[3c40083] | 1 | /*
|
---|
| 2 | ---- Hector the simulator ----
|
---|
| 3 | A fast simulator of particles through generic beamlines.
|
---|
| 4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
| 5 |
|
---|
| 6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
| 7 |
|
---|
| 8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
| 9 | Université Catholique de Louvain (UCL)
|
---|
| 10 | */
|
---|
[5b822e5] | 11 |
|
---|
| 12 | /// \file H_TransportMatrices.cc
|
---|
| 13 | /// \brief Includes the implementation of every transport matrix.
|
---|
| 14 |
|
---|
| 15 | // c++ #includes
|
---|
| 16 | #include <iostream>
|
---|
| 17 |
|
---|
| 18 | // C #includes
|
---|
| 19 | #include <cmath>
|
---|
| 20 |
|
---|
| 21 | // local #includes
|
---|
| 22 | #include "H_Parameters.h"
|
---|
| 23 | #include "H_TransportMatrices.h"
|
---|
| 24 | using namespace std;
|
---|
| 25 |
|
---|
| 26 | bool relative_energy = 1;
|
---|
| 27 |
|
---|
| 28 | // caution : do not change particle mass, not implemented yet.
|
---|
| 29 |
|
---|
| 30 | extern double omega(const double k, const double l) {
|
---|
[3c40083] | 31 | // [l] = [m] and [k] = [1/mᅵ] for quadrupoles
|
---|
[5b822e5] | 32 | // [omega] = [1]
|
---|
| 33 | return sqrt(fabs(k))*l;
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | extern double radius(const double k) {
|
---|
[3c40083] | 37 | // [k] = [1/mᅵ] for quadrupoles
|
---|
[5b822e5] | 38 | // [k] = [1/m] for dipoles
|
---|
| 39 | // [radius(k)] = [m]
|
---|
[3c40083] | 40 | if(k==0 && VERBOSE) cout<<"ERROR : Dipole has no effect : results will be corrupted"<<endl;
|
---|
[5b822e5] | 41 | // this is protected by the "if(k==0) -> driftmat" in every matrix below (ex vquatmat)
|
---|
| 42 | return (k==0) ? 1 : 1/k;
|
---|
| 43 | }
|
---|
| 44 |
|
---|
[3c40083] | 45 | extern void printMatrix(TMatrix * TMat) {
|
---|
[5b822e5] | 46 | char temp[20];
|
---|
| 47 | float * el = new float[MDIM*MDIM];
|
---|
[3c40083] | 48 | el = (TMat->GetMatrixArray());
|
---|
[5b822e5] | 49 |
|
---|
| 50 | cout << endl << "\t";
|
---|
| 51 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
| 52 | if (el[i]<0)
|
---|
| 53 | {sprintf(temp,"%.5e",el[i]);}
|
---|
| 54 | else if (el[i]>0)
|
---|
| 55 | {sprintf(temp," %.5e",el[i]);}
|
---|
| 56 | else {sprintf(temp," 0 ");}
|
---|
| 57 |
|
---|
| 58 | cout << temp << " ";
|
---|
| 59 | if((i+1)%MDIM == 0) { cout << endl << "\t"; }
|
---|
| 60 | }
|
---|
| 61 | cout << endl;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | extern TMatrix vquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 65 | // the length l is in [m]
|
---|
| 66 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
| 67 | // eloss in [GeV]
|
---|
| 68 | // ke is the modified field with respect to the eloss
|
---|
| 69 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
| 70 | // k -> ke = k * p/ (p - dp) <- chromacity
|
---|
| 71 | // ke -> ke * p_charge / QP <- if not a proton
|
---|
| 72 | // ke = 0 if charge = 0, whatever the mass
|
---|
| 73 |
|
---|
| 74 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 75 | const double E = BE - eloss;
|
---|
| 76 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 77 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
| 78 | if (ke==0) {
|
---|
| 79 | TMatrix drift(driftmat(l));
|
---|
| 80 | return drift;
|
---|
| 81 | }
|
---|
| 82 | // else... :
|
---|
| 83 | float om = omega(ke,l);
|
---|
| 84 | float * mat = new float[MDIM*MDIM];
|
---|
| 85 | float tmat[MDIM*MDIM] = {cosh(om),sqrt(ke)*sinh(om),0.,0., 0.,0.,
|
---|
| 86 | (1/sqrt(ke))*sinh(om),cosh(om),0.,0., 0.,0.,
|
---|
| 87 | 0.,0.,cos(om),-sqrt(ke)*sin(om), 0.,0.,
|
---|
| 88 | 0.,0.,(1/sqrt(ke))*sin(om),cos(om), 0.,0.,
|
---|
| 89 | 0., 0., 0., 0., 1., 0.,
|
---|
| 90 | 0., 0., 0., 0., 0., 1.
|
---|
| 91 | };
|
---|
| 92 | for (int i=0; i<MDIM*MDIM; i++) {mat[i] = tmat[i];}
|
---|
| 93 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 94 | delete [] mat;
|
---|
| 95 | return TMat;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | extern TMatrix hquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 99 | // the length l is in [m]
|
---|
| 100 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
| 101 | // ke is the modified field with respect to the eloss
|
---|
| 102 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
| 103 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
| 104 | // ke -> ke *p_charge/QP <- if not a proton
|
---|
| 105 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 106 | const double E = BE - eloss;
|
---|
| 107 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 108 | const float ke = (p_charge==0) ? 0 : fabs(k* p0/p) *p_charge/QP;
|
---|
| 109 |
|
---|
| 110 | if (ke==0) {
|
---|
| 111 | TMatrix drift(driftmat(l));
|
---|
| 112 | return drift;
|
---|
| 113 | }
|
---|
| 114 | float om = omega(ke,l);
|
---|
| 115 | float * mat = new float[MDIM*MDIM];
|
---|
| 116 | float tmat[MDIM*MDIM] = {cos(om),-sqrt(ke)*sin(om),0.,0., 0., 0.,
|
---|
| 117 | (1/sqrt(ke))*sin(om),cos(om),0.,0., 0., 0.,
|
---|
| 118 | 0.,0.,cosh(om),sqrt(ke)*sinh(om), 0., 0.,
|
---|
| 119 | 0.,0.,(1/sqrt(ke))*sinh(om),cosh(om), 0., 0.,
|
---|
| 120 | 0., 0., 0., 0., 1., 0.,
|
---|
| 121 | 0., 0., 0., 0., 0., 1.
|
---|
| 122 | };
|
---|
| 123 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
| 124 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 125 | delete [] mat;
|
---|
| 126 | return TMat;
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | extern TMatrix rdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 130 | // the length l is in [m]
|
---|
| 131 | // the strength k is in [1/m] for dipoles
|
---|
| 132 | // ke is the modified field with respect to the eloss
|
---|
| 133 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
| 134 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
| 135 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
| 136 |
|
---|
| 137 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 138 | const double E = BE - eloss;
|
---|
| 139 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 140 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
| 141 |
|
---|
| 142 | if (ke==0) {
|
---|
| 143 | TMatrix drift(driftmat(l));
|
---|
| 144 | return drift;
|
---|
| 145 | }
|
---|
| 146 | float r = radius(ke);
|
---|
| 147 | float * mat = new float[MDIM*MDIM];
|
---|
| 148 | float * efmat = new float[MDIM*MDIM];
|
---|
| 149 | double simp = r*2*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
| 150 | double psy = ke*l/2.;
|
---|
[3c40083] | 151 | float tefmat[MDIM*MDIM] = {1., (float)(tan(psy)*ke), 0., 0., 0., 0.,
|
---|
[5b822e5] | 152 | 0., 1., 0., 0., 0., 0.,
|
---|
[3c40083] | 153 | 0., 0., 1., (float)(-tan(psy)*ke), 0., 0.,
|
---|
[5b822e5] | 154 | 0., 0., 0., 1., 0., 0.,
|
---|
| 155 | 0., 0., 0., 0., 1., 0.,
|
---|
| 156 | 0., 0., 0., 0., 0., 1. };
|
---|
| 157 |
|
---|
| 158 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
| 159 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
| 160 | 0.,0.,1.,0., 0., 0.,
|
---|
| 161 | 0.,0.,l,1., 0., 0.,
|
---|
[3c40083] | 162 | (float)simp, (float)(sin(l/r)/BE), 0., 0., 1., 0.,
|
---|
[5b822e5] | 163 | 0., 0., 0., 0., 0., 1. };
|
---|
| 164 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
| 165 | mat[i] = tmat[i];
|
---|
| 166 | efmat[i] = tefmat[i];
|
---|
| 167 | }
|
---|
| 168 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 169 | TMatrix TEfmat(MDIM,MDIM,efmat);
|
---|
| 170 | if(relative_energy) {
|
---|
| 171 | TMat *= TEfmat;
|
---|
| 172 | TEfmat *= TMat;
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | // if(VERBOSE) cout<<"\t WARNING : RDipoles not implemented and replaced by SDipoles" << endl;
|
---|
| 176 | delete [] mat;
|
---|
| 177 | delete [] efmat;
|
---|
| 178 | if(relative_energy) {
|
---|
| 179 | return TEfmat;
|
---|
| 180 | } else {
|
---|
| 181 | return TMat;
|
---|
| 182 | }
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | extern TMatrix sdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 186 | // the length l is in [m]
|
---|
| 187 | // the strength k is in [1/m] for dipoles
|
---|
| 188 | // ke is the modified field with respect to the eloss
|
---|
| 189 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
| 190 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
| 191 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
| 192 |
|
---|
| 193 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 194 | const double E = BE - eloss;
|
---|
| 195 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 196 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
| 197 |
|
---|
| 198 | if (ke==0) {
|
---|
| 199 | TMatrix drift(driftmat(l));
|
---|
| 200 | return drift;
|
---|
| 201 | }
|
---|
| 202 | extern bool relative_energy;
|
---|
| 203 | float r = radius(ke);
|
---|
| 204 | float * mat = new float[MDIM*MDIM];
|
---|
| 205 |
|
---|
| 206 | float simp = 2*r*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
| 207 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
| 208 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
| 209 | 0.,0.,1.,0., 0., 0.,
|
---|
| 210 | 0.,0.,l,1., 0., 0.,
|
---|
[3c40083] | 211 | simp, (float)(sin(l/r)/BE), 0., 0., 1., 0.,
|
---|
[5b822e5] | 212 | 0., 0., 0., 0., 0., 1.
|
---|
| 213 | };
|
---|
| 214 | if(!relative_energy) {
|
---|
| 215 | tmat[24] = 0;
|
---|
| 216 | tmat[25] = 0;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
| 220 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 221 | delete [] mat;
|
---|
| 222 | return TMat;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | extern TMatrix driftmat(const float l) {
|
---|
| 226 | // the length l is in [m]
|
---|
| 227 | float * mat = new float[MDIM*MDIM];
|
---|
| 228 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
| 229 | l ,1.,0.,0.,0.,0.,
|
---|
| 230 | 0.,0.,1.,0.,0.,0.,
|
---|
| 231 | 0.,0.,l ,1.,0.,0.,
|
---|
| 232 | 0.,0.,0.,0.,1.,0.,
|
---|
| 233 | 0., 0., 0., 0., 0., 1.
|
---|
| 234 | };
|
---|
| 235 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
| 236 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 237 | delete [] mat;
|
---|
| 238 | return TMat;
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 |
|
---|
| 242 | extern TMatrix hkickmat(const float l, const float k, const float eloss =0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 243 | // the length l is in [m]
|
---|
| 244 | // the strength k is in [rad]
|
---|
| 245 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 246 | const double E = BE - eloss;
|
---|
| 247 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 248 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
| 249 |
|
---|
| 250 | if (ke==0) {
|
---|
| 251 | TMatrix drift(driftmat(l));
|
---|
| 252 | return drift;
|
---|
| 253 | }
|
---|
| 254 | float * mat = new float[MDIM*MDIM];
|
---|
| 255 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
| 256 | l ,1.,0.,0.,0.,0.,
|
---|
| 257 | 0.,0.,1.,0.,0.,0.,
|
---|
| 258 | 0.,0.,l ,1.,0.,0.,
|
---|
| 259 | 0.,0.,0.,0.,1.,0.,
|
---|
[3c40083] | 260 | (float)(l*tan(ke)/2.),ke, 0., 0., 0., 1.
|
---|
[5b822e5] | 261 | };
|
---|
| 262 |
|
---|
| 263 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
| 264 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 265 | delete [] mat;
|
---|
| 266 | return TMat;
|
---|
| 267 | }
|
---|
| 268 |
|
---|
| 269 | extern TMatrix vkickmat(const float l, const float k, const float eloss=0., const float p_mass=MP, const float p_charge=QP) {
|
---|
| 270 | // the length l is in [m]
|
---|
| 271 | // the strength k is in [rad]
|
---|
| 272 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
| 273 | const double E = BE - eloss;
|
---|
| 274 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
| 275 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
| 276 |
|
---|
| 277 | if (ke==0) {
|
---|
| 278 | TMatrix drift(driftmat(l));
|
---|
| 279 | return drift;
|
---|
| 280 | }
|
---|
| 281 | float * mat = new float[MDIM*MDIM];
|
---|
| 282 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
| 283 | l ,1.,0.,0.,0.,0.,
|
---|
| 284 | 0.,0.,1.,0.,0.,0.,
|
---|
| 285 | 0.,0.,l ,1.,0.,0.,
|
---|
| 286 | 0.,0.,0.,0.,1.,0.,
|
---|
[3c40083] | 287 | 0.,0.,(float)(l*tan(ke)/2.),ke, 0., 1.
|
---|
[5b822e5] | 288 | };
|
---|
| 289 |
|
---|
| 290 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
| 291 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
| 292 | delete [] mat;
|
---|
| 293 | return TMat;
|
---|
| 294 | }
|
---|
| 295 |
|
---|