Contact
Name
Position
Email
Address
Phone
Office
UCL member card
Vincent Lemaitre
Position
Academic staff
Address
Centre for Cosmology, Particle Physics and Phenomenology - CP3
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve
Belgium
Université catholique de Louvain
2, Chemin du Cyclotron - Box L7.01.05
B-1348 Louvain-la-Neuve
Belgium
Phone
+32 10 47 3241
Office
UCL member card
CV
/Users/vlemaitre/Private/CV2020_Lemaitre.pdf
People responsibilities
Postdocs
Former members
Former members
Research statement
I am interested in looking for any phenomena Beyond the Standard Model. In particular, in the scalar sector related to the electroweak symmetry breaking.
The search for scalar particles predicted by model Beyond the Standard Model will require at least four conditions:
1) A deep and good understanding of the CMS detector, in particular, the jet or particle flow algorithms and b tagging techniques.
2) The developments of sophisticated analyses techniques, including state of the art event generators such as Madgraph/Madevent with embedded tools such as Madweight.
3) The understanding of top physics as a source of background but also, possibly, a source of signal when the higgs is produced in association with top(s) quarks or if it decays in top quark pairs.
4) A close collaboration with theorists for any possible interpretation of a given observed excess or deficit of events, in a given final state topology.
My research activity is therefore mainly focussed on these four points, with an emphasis on points 2, 3 and 4.
In particular, for point 2, I am taking part to the development of Madweight from the experimental viewpoint, namely, the study of the limitation of the method due to the limited understanding of the so called transfer functions. For point 3, I am particularly interested by the top quark pair production in PP interaction and by the photoproduction of asociated W boson and top quark. In both cases, the fully leptonic topology from the leptonic decays of the two w bosons offer interesting possibilities. Phenomenology of the scalar sector is particularly rich. Together with my theoretical colleagues, the associated possible phenomenology of a two Higgs Doublet Model is under study.
This research is made in very close collaboration with my other experimental colleagues, the CP3 postdocs and last but not least the PhD students which are under my supervision.
Another interest of mine is to maintain an activity in R&D related to silicon detectors. This activity will however decrease with the approaching data taking period of CMS. In this context, I am involved in two projects, the first related to the RD50 collaboration, which concerns the development of Cz silicon detectors which could be good candidates for the CMS tracker upgrade. Another project is related to the development of fundamental semiconductor structures based on the SOI technology, in collaboration with the engineering faculty of the university. My personnal involvement here is somewhat limited to a supervision work, in order to guaranty a good quality of the services related to the irradiation under different beams and doses. These irradiations are being guaranteed by the physicists, engineers and technicians of the Center and of Research of the Cyclotron (CRC) of the university.
The search for scalar particles predicted by model Beyond the Standard Model will require at least four conditions:
1) A deep and good understanding of the CMS detector, in particular, the jet or particle flow algorithms and b tagging techniques.
2) The developments of sophisticated analyses techniques, including state of the art event generators such as Madgraph/Madevent with embedded tools such as Madweight.
3) The understanding of top physics as a source of background but also, possibly, a source of signal when the higgs is produced in association with top(s) quarks or if it decays in top quark pairs.
4) A close collaboration with theorists for any possible interpretation of a given observed excess or deficit of events, in a given final state topology.
My research activity is therefore mainly focussed on these four points, with an emphasis on points 2, 3 and 4.
In particular, for point 2, I am taking part to the development of Madweight from the experimental viewpoint, namely, the study of the limitation of the method due to the limited understanding of the so called transfer functions. For point 3, I am particularly interested by the top quark pair production in PP interaction and by the photoproduction of asociated W boson and top quark. In both cases, the fully leptonic topology from the leptonic decays of the two w bosons offer interesting possibilities. Phenomenology of the scalar sector is particularly rich. Together with my theoretical colleagues, the associated possible phenomenology of a two Higgs Doublet Model is under study.
This research is made in very close collaboration with my other experimental colleagues, the CP3 postdocs and last but not least the PhD students which are under my supervision.
Another interest of mine is to maintain an activity in R&D related to silicon detectors. This activity will however decrease with the approaching data taking period of CMS. In this context, I am involved in two projects, the first related to the RD50 collaboration, which concerns the development of Cz silicon detectors which could be good candidates for the CMS tracker upgrade. Another project is related to the development of fundamental semiconductor structures based on the SOI technology, in collaboration with the engineering faculty of the university. My personnal involvement here is somewhat limited to a supervision work, in order to guaranty a good quality of the services related to the irradiation under different beams and doses. These irradiations are being guaranteed by the physicists, engineers and technicians of the Center and of Research of the Cyclotron (CRC) of the university.
Projects
Research directions:
Experiments and collaborations:
Active projects
Non-active projects
Astroparticle Physics
Cosmology and General Relativity
Data analysis in HEP, astroparticle and GW experiments
Detector commissioning, operation and data processing
Phenomenology of elementary particles
Research and development of new detectors
Cosmology and General Relativity
Data analysis in HEP, astroparticle and GW experiments
Detector commissioning, operation and data processing
Phenomenology of elementary particles
Research and development of new detectors
Experiments and collaborations:
Active projects
a C++ software package to compute Matrix Element weights: MoMEMta
Jérôme de Favereau, Christophe Delaere, Pavel Demin, Vincent Lemaitre
MoMEMta is a C++ software package to compute Matrix Element weights. Designed in a modular way, it covers the needs of experimental analysis workflows at the LHC. MoMEMta provides working examples for the most common final states (, WW, ...). If you are an expert user, be prepared to feel the freedom of configuring your MEM computation at all levels.
MoMEMta is based on:
- C++, ROOT, Lua scripting language
- Cuba (Monte-Carlo integration library)
- External PDFs (LHAPDF by default)
- External Matrix Elements (currently provided by our MadGraph C++ exporter plugin)
MoMEMta is a C++ software package to compute Matrix Element weights. Designed in a modular way, it covers the needs of experimental analysis workflows at the LHC. MoMEMta provides working examples for the most common final states (, WW, ...). If you are an expert user, be prepared to feel the freedom of configuring your MEM computation at all levels.
MoMEMta is based on:
- C++, ROOT, Lua scripting language
- Cuba (Monte-Carlo integration library)
- External PDFs (LHAPDF by default)
- External Matrix Elements (currently provided by our MadGraph C++ exporter plugin)
Advanced Multi-Variate Analysis for New Physics Searches at the LHC
Agni Bethani, Christophe Delaere, Andrea Giammanco, Vincent Lemaitre, Fabio Maltoni
With the 2012 discovery of the Higgs boson at the Large Hadron Collider, LHC, the Standard Model of particle physics has been completed, emerging as a most successful description of matter at the smallest distance scales. But as is always the case, the observation of this particle has also heralded the dawn of a new era in the field: particle physics is now turning to the mysteries posed by the presence of dark matter in the universe, as well as the very existence of the Higgs. The upcoming run of the LHC at 13 TeV will probe possible answers to both issues, providing detailed measurements of the properties of the Higgs and extending significantly the sensitivity to new phenomena.
Since the LHC is the only accelerator currently exploring the energy frontier, it is imperative that the analyses of the collected data use the most powerful possible techniques. In recent years several analyses have utilized multi-variate analysis techniques, obtaining higher sensitivity; yet there is ample room for further improvement. With our program we will import and specialize the most powerful advanced statistical learning techniques to data analyses at the LHC, with the objective of maximizing the chance of new physics discoveries.
We have been part of AMVA4NewPhysics, a network of European institutions whose goal is to foster the development and exploitation of Advanced Multi-Variate Analysis for New Physics searches. The network offered between 2015 and 2019 extensive training in both physics and advanced analysis techniques to graduate students, focusing on providing them with the know-how and the experience to boost their career prospects in and outside academia. The network develops ties with non-academic partners for the creation of interdisciplinary software tools, allowing a successful knowledge transfer in both directions. The network studies innovative techniques and identifies their suitability to problems encountered in searches for new physics at the LHC and detailed studies of the Higgs boson sector.
External collaborators: University of Oxford, INFN, University of Padova, Université Blaise Pascal, LIP, IASA, CERN, UCI, EPFL, B12 Consulting, SDG Consulting, Yandex, MathWorks.
With the 2012 discovery of the Higgs boson at the Large Hadron Collider, LHC, the Standard Model of particle physics has been completed, emerging as a most successful description of matter at the smallest distance scales. But as is always the case, the observation of this particle has also heralded the dawn of a new era in the field: particle physics is now turning to the mysteries posed by the presence of dark matter in the universe, as well as the very existence of the Higgs. The upcoming run of the LHC at 13 TeV will probe possible answers to both issues, providing detailed measurements of the properties of the Higgs and extending significantly the sensitivity to new phenomena.
Since the LHC is the only accelerator currently exploring the energy frontier, it is imperative that the analyses of the collected data use the most powerful possible techniques. In recent years several analyses have utilized multi-variate analysis techniques, obtaining higher sensitivity; yet there is ample room for further improvement. With our program we will import and specialize the most powerful advanced statistical learning techniques to data analyses at the LHC, with the objective of maximizing the chance of new physics discoveries.
We have been part of AMVA4NewPhysics, a network of European institutions whose goal is to foster the development and exploitation of Advanced Multi-Variate Analysis for New Physics searches. The network offered between 2015 and 2019 extensive training in both physics and advanced analysis techniques to graduate students, focusing on providing them with the know-how and the experience to boost their career prospects in and outside academia. The network develops ties with non-academic partners for the creation of interdisciplinary software tools, allowing a successful knowledge transfer in both directions. The network studies innovative techniques and identifies their suitability to problems encountered in searches for new physics at the LHC and detailed studies of the Higgs boson sector.
External collaborators: University of Oxford, INFN, University of Padova, Université Blaise Pascal, LIP, IASA, CERN, UCI, EPFL, B12 Consulting, SDG Consulting, Yandex, MathWorks.
Development of a framework for fast simulation of a generic collider experiment: Delphes
Jérôme de Favereau, Christophe Delaere, Pavel Demin, Andrea Giammanco, Vincent Lemaitre
Observability of new phenomenological models in High Energy experiments is delicate to evaluate, due to the complexity of the related detectors, DAQ chain and software. Delphes is a new framework for fast simulation of a general purpose experiment. The simulation includes a tracking system, a magnetic field, calorimetry and a muon system, and possible very forward detectors arranged along the beamline. The framework is interfaced to standard file format from event generators and outputs observable analysis data objects. The simulation takes into account the detector resolutions, usual reconstruction algorithms for complex objects (FastJet) and a simplified trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the Hector software.
Observability of new phenomenological models in High Energy experiments is delicate to evaluate, due to the complexity of the related detectors, DAQ chain and software. Delphes is a new framework for fast simulation of a general purpose experiment. The simulation includes a tracking system, a magnetic field, calorimetry and a muon system, and possible very forward detectors arranged along the beamline. The framework is interfaced to standard file format from event generators and outputs observable analysis data objects. The simulation takes into account the detector resolutions, usual reconstruction algorithms for complex objects (FastJet) and a simplified trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the Hector software.
Neutrino physics and astrophysics
Eliot Genton, Karlijn Kruiswijk, Mathieu Lamoureux, Jeff Lazar, Vincent Lemaitre, Christoph Raab, Per Arne Sevle Myhr, Matthias Vereecken, Gwenhaël Wilberts Dewasseige
This project gathers researchers studying neutrino physics and astrophysics.
This project gathers researchers studying neutrino physics and astrophysics.
Search for Higgs boson(s) in CMS at the LHC in the llbb topology
Agni Bethani, Jérôme de Favereau, Christophe Delaere, Vincent Lemaitre
Search for Higgs boson(s) within the Standard Model and beyond and also withing a minimal extension of the scalar sector (2HDM).
The final state under study is a Z decaying into a lepton pair associated with two b-jets. This topology is sensitive to a light SM Higgs via the associate ZH production, as well as a middle mass range SM Higgs boson via the inclusive Higgs production followed by its decay into ZZ with one Z decaying into a lepton pair and the other into bbar.
It is also very sensitive to the production of a non standard heavy Higgs boson decaying into Z plus A (pseudo scalar Higgs boson).
Similar selection (but outside of the Z window) is also sensitive to H->aa->llbb, with "a" a generic light scalar.
External collaborators: CMS collaboration.
Search for Higgs boson(s) within the Standard Model and beyond and also withing a minimal extension of the scalar sector (2HDM).
The final state under study is a Z decaying into a lepton pair associated with two b-jets. This topology is sensitive to a light SM Higgs via the associate ZH production, as well as a middle mass range SM Higgs boson via the inclusive Higgs production followed by its decay into ZZ with one Z decaying into a lepton pair and the other into bbar.
It is also very sensitive to the production of a non standard heavy Higgs boson decaying into Z plus A (pseudo scalar Higgs boson).
Similar selection (but outside of the Z window) is also sensitive to H->aa->llbb, with "a" a generic light scalar.
External collaborators: CMS collaboration.
Search for non-resonant new physics in ttbar production
Vincent Lemaitre
The lack of observed resonances produced at the LHC motivates finding new ways of searching for BSM phenomena. This project aims at discovering possible non-resonant New Physics affecting the production of Top quark pairs, by means of a dedicated analysis of data recorded by the CMS experiment. The New Physics effects are modeled using an effective field theory (EFT), whose parameters are to be measured or constrained in a global fit.
The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
The lack of observed resonances produced at the LHC motivates finding new ways of searching for BSM phenomena. This project aims at discovering possible non-resonant New Physics affecting the production of Top quark pairs, by means of a dedicated analysis of data recorded by the CMS experiment. The New Physics effects are modeled using an effective field theory (EFT), whose parameters are to be measured or constrained in a global fit.
The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
Search for nonresonant Higgs boson pair production in the llbb+MET final state
Agni Bethani, Christophe Delaere, Vincent Lemaitre, Fabio Maltoni
The discovery of a Higgs boson (H) by the ATLAS and CMS experiments fixes the value of the self-coupling λ in the scalar potential whose form is determined by the symmetries of the Standard Model and the requirement of renormalisability. Higgs boson pair production is sensitive to the self-coupling and will play a major role in investigating the scalar potential structure.
This project consists in a search for nonresonant Higgs boson pair production via gluon fusion in the final state with two leptons, two b jets and missing transvere energy – gg → H(bb) H(WW) asking for the leptonic decay of the W's. The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
The discovery of a Higgs boson (H) by the ATLAS and CMS experiments fixes the value of the self-coupling λ in the scalar potential whose form is determined by the symmetries of the Standard Model and the requirement of renormalisability. Higgs boson pair production is sensitive to the self-coupling and will play a major role in investigating the scalar potential structure.
This project consists in a search for nonresonant Higgs boson pair production via gluon fusion in the final state with two leptons, two b jets and missing transvere energy – gg → H(bb) H(WW) asking for the leptonic decay of the W's. The analysis is conducted in close collaboration with phenomenologists to ensure the approach is theoretically sound and future-proof.
Search for resonant Higgs pair production in the llbb+MET final state
Agni Bethani, Christophe Delaere, Vincent Lemaitre
The recent discovery of a scalar boson compatible with the Standard Model (SM) Higgs boson opened new windows to look for physics beyond the SM (BSM). An example of newly accessible phenomenology is the production of resonances decaying into two SM Higgs bosons (h) predicted by several theory families such as additional Higgs singlet/doublet or warped extra dimension.
This project consists in a search for spin-0 or spin-2 resonances produced via gluon fusion in the final state with two leptons, two b-jets and missing transverse energy – gg → X → h(bb) h(WW) asking for the leptonic decay of the W's. In particular, we are probing a mass range between 260 GeV and 900 GeV.
The recent discovery of a scalar boson compatible with the Standard Model (SM) Higgs boson opened new windows to look for physics beyond the SM (BSM). An example of newly accessible phenomenology is the production of resonances decaying into two SM Higgs bosons (h) predicted by several theory families such as additional Higgs singlet/doublet or warped extra dimension.
This project consists in a search for spin-0 or spin-2 resonances produced via gluon fusion in the final state with two leptons, two b-jets and missing transverse energy – gg → X → h(bb) h(WW) asking for the leptonic decay of the W's. In particular, we are probing a mass range between 260 GeV and 900 GeV.
World LHC Computing Grid: the Belgian Tier2 project
Giacomo Bruno, Jérôme de Favereau, Pavel Demin, Vincent Lemaitre, Andres Tanasijczuk
The World LHC Computing GRID (WLCG) is the worldwide distributed computing infrastructure controlled by software middleware that allows a seamless usage of shared storage and computing resources.
About 10 PBytes of data are produced every year by the experiments running at the LHC collider. This data must be processed (iterative and refined calibration and analysis) by a large scientific community that is widely distributed geographically.
Instead of concentrating all necessary computing resources in a single location, the LHC experiments have decided to set-up a network of computing centres distributed all over the world.
The overall WLCG computing resources needed by the CMS experiment alone in 2016 amount to about 1500 kHepSpec06 of computing power, 90 PB of disk storage and 150 PB of tape storage. Working in the context of the WLCG translates into seamless access to shared computing and storage resources. End users do not need to know where their applications run. The choice is made by the underlying WLCG software on the basis of availability of resources, demands of the user application (CPU, input and output data,..) and privileges owned by the user.
Back in 2005 UCL proposed the WLCG Belgian Tier2 project that would involve the 6 Belgian Universities involved in CMS. The Tier2 project consists of contributing to the WLCG by building two computing centres, one at UCL and one at the IIHE (ULB/VUB).
The UCL site of the WLCG Belgian Tier2 is deployed in a dedicated room close to the cyclotron control room of the IRMP Institute and is currently a fully functional component of the WLCG.
The UCL Belgian Tier2 project also aims to integrate, bring on the GRID, and share resources with other scientific computing projects. The projects currently integrated in the UCL computing cluster are the following: MadGraph/MadEvent, NA62 and Cosmology.
External collaborators: CISM (UCL), Pascal Vanlaer (Belgium, ULB), Lyon computing centre, CERN computing centre.
The World LHC Computing GRID (WLCG) is the worldwide distributed computing infrastructure controlled by software middleware that allows a seamless usage of shared storage and computing resources.
About 10 PBytes of data are produced every year by the experiments running at the LHC collider. This data must be processed (iterative and refined calibration and analysis) by a large scientific community that is widely distributed geographically.
Instead of concentrating all necessary computing resources in a single location, the LHC experiments have decided to set-up a network of computing centres distributed all over the world.
The overall WLCG computing resources needed by the CMS experiment alone in 2016 amount to about 1500 kHepSpec06 of computing power, 90 PB of disk storage and 150 PB of tape storage. Working in the context of the WLCG translates into seamless access to shared computing and storage resources. End users do not need to know where their applications run. The choice is made by the underlying WLCG software on the basis of availability of resources, demands of the user application (CPU, input and output data,..) and privileges owned by the user.
Back in 2005 UCL proposed the WLCG Belgian Tier2 project that would involve the 6 Belgian Universities involved in CMS. The Tier2 project consists of contributing to the WLCG by building two computing centres, one at UCL and one at the IIHE (ULB/VUB).
The UCL site of the WLCG Belgian Tier2 is deployed in a dedicated room close to the cyclotron control room of the IRMP Institute and is currently a fully functional component of the WLCG.
The UCL Belgian Tier2 project also aims to integrate, bring on the GRID, and share resources with other scientific computing projects. The projects currently integrated in the UCL computing cluster are the following: MadGraph/MadEvent, NA62 and Cosmology.
External collaborators: CISM (UCL), Pascal Vanlaer (Belgium, ULB), Lyon computing centre, CERN computing centre.
Non-active projects
Publications in IRMP
All my publications on Inspire
Number of publications as IRMP member: 62
Last 5 publications
More publications
Number of publications as IRMP member: 62
Last 5 publications
2022
CP3-22-34: Search for CP violation in ttH and tH production in multilepton channels at sqrt(s)=13 TeV
CMS Collaboration
[Local file] [Full text]
HIG-21-006, to be submitted to JHEP
Refereed paper. Public experimental note. June 7.
[Local file] [Full text]
HIG-21-006, to be submitted to JHEP
Refereed paper. Public experimental note. June 7.
2020
CP3-20-33: Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector
CMS Tracker Collaboration
[Journal] [Full text]
Published in: JINST 13 (2018) 03, P03003, Report number: FERMILAB-PUB-18-385-CMS, CERN-CMS-NOTE-2017-010
O. Bondu5, S. Brochet5, A. Caudron5, S. De Visscher5, B. Francois5, A. Jafari5, J. Cabrera Jamoulle5, M. Komm5, G. Krintiras5, A. Magitteri5, A. Mertens5, D. Michotte5, M. Musich5,, L. Quertenmont5, M. Vidal Marono5,
Refereed paper. July 2.
[Journal] [Full text]
Published in: JINST 13 (2018) 03, P03003, Report number: FERMILAB-PUB-18-385-CMS, CERN-CMS-NOTE-2017-010
O. Bondu5, S. Brochet5, A. Caudron5, S. De Visscher5, B. Francois5, A. Jafari5, J. Cabrera Jamoulle5, M. Komm5, G. Krintiras5, A. Magitteri5, A. Mertens5, D. Michotte5, M. Musich5,, L. Quertenmont5, M. Vidal Marono5,
Refereed paper. July 2.
More publications