Changes between Version 4 and Version 5 of pSPSS
- Timestamp:
- Oct 11, 2022, 9:38:51 PM (2 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
pSPSS
v4 v5 1 = pSPSS: Phenomenological symmetry protected seesaw =1 = `pSPSS`: Phenomenological symmetry protected seesaw = 2 2 3 The pSPSS describes the interactions of a pseudo-Dirac pair of two Majorana degrees of freedom [[latex($N_1$)]] and [[latex($N_2$)]] generically appearing in low-scale seesaw models. 4 In the lepton number conserving (LNC) limit their interactions with the Standard Model are given by 3 The motivation and implementation of the `pSPSS` discussed in 4 5 S. Antusch, J. Hajer, and J. Rosskopp. ‘Simulating heavy neutrino-antineutrino oscillations at colliders’ (2022). 6 7 == Model description == 8 9 The `pSPSS` describes the interactions of a pseudo-Dirac pair of two Majorana degrees of freedom [[latex($N_1$)]] and [[latex($N_2$)]] generically appearing in low-scale seesaw models protected by a lepton-number like symmetry. 10 11 In the lepton number conserving (LNC) limit the interactions of the symmetry protected seesaw (SPSS) with the Standard Model are 5 12 6 13 [[latex($\mathcal L_\text{SPSS}^L = i \overline N_i \, \not\! \partial N_i - y_{\alpha1} \widetilde H^\dagger \bar \ell_\alpha N_1^c - \overline N_1 m_M^{} N_2^c + \text{H.c.}$)]] … … 11 18 [[latex($m_{4/5}^{} = m_M^{} + \frac12 m_M^{} |\theta|^2 \mp \frac12 \Delta m$)]] 12 19 13 The smallness of the lepton number violating interactions ensures unobservable collider effects, except for heavy neutrino-antineutrino oscillations as these are a macroscopic interference effect 20 where [[latex($\theta = m_D / m_M$)]] with [[latex($m_D = y_1 v$)]] and [[latex($v\simeq174 \text{ GeV}$)]]. 21 The smallness of the lepton number violating interactions ensures unobservable collider effects, with the exception of heavy neutrino-antineutrino oscillations since these are a macroscopic interference effect 14 22 15 [[latex($P^{\text{LNC}/\text{LNV}}_\text{osc}(\tau) = \frac{1 \pm \cos\left(\Delta m \tau \right) \exp(-\lambda)}2$)]]23 [[latex($P^{\text{LNC}/\text{LNV}}_\text{osc}(\tau) = (1 \pm \cos\left(\Delta m \tau \right) \exp(-\lambda))/2$)]] 16 24 17 25 where [[latex($\lambda$)]] captures the damping of the oscillations due to decoherence. 18 26 27 == !FeynRules implementation == 28 29 The !FeynRules model file contains as free parameter in addition to the Standard Model parameter 30 * Heavy neutrino Yukawa couplings [[latex($y_1$)]] `yvn1`, `yvn2`, `yvn3` 31 * Majorana mass [[latex($m_M$)]] `Mmaj` 32 * Mass splitting [[latex($\Delta M$)]] `deltaM` 33 * Decoherence damping parameter [[latex($\lambda$)]] `damping` 34 19 35 == !MadGraph patch == 20 36 21 In order to generate events with heavy neutrino-antineutrino oscillations it is necessary to patch the `./bin/internal/common_run_interface.py` file with37 In order to generate events with heavy neutrino-antineutrino oscillations it is necessary to patch the `./bin/internal/common_run_interface.py` file in !MadGraph using 22 38 23 39 … … 38 54 if width: 39 55 if id in [8000011, 8000012]: 40 tau0 = random.expovariate(width / cst) |\label{ln:tau0}|56 tau0 = random.expovariate(width / cst) 41 57 if 0.5 * (1 + math.cos(mass splitting * tau0 / cst)) >= random.random(): 42 58 write_event = (leptonnumber == 0) 43 59 else: 44 60 write_event = (leptonnumber != 0) 45 vtim = tau0 * c |\label{ln:convert_tau0}|61 vtim = tau0 * c 46 62 else: 47 63 vtim = c * random.expovariate(width / cst)