Version 7 (modified by 4 years ago) ( diff ) | ,
---|
Anomaly Free Z prime Model
Autors
- Martin Bauer
- Durham University
- martin.m.bauer@...
- Sascha Diefenbacher
- Universität Hamburg
- sascha.daniel.diefenbacher@...
- Tilman Plehn
- Universität Heidelberg
- plehn@...
- Michael Russell
- Daniel A. Camargo
Model Description
We consider consistent dark matter models with a spin-1 mediator Z' and a dark matter fermion χ, charged under the new gauge group. The available options are purely singlet SM fermions, gauged lepton number differences, or the well-known anomaly-free difference between the lepton and baryon numbers
The $Z'$ couplings to currents of SM fermionsare given by:
\begin{alignat}{9} \mathcal{L}_\text{fermion} = -g_{Z'} j'_\mu & {Z'}^\mu \notag \\ j'_\mu&= 0 \qquad && U(1)_X \notag \\ j'_\mu&= \bar L_i \gamma_\mu L_i + \bar \ell_i\gamma_\mu \ell_i - \bar L_j \gamma_\mu L_j -\bar\ell_j\gamma_\mu \ell_j \qquad && U(1)_{L_i-L_j} \notag \\ j'_\mu&= \frac{1}{3}\bar Q \gamma_\mu Q + \frac{1}{3}\bar u_R\gamma_\mu u_R + \frac{1}{3}\bar d_R\gamma_\mu d_R - \bar L \gamma_\mu L + \bar \ell\gamma_\mu \ell \qquad && U(1)_{B-L} \; , \end{alignat}
where $g_{Z'}$ denotes the dark gauge coupling. The different coupling structures shown above can be understood in terms of a flavor structure of a dark gauge coupling matrix.
The fermion current structure can be generalized to include the dark matter current. To couple to the gauge mediator the dark matter fermion has to be a Dirac fermion. To avoid new anomalies, the dark matter candidate cannot be chiral and its charges under the new gauge group are $q_{\chi_L}=q_{\chi_R}$. This defines a dark fermion Lagrangian with a vector mass term
\begin{align*} \mathcal{L}_\text{DM}= i \bar \chi \not{D} \chi - m_\chi \bar \chi \chi \; , \end{align*}
with the covariant derivative of the SM-singlet fermion
$D_\mu=\partial_\mu -ig_{Z'} q_\chi \hat Z'_\mu$.
In all cases, the kinetic term for the $U(1)$ gauge bosons is not canonically normalized
$\mbox{Var}[\tau(X_p,X_d)]=\mbox{Var}[E(\tau(X_p,X_d)|X_p)]+E[\mbox{Var}(\tau(X_p,X_d)|X_p)]$
Attachments (3)
- AnoFree_NLO_simp_16_mt_UFO.zip (41.7 KB ) - added by 4 years ago.
- AnoFree_ZP_simple_for_NLO_16.fr (19.5 KB ) - added by 4 years ago.
- ZprimeDM_simple.nb (333.4 KB ) - added by 4 years ago.
Download all attachments as: .zip