Changes between Version 4 and Version 5 of pSPSS


Ignore:
Timestamp:
Oct 11, 2022, 9:38:51 PM (2 years ago)
Author:
Jan Hajer
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • pSPSS

    v4 v5  
    1 = pSPSS: Phenomenological symmetry protected seesaw =
     1= `pSPSS`: Phenomenological symmetry protected seesaw =
    22
    3 The pSPSS describes the interactions of a pseudo-Dirac pair of two Majorana degrees of freedom [[latex($N_1$)]] and [[latex($N_2$)]] generically appearing in low-scale seesaw models.
    4 In the lepton number conserving (LNC) limit their interactions with the Standard Model are given by
     3The motivation and implementation of the `pSPSS` discussed in
     4
     5S. Antusch, J. Hajer, and J. Rosskopp. ‘Simulating heavy neutrino-antineutrino oscillations at colliders’ (2022).
     6
     7== Model description ==
     8
     9The `pSPSS` describes the interactions of a pseudo-Dirac pair of two Majorana degrees of freedom [[latex($N_1$)]] and [[latex($N_2$)]] generically appearing in low-scale seesaw models protected by a lepton-number like symmetry.
     10
     11In the lepton number conserving (LNC) limit the interactions of the symmetry protected seesaw (SPSS) with the Standard Model are
    512
    613[[latex($\mathcal L_\text{SPSS}^L = i \overline N_i \, \not\! \partial N_i -  y_{\alpha1} \widetilde H^\dagger \bar \ell_\alpha N_1^c - \overline N_1 m_M^{} N_2^c + \text{H.c.}$)]]
     
    1118[[latex($m_{4/5}^{} = m_M^{} + \frac12 m_M^{} |\theta|^2 \mp \frac12 \Delta m$)]]
    1219
    13 The smallness of the lepton number violating interactions ensures unobservable collider effects, except for heavy neutrino-antineutrino oscillations as these are a macroscopic interference effect
     20where [[latex($\theta = m_D / m_M$)]] with [[latex($m_D = y_1 v$)]] and [[latex($v\simeq174 \text{ GeV}$)]].
     21The smallness of the lepton number violating interactions ensures unobservable collider effects, with the exception of heavy neutrino-antineutrino oscillations since these are a macroscopic interference effect
    1422
    15 [[latex($P^{\text{LNC}/\text{LNV}}_\text{osc}(\tau) = \frac{1 \pm \cos\left(\Delta m \tau \right) \exp(-\lambda)}2$)]]
     23[[latex($P^{\text{LNC}/\text{LNV}}_\text{osc}(\tau) = (1 \pm \cos\left(\Delta m \tau \right) \exp(-\lambda))/2$)]]
    1624
    1725where [[latex($\lambda$)]] captures the damping of the oscillations due to decoherence.
    1826
     27== !FeynRules implementation ==
     28
     29The !FeynRules model file contains as free parameter in addition to the Standard Model parameter
     30* Heavy neutrino Yukawa couplings [[latex($y_1$)]] `yvn1`, `yvn2`, `yvn3`
     31* Majorana mass [[latex($m_M$)]] `Mmaj`
     32* Mass splitting [[latex($\Delta M$)]] `deltaM`
     33* Decoherence damping parameter [[latex($\lambda$)]] `damping`
     34
    1935== !MadGraph patch ==
    2036
    21 In order to generate events with heavy neutrino-antineutrino oscillations it is necessary to patch the `./bin/internal/common_run_interface.py` file with
     37In order to generate events with heavy neutrino-antineutrino oscillations it is necessary to patch the `./bin/internal/common_run_interface.py` file in !MadGraph using
    2238
    2339
     
    3854        if width:
    3955            if id in [8000011, 8000012]:
    40                 tau0 = random.expovariate(width / cst)|\label{ln:tau0}|
     56                tau0 = random.expovariate(width / cst)
    4157                if 0.5 * (1 + math.cos(mass splitting * tau0 / cst)) >= random.random():
    4258                    write_event = (leptonnumber == 0)
    4359                else:
    4460                    write_event = (leptonnumber != 0)
    45                 vtim = tau0 * c|\label{ln:convert_tau0}|
     61                vtim = tau0 * c
    4662            else:
    4763                vtim = c * random.expovariate(width / cst)