
|
---|
173 | //
|
---|
174 | return pILC;
|
---|
175 | }
|
---|
176 | // Covariance conversion to ILC format
|
---|
177 | TMatrixDSym TrkUtil::CovToILC(TMatrixDSym Cov)
|
---|
178 | {
|
---|
179 | TMatrixDSym cILC(5); cILC.Zero();
|
---|
180 | //
|
---|
181 | // Fill derivative matrix
|
---|
182 | TMatrixD A(5, 5); A.Zero();
|
---|
183 | //
|
---|
184 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
185 | A(1, 1) = 1.0; // phi0-phi0
|
---|
186 | A(2, 2) = -2.0e-3; // w-C
|
---|
187 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
188 | A(4, 4) = 1.0; // tan(lambda) - cot(theta)
|
---|
189 | //
|
---|
190 | TMatrixDSym Cv = Cov;
|
---|
191 | TMatrixD At(5, 5);
|
---|
192 | At.Transpose(A);
|
---|
193 | Cv.Similarity(At);
|
---|
194 | cILC = Cv;
|
---|
195 | //
|
---|
196 | return cILC;
|
---|
197 | }
|
---|
198 | //
|
---|
199 | // Conversion from meters to mm
|
---|
200 | TVectorD TrkUtil::ParToMm(TVectorD Par) // Parameter conversion
|
---|
201 | {
|
---|
202 | TVectorD Pmm(5); // Return vector
|
---|
203 | //
|
---|
204 | Pmm(0) = Par(0) * 1.0e3; // d0 in mm
|
---|
205 | Pmm(1) = Par(1); // phi0 is unchanged
|
---|
206 | Pmm(2) = Par(2) * 1.0e-3; // C in mm^-1
|
---|
207 | Pmm(3) = Par(3) * 1.0e3; // z0 in mm
|
---|
208 | Pmm(4) = Par(4); // tan(lambda) = cot(theta) unchanged
|
---|
209 | //
|
---|
210 | return Pmm;
|
---|
211 | }
|
---|
212 | TMatrixDSym TrkUtil::CovToMm(TMatrixDSym Cov) // Covariance conversion
|
---|
213 | {
|
---|
214 | TMatrixDSym Cmm(5); Cmm.Zero();
|
---|
215 | //
|
---|
216 | // Fill derivative matrix
|
---|
217 | TMatrixD A(5, 5); A.Zero();
|
---|
218 | //
|
---|
219 | A(0, 0) = 1.0e3; // D-d0 in mm
|
---|
220 | A(1, 1) = 1.0; // phi0-phi0
|
---|
221 | A(2, 2) = 1.0e-3; // C-C
|
---|
222 | A(3, 3) = 1.0e3; // z0-z0 conversion to mm
|
---|
223 | A(4, 4) = 1.0; // lambda - cot(theta)
|
---|
224 | //
|
---|
225 | TMatrixDSym Cv = Cov;
|
---|
226 | TMatrixD At(5, 5);
|
---|
227 | At.Transpose(A);
|
---|
228 | Cv.Similarity(At);
|
---|
229 | Cmm = Cv;
|
---|
230 | //
|
---|
231 | return Cmm;
|
---|
232 | }
|
---|
233 | //
|
---|
234 | // Setup chamber volume
|
---|
235 | void TrkUtil::SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax)
|
---|
236 | {
|
---|
237 | fRmin = Rmin; // Lower DCH radius
|
---|
238 | fRmax = Rmax; // Higher DCH radius
|
---|
239 | fZmin = Zmin; // Lower DCH z
|
---|
240 | fZmax = Zmax; // Higher DCH z
|
---|
241 | }
|
---|
242 | //
|
---|
243 | // Get Trakck length inside DCH volume
|
---|
244 | Double_t TrkUtil::TrkLen(TVectorD Par)
|
---|
245 | {
|
---|
246 | Double_t tLength = 0.0;
|
---|
247 | // Check if geometry is initialized
|
---|
248 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
249 | {
|
---|
250 | // No geometry set so send a warning and return 0
|
---|
251 | std::cout << "TrkUtil::TrkLen() called without a DCH volume defined" << std::endl;
|
---|
252 | }
|
---|
253 | else
|
---|
254 | {
|
---|
255 | //******************************************************************
|
---|
256 | // Determine the track length inside the chamber ****
|
---|
257 | //******************************************************************
|
---|
258 | //
|
---|
259 | // Track pararameters
|
---|
260 | Double_t D = Par(0); // Transverse impact parameter
|
---|
261 | Double_t phi0 = Par(1); // Transverse direction at minimum approach
|
---|
262 | Double_t C = Par(2); // Half curvature
|
---|
263 | Double_t z0 = Par(3); // Z at minimum approach
|
---|
264 | Double_t ct = Par(4); // cot(theta)
|
---|
265 | //std::cout << "TrkUtil:: parameters: D= " << D << ", phi0= " << phi0
|
---|
266 | // << ", C= " << C << ", z0= " << z0 << ", ct= " << ct << std::endl;
|
---|
267 | //
|
---|
268 | // Track length per unit phase change
|
---|
269 | Double_t Scale = TMath::Sqrt(1.0 + ct*ct) / (2.0*TMath::Abs(C));
|
---|
270 | //
|
---|
271 | // Find intersections with chamber boundaries
|
---|
272 | //
|
---|
273 | Double_t phRin = 0.0; // phase of inner cylinder
|
---|
274 | Double_t phRin2= 0.0; // phase of inner cylinder intersection (2nd branch)
|
---|
275 | Double_t phRhi = 0.0; // phase of outer cylinder intersection
|
---|
276 | Double_t phZmn = 0.0; // phase of left wall intersection
|
---|
277 | Double_t phZmx = 0.0; // phase of right wall intersection
|
---|
278 | // ... with inner cylinder
|
---|
279 | Double_t Rtop = TMath::Abs((1.0 + C*D) / C);
|
---|
280 |
|
---|
281 | if (Rtop > fRmin && TMath::Abs(D) < fRmin) // *** don't treat large D tracks for the moment ***
|
---|
282 | {
|
---|
283 | Double_t ph = 2 * TMath::ASin(C*TMath::Sqrt((fRmin*fRmin - D*D) / (1.0 + 2.0*C*D)));
|
---|
284 | Double_t z = z0 + ct*ph / (2.0*C);
|
---|
285 |
|
---|
286 | //std::cout << "Rin intersection: ph = " << ph<<", z= "<<z << std::endl;
|
---|
287 |
|
---|
288 | if (z < fZmax && z > fZmin) phRin = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
289 | //
|
---|
290 | // Include second branch of loopers
|
---|
291 | Double_t ph2 = TMath::TwoPi() - TMath::Abs(ph);
|
---|
292 | if (ph < 0)ph2 = -ph2;
|
---|
293 | z = z0 + ct * ph2 / (2.0 * C);
|
---|
294 | if (z < fZmax && z > fZmin) phRin2 = TMath::Abs(ph2); // Intersection inside chamber volume
|
---|
295 | }
|
---|
296 | // ... with outer cylinder
|
---|
297 | if (Rtop > fRmax && TMath::Abs(D) < fRmax) // *** don't treat large D tracks for the moment ***
|
---|
298 | {
|
---|
299 | Double_t ph = 2 * TMath::ASin(C*TMath::Sqrt((fRmax*fRmax - D*D) / (1.0 + 2.0*C*D)));
|
---|
300 | Double_t z = z0 + ct*ph / (2.0*C);
|
---|
301 | if (z < fZmax && z > fZmin) phRhi = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
302 | }
|
---|
303 | // ... with left wall
|
---|
304 | Double_t Zdir = (fZmin - z0) / ct;
|
---|
305 | if (Zdir > 0.0)
|
---|
306 | {
|
---|
307 | Double_t ph = 2.0*C*Zdir;
|
---|
308 | Double_t Rint = TMath::Sqrt(D*D + (1.0 + 2.0*C*D)*pow(TMath::Sin(ph / 2), 2) / (C*C));
|
---|
309 | if (Rint < fRmax && Rint > fRmin) phZmn = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
310 | }
|
---|
311 | // ... with right wall
|
---|
312 | Zdir = (fZmax - z0) / ct;
|
---|
313 | if (Zdir > 0.0)
|
---|
314 | {
|
---|
315 | Double_t ph = 2.0*C*Zdir;
|
---|
316 | Double_t Rint = TMath::Sqrt(D*D + (1.0 + 2.0*C*D)*pow(TMath::Sin(ph / 2), 2) / (C*C));
|
---|
317 | if (Rint < fRmax && Rint > fRmin) phZmx = TMath::Abs(ph); // Intersection inside chamber volume
|
---|
318 | }
|
---|
319 | //
|
---|
320 | // Order phases and keep the lowest two non-zero ones
|
---|
321 | //
|
---|
322 | const Int_t Nint = 5;
|
---|
323 | Double_t dPhase = 0.0; // Phase difference between two close intersections
|
---|
324 | Double_t ph_arr[Nint] = { phRin, phRin2, phRhi, phZmn, phZmx };
|
---|
325 | Int_t srtind[Nint];
|
---|
326 | TMath::Sort(Nint, ph_arr, srtind, kFALSE);
|
---|
327 | Int_t iPos = -1; // First element > 0
|
---|
328 | for (Int_t i = 0; i < Nint; i++)
|
---|
329 | {
|
---|
330 | if (ph_arr[srtind[i]] <= 0.0) iPos = i;
|
---|
331 | }
|
---|
332 |
|
---|
333 | if (iPos < Nint - 2)
|
---|
334 | {
|
---|
335 | dPhase = ph_arr[srtind[iPos + 2]] - ph_arr[srtind[iPos + 1]];
|
---|
336 | tLength = dPhase*Scale;
|
---|
337 | }
|
---|
338 | }
|
---|
339 | return tLength;
|
---|
340 | }
|
---|
341 | //
|
---|
342 | // Return number of ionization clusters
|
---|
343 | Bool_t TrkUtil::IonClusters(Double_t &Ncl, Double_t mass, TVectorD Par)
|
---|
344 | {
|
---|
345 | //
|
---|
346 | // Units are meters/Tesla/GeV
|
---|
347 | //
|
---|
348 | Ncl = 0.0;
|
---|
349 | Bool_t Signal = kFALSE;
|
---|
350 | Double_t tLen = 0;
|
---|
351 | // Check if geometry is initialized
|
---|
352 | if (fZmin == 0.0 && fZmax == 0.0)
|
---|
353 | {
|
---|
354 | // No geometry set so send a warning and return 0
|
---|
355 | std::cout << "TrkUtil::IonClusters() called without a volume defined" << std::endl;
|
---|
356 | }
|
---|
357 | else tLen = TrkLen(Par);
|
---|
358 |
|
---|
359 | //******************************************************************
|
---|
360 | // Now get the number of clusters ****
|
---|
361 | //******************************************************************
|
---|
362 | //
|
---|
363 | Double_t muClu = 0.0; // mean number of clusters
|
---|
364 | Double_t bg = 0.0; // beta*gamma
|
---|
365 | Ncl = 0.0;
|
---|
366 | if (tLen > 0.0)
|
---|
367 | {
|
---|
368 | Signal = kTRUE;
|
---|
369 | //
|
---|
370 | // Find beta*gamma
|
---|
371 | if (fBz == 0.0)
|
---|
372 | {
|
---|
373 | Signal = kFALSE;
|
---|
374 | std::cout << "TrkUtil::IonClusters: Please set Bz!!!" << std::endl;
|
---|
375 | }
|
---|
376 | else
|
---|
377 | {
|
---|
378 | TVector3 p = ParToP(Par);
|
---|
379 | bg = p.Mag() / mass;
|
---|
380 | muClu = Nclusters(bg)*tLen; // Avg. number of clusters
|
---|
381 |
|
---|
382 | Ncl = gRandom->PoissonD(muClu); // Actual number of clusters
|
---|
383 | }
|
---|
384 |
|
---|
385 | }
|
---|
386 | //
|
---|
387 | return Signal;
|
---|
388 | }
|
---|
389 | //
|
---|
390 | //
|
---|
391 | Double_t TrkUtil::Nclusters(Double_t begam)
|
---|
392 | {
|
---|
393 | Int_t Opt = fGasSel;
|
---|
394 | Double_t Nclu = Nclusters(begam, Opt);
|
---|
395 | //
|
---|
396 | return Nclu;
|
---|
397 | }
|
---|
398 | //
|
---|
399 | Double_t TrkUtil::Nclusters(Double_t begam, Int_t Opt) {
|
---|
400 | //
|
---|
401 | // Opt = 0: He 90 - Isobutane 10
|
---|
402 | // = 1: pure He
|
---|
403 | // = 2: Argon 50 - Ethane 50
|
---|
404 | // = 3: pure Argon
|
---|
405 | //
|
---|
406 | //
|
---|
407 | std::vector<double> bg{ 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10.,
|
---|
408 | 12., 15., 20., 50., 100., 200., 500., 1000. };
|
---|
409 | // He 90 - Isobutane 10
|
---|
410 | std::vector<double> ncl_He_Iso{ 42.94, 23.6,18.97,12.98,12.2,12.13,
|
---|
411 | 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98 };
|
---|
412 | //
|
---|
413 | // pure He
|
---|
414 | std::vector<double> ncl_He{ 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63,
|
---|
415 | 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89 };
|
---|
416 | //
|
---|
417 | // Argon 50 - Ethane 50
|
---|
418 | std::vector<double> ncl_Ar_Eth{ 130.04,71.55,57.56,39.44,37.08,36.9,
|
---|
419 | 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93 };
|
---|
420 | //
|
---|
421 | // pure Argon
|
---|
422 | std::vector<double> ncl_Ar{ 88.69,48.93,39.41,27.09,25.51,25.43,25.69,
|
---|
423 | 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68 };
|
---|
424 | //
|
---|
425 | Int_t nPoints = (Int_t)bg.size();
|
---|
426 | bg.push_back(10000.);
|
---|
427 | std::vector<double> ncl;
|
---|
428 | switch (Opt)
|
---|
429 | {
|
---|
430 | case 0: ncl = ncl_He_Iso; // He-Isobutane
|
---|
431 | break;
|
---|
432 | case 1: ncl = ncl_He; // pure He
|
---|
433 | break;
|
---|
434 | case 2: ncl = ncl_Ar_Eth; // Argon - Ethane
|
---|
435 | break;
|
---|
436 | case 3: ncl = ncl_Ar; // pure Argon
|
---|
437 | break;
|
---|
438 | }
|
---|
439 | ncl.push_back(ncl[nPoints - 1]);
|
---|
440 | Int_t ilow = 0;
|
---|
441 | while (begam > bg[ilow])ilow++;
|
---|
442 | ilow--;
|
---|
443 | //std::cout << "ilow= " << ilow << ", low = " << bg[ilow] << ", val = " << begam
|
---|
444 | // << ", high = " << bg[ilow + 1] << std::endl;
|
---|
445 | //
|
---|
446 | Int_t ind[3] = { ilow, ilow + 1, ilow + 2 };
|
---|
447 | TVectorD y(3);
|
---|
448 | for (Int_t i = 0; i < 3; i++)y(i) = ncl[ind[i]];
|
---|
449 | TVectorD x(3);
|
---|
450 | for (Int_t i = 0; i < 3; i++)x(i) = bg[ind[i]];
|
---|
451 | TMatrixD Xval(3, 3);
|
---|
452 | for (Int_t i = 0; i < 3; i++)Xval(i, 0) = 1.0;
|
---|
453 | for (Int_t i = 0; i < 3; i++)Xval(i, 1) = x(i);
|
---|
454 | for (Int_t i = 0; i < 3; i++)Xval(i, 2) = x(i) * x(i);
|
---|
455 | //std::cout << "Xval:" << std::endl; Xval.Print();
|
---|
456 | Xval.Invert();
|
---|
457 | TVectorD coeff = Xval * y;
|
---|
458 | Double_t interp = coeff[0] + coeff[1] * begam + coeff[2] * begam * begam;
|
---|
459 | //std::cout << "val1= (" <<x(0)<<", "<< y(0) << "), val2= ("
|
---|
460 | // <<x(1)<<", "<< y(1) << "), val3= ("
|
---|
461 | // <<x(2)<<", "<< y(2)
|
---|
462 | // << "), result= (" <<begam<<", "<< interp<<")" << std::endl;
|
---|
463 | //
|
---|
464 | if (TMath::IsNaN(interp))std::cout << "NaN found: bg= " << begam << ", Opt= " << Opt << std::endl;
|
---|
465 | if (begam < bg[0]) interp = 0.0;
|
---|
466 | //std::cout << "bg= " << begam << ", Opt= " << Opt <<", interp = "<<interp<< std::endl;
|
---|
467 | return 100*interp;
|
---|
468 | }
|
---|
469 | //
|
---|
470 | Double_t TrkUtil::funcNcl(Double_t *xp, Double_t *par){
|
---|
471 | Double_t bg = xp[0];
|
---|
472 | return Nclusters(bg);
|
---|
473 | }
|
---|
474 | //
|
---|
475 | void TrkUtil::SetGasMix(Int_t Opt)
|
---|
476 | {
|
---|
477 | if (Opt < 0 || Opt > 3)
|
---|
478 | {
|
---|
479 | std::cout << "TrkUtil::SetGasMix Gas option not allowed. No action."
|
---|
480 | << std::endl;
|
---|
481 | }
|
---|
482 | else fGasSel = Opt;
|
---|
483 | }
|
---|