1 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
---|
2 | * *
|
---|
3 | * --<--<-- A fast simulator --<--<-- *
|
---|
4 | * / --<--<-- of particle --<--<-- *
|
---|
5 | * ----HECTOR----< *
|
---|
6 | * \ -->-->-- transport through -->-->-- *
|
---|
7 | * -->-->-- generic beamlines -->-->-- *
|
---|
8 | * *
|
---|
9 | * JINST 2:P09005 (2007) *
|
---|
10 | * X Rouby, J de Favereau, K Piotrzkowski (CP3) *
|
---|
11 | * http://www.fynu.ucl.ac.be/hector.html *
|
---|
12 | * *
|
---|
13 | * Center for Cosmology, Particle Physics and Phenomenology *
|
---|
14 | * Universite catholique de Louvain *
|
---|
15 | * Louvain-la-Neuve, Belgium *
|
---|
16 | * *
|
---|
17 | * * * * * * * * * * * * * * * * * * * * * * * * * * * */
|
---|
18 |
|
---|
19 | /// \file H_TransportMatrices.cc
|
---|
20 | /// \brief Includes the implementation of every transport matrix.
|
---|
21 |
|
---|
22 | // c++ #includes
|
---|
23 | #include <iostream>
|
---|
24 |
|
---|
25 | // C #includes
|
---|
26 | #include <cmath>
|
---|
27 |
|
---|
28 | // local #includes
|
---|
29 | #include "H_Parameters.h"
|
---|
30 | #include "H_TransportMatrices.h"
|
---|
31 | using namespace std;
|
---|
32 |
|
---|
33 | bool relative_energy = 1;
|
---|
34 |
|
---|
35 | // caution : do not change particle mass, not implemented yet.
|
---|
36 |
|
---|
37 | extern double omega(const double k, const double l) {
|
---|
38 | // [l] = [m] and [k] = [1/m^2] for quadrupoles
|
---|
39 | // [omega] = [1]
|
---|
40 | return sqrt(fabs(k))*l;
|
---|
41 | }
|
---|
42 |
|
---|
43 | extern double radius(const double k) {
|
---|
44 | // [k] = [1/m^2] for quadrupoles
|
---|
45 | // [k] = [1/m] for dipoles
|
---|
46 | // [radius(k)] = [m]
|
---|
47 | if(k==0 && VERBOSE) cout<<"<H_TransportMatrices> ERROR : Dipole has no effect : results will be corrupted"<<endl;
|
---|
48 | // this is protected by the "if(k==0) -> driftmat" in every matrix below (ex vquatmat)
|
---|
49 | return (k==0) ? 1 : 1/k;
|
---|
50 | }
|
---|
51 |
|
---|
52 | extern void printMatrix(TMatrix TMat) {
|
---|
53 | char temp[20];
|
---|
54 | float * el = new float[MDIM*MDIM];
|
---|
55 | el = (TMat.GetMatrixArray());
|
---|
56 |
|
---|
57 | cout << endl << "\t";
|
---|
58 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
59 | if (el[i]<0)
|
---|
60 | {sprintf(temp,"%.5e",el[i]);}
|
---|
61 | else if (el[i]>0)
|
---|
62 | {sprintf(temp," %.5e",el[i]);}
|
---|
63 | else {sprintf(temp," 0 ");}
|
---|
64 |
|
---|
65 | cout << temp << " ";
|
---|
66 | if((i+1)%MDIM == 0) { cout << endl << "\t"; }
|
---|
67 | }
|
---|
68 | cout << endl;
|
---|
69 | }
|
---|
70 |
|
---|
71 | extern TMatrix vquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
72 | // the length l is in [m]
|
---|
73 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
74 | // eloss in [GeV]
|
---|
75 | // ke is the modified field with respect to the eloss
|
---|
76 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
77 | // k -> ke = k * p/ (p - dp) <- chromacity
|
---|
78 | // ke -> ke * p_charge / QP <- if not a proton
|
---|
79 | // ke = 0 if charge = 0, whatever the mass
|
---|
80 |
|
---|
81 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
82 | const double E = BE - eloss;
|
---|
83 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
84 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
85 | if (ke==0) {
|
---|
86 | TMatrix drift(driftmat(l));
|
---|
87 | return drift;
|
---|
88 | }
|
---|
89 | // else... :
|
---|
90 | float om = omega(ke,l);
|
---|
91 | float * mat = new float[MDIM*MDIM];
|
---|
92 | float tmat[MDIM*MDIM] = {cosh(om),sqrt(ke)*sinh(om),0.,0., 0.,0.,
|
---|
93 | (1/sqrt(ke))*sinh(om),cosh(om),0.,0., 0.,0.,
|
---|
94 | 0.,0.,cos(om),-sqrt(ke)*sin(om), 0.,0.,
|
---|
95 | 0.,0.,(1/sqrt(ke))*sin(om),cos(om), 0.,0.,
|
---|
96 | 0., 0., 0., 0., 1., 0.,
|
---|
97 | 0., 0., 0., 0., 0., 1.
|
---|
98 | };
|
---|
99 | for (int i=0; i<MDIM*MDIM; i++) {mat[i] = tmat[i];}
|
---|
100 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
101 | delete [] mat;
|
---|
102 | return TMat;
|
---|
103 | }
|
---|
104 |
|
---|
105 | extern TMatrix hquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
106 | // the length l is in [m]
|
---|
107 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
108 | // ke is the modified field with respect to the eloss
|
---|
109 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
110 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
111 | // ke -> ke *p_charge/QP <- if not a proton
|
---|
112 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
113 | const double E = BE - eloss;
|
---|
114 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
115 | const float ke = (p_charge==0) ? 0 : fabs(k* p0/p) *p_charge/QP;
|
---|
116 |
|
---|
117 | if (ke==0) {
|
---|
118 | TMatrix drift(driftmat(l));
|
---|
119 | return drift;
|
---|
120 | }
|
---|
121 | float om = omega(ke,l);
|
---|
122 | float * mat = new float[MDIM*MDIM];
|
---|
123 | float tmat[MDIM*MDIM] = {cos(om),-sqrt(ke)*sin(om),0.,0., 0., 0.,
|
---|
124 | (1/sqrt(ke))*sin(om),cos(om),0.,0., 0., 0.,
|
---|
125 | 0.,0.,cosh(om),sqrt(ke)*sinh(om), 0., 0.,
|
---|
126 | 0.,0.,(1/sqrt(ke))*sinh(om),cosh(om), 0., 0.,
|
---|
127 | 0., 0., 0., 0., 1., 0.,
|
---|
128 | 0., 0., 0., 0., 0., 1.
|
---|
129 | };
|
---|
130 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
131 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
132 | delete [] mat;
|
---|
133 | return TMat;
|
---|
134 | }
|
---|
135 |
|
---|
136 | extern TMatrix rdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
137 | // the length l is in [m]
|
---|
138 | // the strength k is in [1/m] for dipoles
|
---|
139 | // ke is the modified field with respect to the eloss
|
---|
140 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
141 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
142 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
143 |
|
---|
144 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
145 | const double E = BE - eloss;
|
---|
146 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
147 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
148 |
|
---|
149 | if (ke==0) {
|
---|
150 | TMatrix drift(driftmat(l));
|
---|
151 | return drift;
|
---|
152 | }
|
---|
153 | float r = radius(ke);
|
---|
154 | float * mat = new float[MDIM*MDIM];
|
---|
155 | float * efmat = new float[MDIM*MDIM];
|
---|
156 | double simp = r*2*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
157 | double psy = ke*l/2.;
|
---|
158 | float tefmat[MDIM*MDIM] = {1., tan(psy)*ke, 0., 0., 0., 0.,
|
---|
159 | 0., 1., 0., 0., 0., 0.,
|
---|
160 | 0., 0., 1., -tan(psy)*ke, 0., 0.,
|
---|
161 | 0., 0., 0., 1., 0., 0.,
|
---|
162 | 0., 0., 0., 0., 1., 0.,
|
---|
163 | 0., 0., 0., 0., 0., 1. };
|
---|
164 |
|
---|
165 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
166 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
167 | 0.,0.,1.,0., 0., 0.,
|
---|
168 | 0.,0.,l,1., 0., 0.,
|
---|
169 | simp, sin(l/r)/BE, 0., 0., 1., 0.,
|
---|
170 | 0., 0., 0., 0., 0., 1. };
|
---|
171 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
172 | mat[i] = tmat[i];
|
---|
173 | efmat[i] = tefmat[i];
|
---|
174 | }
|
---|
175 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
176 | TMatrix TEfmat(MDIM,MDIM,efmat);
|
---|
177 | if(relative_energy) {
|
---|
178 | TMat *= TEfmat;
|
---|
179 | TEfmat *= TMat;
|
---|
180 | }
|
---|
181 |
|
---|
182 | // if(VERBOSE) cout<<"\t WARNING : RDipoles not implemented and replaced by SDipoles" << endl;
|
---|
183 | delete [] mat;
|
---|
184 | delete [] efmat;
|
---|
185 | if(relative_energy) {
|
---|
186 | return TEfmat;
|
---|
187 | } else {
|
---|
188 | return TMat;
|
---|
189 | }
|
---|
190 | }
|
---|
191 |
|
---|
192 | extern TMatrix sdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
193 | // the length l is in [m]
|
---|
194 | // the strength k is in [1/m] for dipoles
|
---|
195 | // ke is the modified field with respect to the eloss
|
---|
196 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
197 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
198 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
199 |
|
---|
200 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
201 | const double E = BE - eloss;
|
---|
202 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
203 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
204 |
|
---|
205 | if (ke==0) {
|
---|
206 | TMatrix drift(driftmat(l));
|
---|
207 | return drift;
|
---|
208 | }
|
---|
209 | extern bool relative_energy;
|
---|
210 | float r = radius(ke);
|
---|
211 | float * mat = new float[MDIM*MDIM];
|
---|
212 |
|
---|
213 | float simp = 2*r*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
214 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
215 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
216 | 0.,0.,1.,0., 0., 0.,
|
---|
217 | 0.,0.,l,1., 0., 0.,
|
---|
218 | simp, sin(l/r)/BE, 0., 0., 1., 0.,
|
---|
219 | 0., 0., 0., 0., 0., 1.
|
---|
220 | };
|
---|
221 | if(!relative_energy) {
|
---|
222 | tmat[24] = 0;
|
---|
223 | tmat[25] = 0;
|
---|
224 | }
|
---|
225 |
|
---|
226 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
227 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
228 | delete [] mat;
|
---|
229 | return TMat;
|
---|
230 | }
|
---|
231 |
|
---|
232 | extern TMatrix driftmat(const float l) {
|
---|
233 | // the length l is in [m]
|
---|
234 | float * mat = new float[MDIM*MDIM];
|
---|
235 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
236 | l ,1.,0.,0.,0.,0.,
|
---|
237 | 0.,0.,1.,0.,0.,0.,
|
---|
238 | 0.,0.,l ,1.,0.,0.,
|
---|
239 | 0.,0.,0.,0.,1.,0.,
|
---|
240 | 0., 0., 0., 0., 0., 1.
|
---|
241 | };
|
---|
242 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
243 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
244 | delete [] mat;
|
---|
245 | return TMat;
|
---|
246 | }
|
---|
247 |
|
---|
248 |
|
---|
249 | extern TMatrix hkickmat(const float l, const float k, const float eloss =0., const float p_mass=MP, const float p_charge=QP) {
|
---|
250 | // the length l is in [m]
|
---|
251 | // the strength k is in [rad]
|
---|
252 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
253 | const double E = BE - eloss;
|
---|
254 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
255 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
256 |
|
---|
257 | if (ke==0) {
|
---|
258 | TMatrix drift(driftmat(l));
|
---|
259 | return drift;
|
---|
260 | }
|
---|
261 | float * mat = new float[MDIM*MDIM];
|
---|
262 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
263 | l ,1.,0.,0.,0.,0.,
|
---|
264 | 0.,0.,1.,0.,0.,0.,
|
---|
265 | 0.,0.,l ,1.,0.,0.,
|
---|
266 | 0.,0.,0.,0.,1.,0.,
|
---|
267 | l*tan(ke)/2.,ke, 0., 0., 0., 1.
|
---|
268 | };
|
---|
269 |
|
---|
270 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
271 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
272 | delete [] mat;
|
---|
273 | return TMat;
|
---|
274 | }
|
---|
275 |
|
---|
276 | extern TMatrix vkickmat(const float l, const float k, const float eloss=0., const float p_mass=MP, const float p_charge=QP) {
|
---|
277 | // the length l is in [m]
|
---|
278 | // the strength k is in [rad]
|
---|
279 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
280 | const double E = BE - eloss;
|
---|
281 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
282 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
283 |
|
---|
284 | if (ke==0) {
|
---|
285 | TMatrix drift(driftmat(l));
|
---|
286 | return drift;
|
---|
287 | }
|
---|
288 | float * mat = new float[MDIM*MDIM];
|
---|
289 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
290 | l ,1.,0.,0.,0.,0.,
|
---|
291 | 0.,0.,1.,0.,0.,0.,
|
---|
292 | 0.,0.,l ,1.,0.,0.,
|
---|
293 | 0.,0.,0.,0.,1.,0.,
|
---|
294 | 0.,0.,l*tan(ke)/2.,ke, 0., 1.
|
---|
295 | };
|
---|
296 |
|
---|
297 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
298 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
299 | delete [] mat;
|
---|
300 | return TMat;
|
---|
301 | }
|
---|
302 |
|
---|