1 | /*
|
---|
2 | ---- Hector the simulator ----
|
---|
3 | A fast simulator of particles through generic beamlines.
|
---|
4 | J. de Favereau, X. Rouby ~~~ hector_devel@cp3.phys.ucl.ac.be
|
---|
5 |
|
---|
6 | http://www.fynu.ucl.ac.be/hector.html
|
---|
7 |
|
---|
8 | Centre de Physique des Particules et de Phénoménologie (CP3)
|
---|
9 | Université Catholique de Louvain (UCL)
|
---|
10 | */
|
---|
11 |
|
---|
12 | /// \file H_TransportMatrices.cc
|
---|
13 | /// \brief Includes the implementation of every transport matrix.
|
---|
14 |
|
---|
15 | // c++ #includes
|
---|
16 | #include <iostream>
|
---|
17 |
|
---|
18 | // C #includes
|
---|
19 | #include <cmath>
|
---|
20 |
|
---|
21 | // local #includes
|
---|
22 | #include "H_Parameters.h"
|
---|
23 | #include "H_TransportMatrices.h"
|
---|
24 | using namespace std;
|
---|
25 |
|
---|
26 | bool relative_energy = 1;
|
---|
27 |
|
---|
28 | // caution : do not change particle mass, not implemented yet.
|
---|
29 |
|
---|
30 | extern double omega(const double k, const double l) {
|
---|
31 | // [l] = [m] and [k] = [1/mᅵ] for quadrupoles
|
---|
32 | // [omega] = [1]
|
---|
33 | return sqrt(fabs(k))*l;
|
---|
34 | }
|
---|
35 |
|
---|
36 | extern double radius(const double k) {
|
---|
37 | // [k] = [1/mᅵ] for quadrupoles
|
---|
38 | // [k] = [1/m] for dipoles
|
---|
39 | // [radius(k)] = [m]
|
---|
40 | if(k==0 && VERBOSE) cout<<"ERROR : Dipole has no effect : results will be corrupted"<<endl;
|
---|
41 | // this is protected by the "if(k==0) -> driftmat" in every matrix below (ex vquatmat)
|
---|
42 | return (k==0) ? 1 : 1/k;
|
---|
43 | }
|
---|
44 |
|
---|
45 | extern void printMatrix(TMatrix * TMat) {
|
---|
46 | char temp[20];
|
---|
47 | float * el = new float[MDIM*MDIM];
|
---|
48 | el = (TMat->GetMatrixArray());
|
---|
49 |
|
---|
50 | cout << endl << "\t";
|
---|
51 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
52 | if (el[i]<0)
|
---|
53 | {sprintf(temp,"%.5e",el[i]);}
|
---|
54 | else if (el[i]>0)
|
---|
55 | {sprintf(temp," %.5e",el[i]);}
|
---|
56 | else {sprintf(temp," 0 ");}
|
---|
57 |
|
---|
58 | cout << temp << " ";
|
---|
59 | if((i+1)%MDIM == 0) { cout << endl << "\t"; }
|
---|
60 | }
|
---|
61 | cout << endl;
|
---|
62 | }
|
---|
63 |
|
---|
64 | extern TMatrix vquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
65 | // the length l is in [m]
|
---|
66 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
67 | // eloss in [GeV]
|
---|
68 | // ke is the modified field with respect to the eloss
|
---|
69 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
70 | // k -> ke = k * p/ (p - dp) <- chromacity
|
---|
71 | // ke -> ke * p_charge / QP <- if not a proton
|
---|
72 | // ke = 0 if charge = 0, whatever the mass
|
---|
73 |
|
---|
74 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
75 | const double E = BE - eloss;
|
---|
76 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
77 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
78 | if (ke==0) {
|
---|
79 | TMatrix drift(driftmat(l));
|
---|
80 | return drift;
|
---|
81 | }
|
---|
82 | // else... :
|
---|
83 | float om = omega(ke,l);
|
---|
84 | float * mat = new float[MDIM*MDIM];
|
---|
85 | float tmat[MDIM*MDIM] = {cosh(om),sqrt(ke)*sinh(om),0.,0., 0.,0.,
|
---|
86 | (1/sqrt(ke))*sinh(om),cosh(om),0.,0., 0.,0.,
|
---|
87 | 0.,0.,cos(om),-sqrt(ke)*sin(om), 0.,0.,
|
---|
88 | 0.,0.,(1/sqrt(ke))*sin(om),cos(om), 0.,0.,
|
---|
89 | 0., 0., 0., 0., 1., 0.,
|
---|
90 | 0., 0., 0., 0., 0., 1.
|
---|
91 | };
|
---|
92 | for (int i=0; i<MDIM*MDIM; i++) {mat[i] = tmat[i];}
|
---|
93 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
94 | delete [] mat;
|
---|
95 | return TMat;
|
---|
96 | }
|
---|
97 |
|
---|
98 | extern TMatrix hquadmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
99 | // the length l is in [m]
|
---|
100 | // the strength k is in [1/mᅵ] for quadrupoles
|
---|
101 | // ke is the modified field with respect to the eloss
|
---|
102 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
103 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
104 | // ke -> ke *p_charge/QP <- if not a proton
|
---|
105 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
106 | const double E = BE - eloss;
|
---|
107 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
108 | const float ke = (p_charge==0) ? 0 : fabs(k* p0/p) *p_charge/QP;
|
---|
109 |
|
---|
110 | if (ke==0) {
|
---|
111 | TMatrix drift(driftmat(l));
|
---|
112 | return drift;
|
---|
113 | }
|
---|
114 | float om = omega(ke,l);
|
---|
115 | float * mat = new float[MDIM*MDIM];
|
---|
116 | float tmat[MDIM*MDIM] = {cos(om),-sqrt(ke)*sin(om),0.,0., 0., 0.,
|
---|
117 | (1/sqrt(ke))*sin(om),cos(om),0.,0., 0., 0.,
|
---|
118 | 0.,0.,cosh(om),sqrt(ke)*sinh(om), 0., 0.,
|
---|
119 | 0.,0.,(1/sqrt(ke))*sinh(om),cosh(om), 0., 0.,
|
---|
120 | 0., 0., 0., 0., 1., 0.,
|
---|
121 | 0., 0., 0., 0., 0., 1.
|
---|
122 | };
|
---|
123 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
124 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
125 | delete [] mat;
|
---|
126 | return TMat;
|
---|
127 | }
|
---|
128 |
|
---|
129 | extern TMatrix rdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
130 | // the length l is in [m]
|
---|
131 | // the strength k is in [1/m] for dipoles
|
---|
132 | // ke is the modified field with respect to the eloss
|
---|
133 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
134 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
135 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
136 |
|
---|
137 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
138 | const double E = BE - eloss;
|
---|
139 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
140 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
141 |
|
---|
142 | if (ke==0) {
|
---|
143 | TMatrix drift(driftmat(l));
|
---|
144 | return drift;
|
---|
145 | }
|
---|
146 | float r = radius(ke);
|
---|
147 | float * mat = new float[MDIM*MDIM];
|
---|
148 | float * efmat = new float[MDIM*MDIM];
|
---|
149 | double simp = r*2*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
150 | double psy = ke*l/2.;
|
---|
151 | float tefmat[MDIM*MDIM] = {1., (float)(tan(psy)*ke), 0., 0., 0., 0.,
|
---|
152 | 0., 1., 0., 0., 0., 0.,
|
---|
153 | 0., 0., 1., (float)(-tan(psy)*ke), 0., 0.,
|
---|
154 | 0., 0., 0., 1., 0., 0.,
|
---|
155 | 0., 0., 0., 0., 1., 0.,
|
---|
156 | 0., 0., 0., 0., 0., 1. };
|
---|
157 |
|
---|
158 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
159 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
160 | 0.,0.,1.,0., 0., 0.,
|
---|
161 | 0.,0.,l,1., 0., 0.,
|
---|
162 | (float)simp, (float)(sin(l/r)/BE), 0., 0., 1., 0.,
|
---|
163 | 0., 0., 0., 0., 0., 1. };
|
---|
164 | for(int i=0;i<MDIM*MDIM;i++) {
|
---|
165 | mat[i] = tmat[i];
|
---|
166 | efmat[i] = tefmat[i];
|
---|
167 | }
|
---|
168 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
169 | TMatrix TEfmat(MDIM,MDIM,efmat);
|
---|
170 | if(relative_energy) {
|
---|
171 | TMat *= TEfmat;
|
---|
172 | TEfmat *= TMat;
|
---|
173 | }
|
---|
174 |
|
---|
175 | // if(VERBOSE) cout<<"\t WARNING : RDipoles not implemented and replaced by SDipoles" << endl;
|
---|
176 | delete [] mat;
|
---|
177 | delete [] efmat;
|
---|
178 | if(relative_energy) {
|
---|
179 | return TEfmat;
|
---|
180 | } else {
|
---|
181 | return TMat;
|
---|
182 | }
|
---|
183 | }
|
---|
184 |
|
---|
185 | extern TMatrix sdipmat(const float l, const float k, const float eloss = 0., const float p_mass=MP, const float p_charge=QP) {
|
---|
186 | // the length l is in [m]
|
---|
187 | // the strength k is in [1/m] for dipoles
|
---|
188 | // ke is the modified field with respect to the eloss
|
---|
189 | // k = e/p * dB/dx with p = mv (and m = MP)
|
---|
190 | // k -> ke = k * p/ (p- dp) <- chromacity
|
---|
191 | // ke -> ke * q_mass/QP <- if not a proton
|
---|
192 |
|
---|
193 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
194 | const double E = BE - eloss;
|
---|
195 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
196 | const float ke = (p_charge==0) ? 0 : k* p0/p *p_charge/QP;
|
---|
197 |
|
---|
198 | if (ke==0) {
|
---|
199 | TMatrix drift(driftmat(l));
|
---|
200 | return drift;
|
---|
201 | }
|
---|
202 | extern bool relative_energy;
|
---|
203 | float r = radius(ke);
|
---|
204 | float * mat = new float[MDIM*MDIM];
|
---|
205 |
|
---|
206 | float simp = 2*r*sin(l/(2*r))*sin(l/(2*r))/BE;
|
---|
207 | float tmat[MDIM*MDIM] = {cos(l/r),(-1/r)*sin(l/r),0.,0., 0., 0.,
|
---|
208 | r*sin(l/r),cos(l/r),0.,0., 0., 0.,
|
---|
209 | 0.,0.,1.,0., 0., 0.,
|
---|
210 | 0.,0.,l,1., 0., 0.,
|
---|
211 | simp, (float)(sin(l/r)/BE), 0., 0., 1., 0.,
|
---|
212 | 0., 0., 0., 0., 0., 1.
|
---|
213 | };
|
---|
214 | if(!relative_energy) {
|
---|
215 | tmat[24] = 0;
|
---|
216 | tmat[25] = 0;
|
---|
217 | }
|
---|
218 |
|
---|
219 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
220 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
221 | delete [] mat;
|
---|
222 | return TMat;
|
---|
223 | }
|
---|
224 |
|
---|
225 | extern TMatrix driftmat(const float l) {
|
---|
226 | // the length l is in [m]
|
---|
227 | float * mat = new float[MDIM*MDIM];
|
---|
228 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
229 | l ,1.,0.,0.,0.,0.,
|
---|
230 | 0.,0.,1.,0.,0.,0.,
|
---|
231 | 0.,0.,l ,1.,0.,0.,
|
---|
232 | 0.,0.,0.,0.,1.,0.,
|
---|
233 | 0., 0., 0., 0., 0., 1.
|
---|
234 | };
|
---|
235 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
236 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
237 | delete [] mat;
|
---|
238 | return TMat;
|
---|
239 | }
|
---|
240 |
|
---|
241 |
|
---|
242 | extern TMatrix hkickmat(const float l, const float k, const float eloss =0., const float p_mass=MP, const float p_charge=QP) {
|
---|
243 | // the length l is in [m]
|
---|
244 | // the strength k is in [rad]
|
---|
245 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
246 | const double E = BE - eloss;
|
---|
247 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
248 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
249 |
|
---|
250 | if (ke==0) {
|
---|
251 | TMatrix drift(driftmat(l));
|
---|
252 | return drift;
|
---|
253 | }
|
---|
254 | float * mat = new float[MDIM*MDIM];
|
---|
255 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
256 | l ,1.,0.,0.,0.,0.,
|
---|
257 | 0.,0.,1.,0.,0.,0.,
|
---|
258 | 0.,0.,l ,1.,0.,0.,
|
---|
259 | 0.,0.,0.,0.,1.,0.,
|
---|
260 | (float)(l*tan(ke)/2.),ke, 0., 0., 0., 1.
|
---|
261 | };
|
---|
262 |
|
---|
263 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
264 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
265 | delete [] mat;
|
---|
266 | return TMat;
|
---|
267 | }
|
---|
268 |
|
---|
269 | extern TMatrix vkickmat(const float l, const float k, const float eloss=0., const float p_mass=MP, const float p_charge=QP) {
|
---|
270 | // the length l is in [m]
|
---|
271 | // the strength k is in [rad]
|
---|
272 | const double p0 = sqrt( (BE-MP)*(BE+MP) );
|
---|
273 | const double E = BE - eloss;
|
---|
274 | const double p = sqrt( (E-p_mass)*(E+p_mass) );
|
---|
275 | const float ke = (p_charge==0) ? 0 : -k* p0/p *p_charge/QP;
|
---|
276 |
|
---|
277 | if (ke==0) {
|
---|
278 | TMatrix drift(driftmat(l));
|
---|
279 | return drift;
|
---|
280 | }
|
---|
281 | float * mat = new float[MDIM*MDIM];
|
---|
282 | float tmat[MDIM*MDIM] = {1.,0.,0.,0.,0.,0.,
|
---|
283 | l ,1.,0.,0.,0.,0.,
|
---|
284 | 0.,0.,1.,0.,0.,0.,
|
---|
285 | 0.,0.,l ,1.,0.,0.,
|
---|
286 | 0.,0.,0.,0.,1.,0.,
|
---|
287 | 0.,0.,(float)(l*tan(ke)/2.),ke, 0., 1.
|
---|
288 | };
|
---|
289 |
|
---|
290 | for(int i=0;i<MDIM*MDIM;i++) { mat[i] = tmat[i]; }
|
---|
291 | TMatrix TMat(MDIM,MDIM,mat);
|
---|
292 | delete [] mat;
|
---|
293 | return TMat;
|
---|
294 | }
|
---|
295 |
|
---|