| 1 | (***************************************************************************************************************)
|
|---|
| 2 | (****** This is the FeynRules mod-file for an Anomaly free Z' model ******)
|
|---|
| 3 | (****** ******)
|
|---|
| 4 | (****** Author: Sascha Diefenbacher ******)
|
|---|
| 5 | (****** ******)
|
|---|
| 6 | (****** Choose whether Feynman gauge is desired. ******)
|
|---|
| 7 | (****** If set to False, unitary gauge is assumed. ****)
|
|---|
| 8 | (****** Feynman gauge is especially useful for CalcHEP/CompHEP where the calculation is 10-100 times faster. ***)
|
|---|
| 9 | (****** Feynman gauge is not supported in MadGraph and Sherpa. ****)
|
|---|
| 10 | (***************************************************************************************************************)
|
|---|
| 11 |
|
|---|
| 12 | (* ************************** *)
|
|---|
| 13 | (* ***** Information ***** *)
|
|---|
| 14 | (* ************************** *)
|
|---|
| 15 | M$ModelName = "AnoFree_ZP";
|
|---|
| 16 |
|
|---|
| 17 | M$Information = {Authors -> {"Sascha D. Diefenbacher"},
|
|---|
| 18 | Version -> "1.0",
|
|---|
| 19 | Date -> "26. 8. 2017",
|
|---|
| 20 | Institutions -> {"Uni-Heidelberg"},
|
|---|
| 21 | Emails -> {""}
|
|---|
| 22 | };
|
|---|
| 23 |
|
|---|
| 24 | (* ************************** *)
|
|---|
| 25 | (* ***** Indices ***** *)
|
|---|
| 26 | (* ************************** *)
|
|---|
| 27 |
|
|---|
| 28 |
|
|---|
| 29 |
|
|---|
| 30 |
|
|---|
| 31 | (* Parameter list *)
|
|---|
| 32 |
|
|---|
| 33 | M$Parameters = {
|
|---|
| 34 |
|
|---|
| 35 | (****External Parameters****)
|
|---|
| 36 |
|
|---|
| 37 | MZptarget == {
|
|---|
| 38 | ParameterType -> External,
|
|---|
| 39 | Value -> 300,
|
|---|
| 40 | InteractionOrder -> {Zp,1},
|
|---|
| 41 | TeX -> Subscript[M, zptarget],
|
|---|
| 42 | Description -> "mzp target"
|
|---|
| 43 | },
|
|---|
| 44 |
|
|---|
| 45 | Mn1 == {
|
|---|
| 46 | ParameterType -> External,
|
|---|
| 47 | Value -> 250,
|
|---|
| 48 | InteractionOrder -> {Mn1,1},
|
|---|
| 49 | TeX -> Subscript[M,n1],
|
|---|
| 50 | Description -> "DM mass"
|
|---|
| 51 | },
|
|---|
| 52 |
|
|---|
| 53 | xi == {
|
|---|
| 54 | ParameterType -> External,
|
|---|
| 55 | Value -> 0.1,
|
|---|
| 56 | TeX -> "Chi",
|
|---|
| 57 | Description -> "Some mixing thing-y"
|
|---|
| 58 | },
|
|---|
| 59 |
|
|---|
| 60 | QS0 == {
|
|---|
| 61 | ParameterType -> External,
|
|---|
| 62 | Value -> 2.0,
|
|---|
| 63 | InteractionOrder -> {QED,1},
|
|---|
| 64 | TeX -> Subscript[Q,S0],
|
|---|
| 65 | Description -> "S0 Carge"
|
|---|
| 66 | },
|
|---|
| 67 |
|
|---|
| 68 | QDM == {
|
|---|
| 69 | ParameterType -> External,
|
|---|
| 70 | Value -> 1.0,
|
|---|
| 71 | TeX -> Subscript[Q,DM],
|
|---|
| 72 | Description -> "DM Carge"
|
|---|
| 73 | },
|
|---|
| 74 |
|
|---|
| 75 |
|
|---|
| 76 | gzp == {
|
|---|
| 77 | ParameterType -> External,
|
|---|
| 78 | Value -> 1.0,
|
|---|
| 79 | InteractionOrder -> {Zp,1},
|
|---|
| 80 | TeX -> Subscript[g, zp],
|
|---|
| 81 | Description -> "Z' gauge coupling"
|
|---|
| 82 | },
|
|---|
| 83 |
|
|---|
| 84 | chi == {
|
|---|
| 85 | ParameterType -> External,
|
|---|
| 86 | Value -> Cos[0.0],
|
|---|
| 87 | TeX -> "cos(hi)",
|
|---|
| 88 | Description -> "asljdf"
|
|---|
| 89 | },
|
|---|
| 90 |
|
|---|
| 91 | MStarget == {
|
|---|
| 92 | ParameterType -> External,
|
|---|
| 93 | Value -> 200,
|
|---|
| 94 | TeX -> "MStarget",
|
|---|
| 95 | Description -> "desired MS0"
|
|---|
| 96 | },
|
|---|
| 97 |
|
|---|
| 98 | MHtarget == {
|
|---|
| 99 | ParameterType -> External,
|
|---|
| 100 | Value -> 125,
|
|---|
| 101 | TeX -> "MHtarget",
|
|---|
| 102 | Description -> "desred MH"
|
|---|
| 103 | },
|
|---|
| 104 |
|
|---|
| 105 | lambHS == {
|
|---|
| 106 | ParameterType -> External,
|
|---|
| 107 | Value -> 0.01,
|
|---|
| 108 | InteractionOrder -> {QED,2},
|
|---|
| 109 | TeX -> "lambdaHS",
|
|---|
| 110 | Description -> "lambda Mixing"
|
|---|
| 111 | },
|
|---|
| 112 |
|
|---|
| 113 |
|
|---|
| 114 |
|
|---|
| 115 |
|
|---|
| 116 | (*************Internal Parameters************)
|
|---|
| 117 |
|
|---|
| 118 | sxi == {
|
|---|
| 119 | ParameterType -> Internal,
|
|---|
| 120 | Value -> Sin[xi],
|
|---|
| 121 | TeX -> "Sin(xi)",
|
|---|
| 122 | Description -> "Sin(xi)"
|
|---|
| 123 | },
|
|---|
| 124 |
|
|---|
| 125 | cxi == {
|
|---|
| 126 | ParameterType -> Internal,
|
|---|
| 127 | Value -> Cos[xi],
|
|---|
| 128 | TeX -> "Cos(xi)",
|
|---|
| 129 | Description -> "Cos(xi)"
|
|---|
| 130 | },
|
|---|
| 131 |
|
|---|
| 132 | txi == {
|
|---|
| 133 | ParameterType -> Internal,
|
|---|
| 134 | Value -> sxi/cxi,
|
|---|
| 135 | TeX -> "Tan(xi)",
|
|---|
| 136 | Description -> "Tan(xi)"
|
|---|
| 137 | },
|
|---|
| 138 |
|
|---|
| 139 | VS == {
|
|---|
| 140 | ParameterType -> Internal,
|
|---|
| 141 | Value -> (Sqrt[2]*cxi*MZptarget*Sqrt[-MZ^2 + MZptarget^2 - MZ^2*sw^2*txi^2])/(gzp*Sqrt[-MZ^2 + MZptarget^2]*QS0),
|
|---|
| 142 | InteractionOrder -> {QED,-1},
|
|---|
| 143 | TeX -> Subscript[vev, S0],
|
|---|
| 144 | Description -> "vev of S0"
|
|---|
| 145 | },
|
|---|
| 146 |
|
|---|
| 147 | lambS == {
|
|---|
| 148 | ParameterType -> Internal,
|
|---|
| 149 | Value -> (MStarget^2 + MHtarget^2 + Sqrt[(MStarget^2-MHtarget^2)^2-(2*lambHS*vev*VS)^2])/(2*VS*VS),
|
|---|
| 150 | InteractionOrder -> {QED,2},
|
|---|
| 151 | TeX -> Subscript[#lambda, S0],
|
|---|
| 152 | Description -> "lambda S0"
|
|---|
| 153 | },
|
|---|
| 154 |
|
|---|
| 155 | lambH == {
|
|---|
| 156 | ParameterType -> Internal,
|
|---|
| 157 | Value -> (MStarget^2 + MHtarget^2)/(vev*vev) - lambS*VS*VS/vev/vev,
|
|---|
| 158 | InteractionOrder -> {QED,2},
|
|---|
| 159 | TeX -> Subscript[#lambda, H],
|
|---|
| 160 | Description -> "lambda H"
|
|---|
| 161 | },
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | zi == {
|
|---|
| 165 | ParameterType -> Internal,
|
|---|
| 166 | Value -> (1/2)*ArcTan[2*MZ^2*txi*sw/(MZ^2(1-sw^2*txi^2) - xs*vev^2/(2*cxi^2*VS^2)*(gzp*QS0*VS)^2)],
|
|---|
| 167 | TeX -> "zi",
|
|---|
| 168 | Description -> "other mixing thing"
|
|---|
| 169 | },
|
|---|
| 170 |
|
|---|
| 171 | szi == {
|
|---|
| 172 | ParameterType -> Internal,
|
|---|
| 173 | Value -> Sin[zi],
|
|---|
| 174 | TeX -> "Sin(zi)",
|
|---|
| 175 | Description -> "Sin(zi)"
|
|---|
| 176 | },
|
|---|
| 177 |
|
|---|
| 178 | czi == {
|
|---|
| 179 | ParameterType -> Internal,
|
|---|
| 180 | Value -> Cos[zi],
|
|---|
| 181 | TeX -> "Cos(zi)",
|
|---|
| 182 | Description -> "Cos(zi)"
|
|---|
| 183 | },
|
|---|
| 184 |
|
|---|
| 185 | alp == {
|
|---|
| 186 | ParameterType -> Internal,
|
|---|
| 187 | Value -> (1/2)*ArcTan[2*lambHS*vev*VS/(lambH*vev*vev-lambS*VS*VS)],
|
|---|
| 188 | TeX -> "alpha",
|
|---|
| 189 | Description -> "Higgs S0 Mixing"
|
|---|
| 190 | },
|
|---|
| 191 |
|
|---|
| 192 | xs == {
|
|---|
| 193 | ParameterType -> Internal,
|
|---|
| 194 | Value -> (VS/vev)^2,
|
|---|
| 195 | TeX -> "xs",
|
|---|
| 196 | Description -> "xs"
|
|---|
| 197 | },
|
|---|
| 198 |
|
|---|
| 199 | sal == {
|
|---|
| 200 | ParameterType -> Internal,
|
|---|
| 201 | Value -> Sin[alp],
|
|---|
| 202 | TeX -> "Sin(alpha)",
|
|---|
| 203 | Description -> "Sin(alpha)"
|
|---|
| 204 | },
|
|---|
| 205 |
|
|---|
| 206 | cal == {
|
|---|
| 207 | ParameterType -> Internal,
|
|---|
| 208 | Value -> Cos[alp],
|
|---|
| 209 | TeX -> "Cos(alpha)",
|
|---|
| 210 | Description -> "Cos(alpha)"
|
|---|
| 211 | },
|
|---|
| 212 |
|
|---|
| 213 | ozp == {
|
|---|
| 214 | ParameterType -> Internal,
|
|---|
| 215 | Value -> 1,
|
|---|
| 216 | InteractionOrder -> {Zp,1},
|
|---|
| 217 | TeX -> "orderzp",
|
|---|
| 218 | Description -> "orderzp"
|
|---|
| 219 | },
|
|---|
| 220 |
|
|---|
| 221 | MS0 == {
|
|---|
| 222 | ParameterType -> Internal,
|
|---|
| 223 | Value -> Sqrt[(1/2)*(lambH*vev*vev+lambS*VS*VS + Sqrt[(lambH*vev*vev-lambS*VS*VS)^2+(2*lambHS*vev*VS)^2])],
|
|---|
| 224 | TeX -> Subscript[M,S0],
|
|---|
| 225 | Description -> "Mass S0 after Mixing"
|
|---|
| 226 | },
|
|---|
| 227 |
|
|---|
| 228 | MZp == {
|
|---|
| 229 | ParameterType -> Internal,
|
|---|
| 230 | Value -> Sqrt[(1/2)*(vev/vev)^2*(MZ^2*(1+txi^2*sw^2) + xs*vev^2/(2*cxi^2*VS^2)*(gzp*QS0*VS)^2
|
|---|
| 231 | + Sqrt[(MZ^2*(1+txi^2*sw^2) + xs*vev^2/(2*cxi^2*VS^2)*(gzp*QS0*VS)^2)^2 - 2*xs*vev^2/(cxi^2*VS^2)*(gzp*QS0*VS)^2*MZ^2])],
|
|---|
| 232 | TeX -> Subscript[M,zp],
|
|---|
| 233 | Description -> "Z' Mass"
|
|---|
| 234 | }
|
|---|
| 235 | };
|
|---|
| 236 |
|
|---|
| 237 |
|
|---|
| 238 | (*****************************************************************************)
|
|---|
| 239 | (* New fields *)
|
|---|
| 240 | (*****************************************************************************)
|
|---|
| 241 |
|
|---|
| 242 | (************* New Quarks ***********)
|
|---|
| 243 |
|
|---|
| 244 | M$ClassesDescription = {
|
|---|
| 245 |
|
|---|
| 246 | (* Gauge bosons: physical vector fields *)
|
|---|
| 247 |
|
|---|
| 248 |
|
|---|
| 249 | S[4] == {
|
|---|
| 250 | ClassName -> S0,
|
|---|
| 251 | SelfConjugate -> True,
|
|---|
| 252 | Indices -> {},
|
|---|
| 253 | Mass -> {MS0, Internal},
|
|---|
| 254 | Width -> {WS0, 1.},
|
|---|
| 255 | ParticleName -> "S0",
|
|---|
| 256 | PDG -> 200002100,
|
|---|
| 257 | PropagatorLabel -> "S0",
|
|---|
| 258 | PropagatorType -> ScalarDash,
|
|---|
| 259 | PropagatorArrow -> None},
|
|---|
| 260 |
|
|---|
| 261 | F[7] == {
|
|---|
| 262 | ClassName -> dm,
|
|---|
| 263 | SelfConjugate -> False,
|
|---|
| 264 | Mass -> {Mn1, Internal},
|
|---|
| 265 | Width -> 0,
|
|---|
| 266 | PDG -> 200002200,
|
|---|
| 267 | ParticleName -> {"dm"},
|
|---|
| 268 | AntiParticleName -> {"dm~"},
|
|---|
| 269 | TeX -> "dm",
|
|---|
| 270 | FullName -> "Dirac DM" },
|
|---|
| 271 |
|
|---|
| 272 | V[5] == {
|
|---|
| 273 | ClassName -> Zp,
|
|---|
| 274 | SelfConjugate -> True,
|
|---|
| 275 | Mass -> {MZp, Internal},
|
|---|
| 276 | Width -> {WZp, 1},
|
|---|
| 277 | ParticleName -> "Zp",
|
|---|
| 278 | PDG -> 23000,
|
|---|
| 279 | PropagatorLabel -> "Zp",
|
|---|
| 280 | PropagatorType -> Sine,
|
|---|
| 281 | PropagatorArrow -> None,
|
|---|
| 282 | FullName -> "Zp"
|
|---|
| 283 | }
|
|---|
| 284 | };
|
|---|
| 285 |
|
|---|
| 286 | (*****************************************************************************)
|
|---|
| 287 | (* New Lagrangian Terms *)
|
|---|
| 288 | (*****************************************************************************)
|
|---|
| 289 |
|
|---|
| 290 | (*********************)
|
|---|
| 291 | (**** Kinetic terms***)
|
|---|
| 292 | (*********************)
|
|---|
| 293 |
|
|---|
| 294 | LZPkin := -1/4 FS[Zp,mu,nu] FS[Zp,mu,nu] + (MZp^2/2) Zp[mu].Zp[mu];
|
|---|
| 295 |
|
|---|
| 296 | LS0kin := 1/2 del[S0, mu] del[S0, mu] - 1/2 MS0^2 S0^2;
|
|---|
| 297 |
|
|---|
| 298 | LNewkin := LZPkin + LS0kin;
|
|---|
| 299 |
|
|---|
| 300 | (*******************************)
|
|---|
| 301 | (**** Z Z' H S0 interactions ***)
|
|---|
| 302 | (*******************************)
|
|---|
| 303 |
|
|---|
| 304 | (*LZHSMneg := -chi*(cw^2 + sw^2)^2*vev^2*ee^2/4 Z[mu].Z[mu] H;*)
|
|---|
| 305 | LZHSMneg := -chi*(MZ^2/(vev)) Z[mu].Z[mu] H;
|
|---|
| 306 |
|
|---|
| 307 | LHS0ZZ := Z[mu].Z[mu] ( (MZ^2/(vev))*(cal H + sal S0)*(czi+sw*szi*txi)^2 + ((gzp*QS0*VS/ozp)^2/(VS))*(cal S0 - sal H)*(szi^2/cxi^2) );
|
|---|
| 308 |
|
|---|
| 309 | LHS0ZPZP := Zp[mu].Zp[mu] ( (MZ^2/(vev))*(cal H + sal S0)*(-szi+sw*czi*txi)^2 + ((gzp*QS0*VS/ozp)^2/(VS))*(cal S0 - sal H)*(czi^2/cxi^2) );
|
|---|
| 310 |
|
|---|
| 311 | LHS0ZZP := 2*( (MZ^2/(vev))*(cal*(Zp[mu].Z[mu] H) + sal*(Zp[mu].Z[mu] S0))*(czi+sw*szi*txi)*(-szi+sw*czi*txi) + ((gzp*QS0*VS/ozp)^2/(VS))*(cal*(Zp[mu].Z[mu] S0) - sal*(Zp[mu].Z[mu] H))*(szi*czi/cxi^2) );
|
|---|
| 312 |
|
|---|
| 313 | LHS0ZZPtotal := LHS0ZZ + LHS0ZZP + LHS0ZPZP;
|
|---|
| 314 |
|
|---|
| 315 |
|
|---|
| 316 | (*****************************)
|
|---|
| 317 | (**** H S0 SM interactions ***)
|
|---|
| 318 | (*****************************)
|
|---|
| 319 |
|
|---|
| 320 | (*LHHHHneg := chi*lam/4*(vev + H)^4;*)
|
|---|
| 321 |
|
|---|
| 322 | LS0S0HH := S0 H H*(-3 cal^2 lambH sal vev + 2 cal^2 lambHS sal vev - lambHS sal^3 vev + cal^3 lambHS VS - 2 cal lambHS sal^2 VS + 3 cal lambS sal^2 VS)
|
|---|
| 323 | +S0 H*ozp*(-3 cal lambH sal vev^2 + cal lambHS sal vev^2 + 2 cal^2 lambHS vev VS - 2 lambHS sal^2 vev VS - cal lambHS sal VS^2 + 3 cal lambS sal VS^2);
|
|---|
| 324 |
|
|---|
| 325 | LHSMneg := -chi*H*((1/Sqrt[2])*ydo dbar.d + (1/Sqrt[2])*yup ubar.u + (1/Sqrt[2])*ys sbar.s + (1/Sqrt[2])*yc cbar.c + (1/Sqrt[2])*yb bbar.b + (1/Sqrt[2])*yt tbar.t + (1/Sqrt[2])*ye ebar.e + (1/Sqrt[2])*ym mubar.mu + (1/Sqrt[2])*ytau tabar.ta + ee^2*vev/(2*sw^2) W[mu].Wbar[mu]);
|
|---|
| 326 |
|
|---|
| 327 | LHS0SM := (cal*H + sal*S0)*((1/Sqrt[2])*ydo dbar.d + (1/Sqrt[2])*yup ubar.u + (1/Sqrt[2])*ys sbar.s + (1/Sqrt[2])*yc cbar.c + (1/Sqrt[2])*yb bbar.b + (1/Sqrt[2])*yt tbar.t + (1/Sqrt[2])*ye ebar.e + (1/Sqrt[2])*ym mubar.mu + (1/Sqrt[2])*ytau tabar.ta + ee^2*vev/(2*sw^2) W[mu].Wbar[mu]);
|
|---|
| 328 |
|
|---|
| 329 | LHS0SMtotal :=LHSMneg + LHS0SM + LS0S0HH;
|
|---|
| 330 |
|
|---|
| 331 | (*****************************)
|
|---|
| 332 | (**** Z Z' SM interactions ***)
|
|---|
| 333 | (*****************************)
|
|---|
| 334 |
|
|---|
| 335 | LZJEM :=-cw*szi*txi*ee*( (-1)*ebar.Ga[mu].e Z[mu] + (2/3)*ubar.Ga[mu].u Z[mu] + (-1/3)*dbar.Ga[mu].d Z[mu] +
|
|---|
| 336 | (-1)*mubar.Ga[mu].mu Z[mu] + (2/3)*cbar.Ga[mu].c Z[mu] + (-1/3)*sbar.Ga[mu].s Z[mu] +
|
|---|
| 337 | (-1)*tabar.Ga[mu].ta Z[mu] + (2/3)*tbar.Ga[mu].t Z[mu] + (-1/3)*bbar.Ga[mu].b Z[mu] );
|
|---|
| 338 |
|
|---|
| 339 | LZPJEM :=-cw*czi*txi*ee*( (-1)*ebar.Ga[mu].e Zp[mu] + (2/3)*ubar.Ga[mu].u Zp[mu] + (-1/3)*dbar.Ga[mu].d Zp[mu] +
|
|---|
| 340 | (-1)*mubar.Ga[mu].mu Zp[mu] + (2/3)*cbar.Ga[mu].c Zp[mu] + (-1/3)*sbar.Ga[mu].s Zp[mu] +
|
|---|
| 341 | (-1)*tabar.Ga[mu].ta Zp[mu] + (2/3)*tbar.Ga[mu].t Zp[mu] + (-1/3)*bbar.Ga[mu].b Zp[mu] );
|
|---|
| 342 |
|
|---|
| 343 | JZJZSMneg := ee/(sw*cw)*(-chi)*( (1/2)*left[vlbar].Ga[mu].left[vl] Z[mu] + (-(1/2)+sw^2)*left[lbar].Ga[mu].left[l] Z[mu] + (sw^2)*right[lbar].Ga[mu].right[l] Z[mu]
|
|---|
| 344 | +((1/2)-(2/3)*sw^2)*left[uqbar].Ga[mu].left[uq] Z[mu] + (-(2/3)*sw^2)*right[uqbar].Ga[mu].right[uq] Z[mu]
|
|---|
| 345 | +(-(1/2)+(1/3)*sw^2)*left[dqbar].Ga[mu].left[dq] Z[mu] + ((1/3)*sw^2)*right[dqbar].Ga[mu].right[dq] Z[mu] );
|
|---|
| 346 |
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 | LZJZ := ee/(sw*cw)*(czi+sw*szi*txi)*( (1/2)*left[vebar].Ga[mu].left[ve] Z[mu] + (-(1/2)+sw^2)*left[ebar].Ga[mu].left[e] Z[mu] + (sw^2)*right[ebar].Ga[mu].right[e] Z[mu]
|
|---|
| 350 | +((1/2)-(2/3)*sw^2)*left[ubar].Ga[mu].left[u] Z[mu] + (-(2/3)*sw^2)*right[ubar].Ga[mu].right[u] Z[mu]
|
|---|
| 351 | +(-(1/2)+(1/3)*sw^2)*left[dbar].Ga[mu].left[d] Z[mu] + ((1/3)*sw^2)*right[dbar].Ga[mu].right[d] Z[mu]
|
|---|
| 352 | +(1/2)*left[vmbar].Ga[mu].left[vm] Z[mu] + (-(1/2)+sw^2)*left[mubar].Ga[mu].left[mu] Z[mu] + (sw^2)*right[mubar].Ga[mu].right[mu] Z[mu]
|
|---|
| 353 | +((1/2)-(2/3)*sw^2)*left[cbar].Ga[mu].left[c] Z[mu] + (-(2/3)*sw^2)*right[cbar].Ga[mu].right[c] Z[mu]
|
|---|
| 354 | +(-(1/2)+(1/3)*sw^2)*left[sbar].Ga[mu].left[s] Z[mu] + ((1/3)*sw^2)*right[sbar].Ga[mu].right[s] Z[mu]
|
|---|
| 355 | +(1/2)*left[vtbar].Ga[mu].left[vt] Z[mu] + (-(1/2)+sw^2)*left[tabar].Ga[mu].left[ta] Z[mu] + (sw^2)*right[tabar].Ga[mu].right[ta] Z[mu]
|
|---|
| 356 | +((1/2)-(2/3)*sw^2)*left[tbar].Ga[mu].left[t] Z[mu] + (-(2/3)*sw^2)*right[tbar].Ga[mu].right[t] Z[mu]
|
|---|
| 357 | +(-(1/2)+(1/3)*sw^2)*left[bbar].Ga[mu].left[b] Z[mu] + ((1/3)*sw^2)*right[bbar].Ga[mu].right[b] Z[mu] );
|
|---|
| 358 |
|
|---|
| 359 | LZPJZ := ee/(sw*cw)*(-szi+sw*czi*txi)*((1/2)*left[vebar].Ga[mu].left[ve] Zp[mu] + (-(1/2)+sw^2)*left[ebar].Ga[mu].left[e] Zp[mu] + (sw^2)*right[ebar].Ga[mu].right[e] Zp[mu]
|
|---|
| 360 | +((1/2)-(2/3)*sw^2)*left[ubar].Ga[mu].left[u] Zp[mu] + (-(2/3)*sw^2)*right[ubar].Ga[mu].right[u] Zp[mu]
|
|---|
| 361 | +(-(1/2)+(1/3)*sw^2)*left[dbar].Ga[mu].left[d] Zp[mu] + ((1/3)*sw^2)*right[dbar].Ga[mu].right[d] Zp[mu]
|
|---|
| 362 | +(1/2)*left[vmbar].Ga[mu].left[vm] Zp[mu] + (-(1/2)+sw^2)*left[mubar].Ga[mu].left[mu] Zp[mu] + (sw^2)*right[mubar].Ga[mu].right[mu] Zp[mu]
|
|---|
| 363 | +((1/2)-(2/3)*sw^2)*left[cbar].Ga[mu].left[c] Zp[mu] + (-(2/3)*sw^2)*right[cbar].Ga[mu].right[c] Zp[mu]
|
|---|
| 364 | +(-(1/2)+(1/3)*sw^2)*left[sbar].Ga[mu].left[s] Zp[mu] + ((1/3)*sw^2)*right[sbar].Ga[mu].right[s] Zp[mu]
|
|---|
| 365 | +(1/2)*left[vtbar].Ga[mu].left[vt] Zp[mu] + (-(1/2)+sw^2)*left[tabar].Ga[mu].left[ta] Zp[mu] + (sw^2)*right[tabar].Ga[mu].right[ta] Zp[mu]
|
|---|
| 366 | +((1/2)-(2/3)*sw^2)*left[tbar].Ga[mu].left[t] Zp[mu] + (-(2/3)*sw^2)*right[tbar].Ga[mu].right[t] Zp[mu]
|
|---|
| 367 | +(-(1/2)+(1/3)*sw^2)*left[bbar].Ga[mu].left[b] Zp[mu] + ((1/3)*sw^2)*right[bbar].Ga[mu].right[b] Zp[mu] );
|
|---|
| 368 |
|
|---|
| 369 |
|
|---|
| 370 |
|
|---|
| 371 | LZWWneg = -chi*(1/2)*gw*((del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *cw*Z[nu] -
|
|---|
| 372 | (del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* cw*Z[mu] *(Wbar[nu] - W[nu])/Sqrt[2]/I +
|
|---|
| 373 | (del[cw*Z[nu], mu] - del[cw*Z[mu], nu])* (W[mu] + Wbar[mu])/Sqrt[2] *(Wbar[nu] - W[nu])/Sqrt[2]/I -
|
|---|
| 374 | (del[cw*Z[nu], mu] - del[cw*Z[mu], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *(W[nu] + Wbar[nu])/Sqrt[2] +
|
|---|
| 375 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* cw*Z[mu] *(W[nu] + Wbar[nu])/Sqrt[2] -
|
|---|
| 376 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* (W[mu] + Wbar[mu])/Sqrt[2] *cw*Z[nu]);
|
|---|
| 377 |
|
|---|
| 378 |
|
|---|
| 379 | LZWW = ((czi+sw*szi*txi) -cw*szi*txi*(sw/cw))*(1/2)*gw*((del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *cw*Z[nu] -
|
|---|
| 380 | (del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* cw*Z[mu] *(Wbar[nu] - W[nu])/Sqrt[2]/I +
|
|---|
| 381 | (del[cw*Z[nu], mu] - del[cw*Z[mu], nu])* (W[mu] + Wbar[mu])/Sqrt[2] *(Wbar[nu] - W[nu])/Sqrt[2]/I -
|
|---|
| 382 | (del[cw*Z[nu], mu] - del[cw*Z[mu], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *(W[nu] + Wbar[nu])/Sqrt[2] +
|
|---|
| 383 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* cw*Z[mu] *(W[nu] + Wbar[nu])/Sqrt[2] -
|
|---|
| 384 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* (W[mu] + Wbar[mu])/Sqrt[2] *cw*Z[nu]);
|
|---|
| 385 |
|
|---|
| 386 | LZPWW = ((-szi+sw*czi*txi) -cw*czi*txi*(sw/cw))*(1/2)*gw*((del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *cw*Zp[nu] -
|
|---|
| 387 | (del[(W[nu] + Wbar[nu])/Sqrt[2], mu] - del[(W[mu] + Wbar[mu])/Sqrt[2], nu])* cw*Zp[mu] *(Wbar[nu] - W[nu])/Sqrt[2]/I +
|
|---|
| 388 | (del[cw*Zp[nu], mu] - del[cw*Zp[mu], nu])* (W[mu] + Wbar[mu])/Sqrt[2] *(Wbar[nu] - W[nu])/Sqrt[2]/I -
|
|---|
| 389 | (del[cw*Zp[nu], mu] - del[cw*Zp[mu], nu])* (Wbar[mu] - W[mu])/Sqrt[2]/I *(W[nu] + Wbar[nu])/Sqrt[2] +
|
|---|
| 390 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* cw*Zp[mu] *(W[nu] + Wbar[nu])/Sqrt[2] -
|
|---|
| 391 | (del[(Wbar[nu] - W[nu])/Sqrt[2]/I, mu] - del[(Wbar[mu] - W[mu])/Sqrt[2]/I, nu])* (W[mu] + Wbar[mu])/Sqrt[2] *cw*Zp[nu]);
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 |
|
|---|
| 395 | LZJBmL := gzp*(szi/cxi)*((-1)*vebar.Ga[mu].ve + (-1)*ebar.Ga[mu].e + (1/3)*ubar.Ga[mu].u + (1/3)*dbar.Ga[mu].d+
|
|---|
| 396 | (-1)*vmbar.Ga[mu].vm + (-1)*mubar.Ga[mu].mu + (1/3)*cbar.Ga[mu].c + (1/3)*sbar.Ga[mu].s+
|
|---|
| 397 | (-1)*vtbar.Ga[mu].vt + (-1)*tabar.Ga[mu].ta + (1/3)*tbar.Ga[mu].t + (1/3)*bbar.Ga[mu].b)*Z[mu];
|
|---|
| 398 |
|
|---|
| 399 | LZPJBmL := gzp*(czi/cxi)*((-1)*vebar.Ga[mu].ve + (-1)*ebar.Ga[mu].e + (1/3)*ubar.Ga[mu].u + (1/3)*dbar.Ga[mu].d+
|
|---|
| 400 | (-1)*vmbar.Ga[mu].vm + (-1)*mubar.Ga[mu].mu + (1/3)*cbar.Ga[mu].c + (1/3)*sbar.Ga[mu].s+
|
|---|
| 401 | (-1)*vtbar.Ga[mu].vt + (-1)*tabar.Ga[mu].ta + (1/3)*tbar.Ga[mu].t + (1/3)*bbar.Ga[mu].b)*Zp[mu];
|
|---|
| 402 |
|
|---|
| 403 | LZJMUTAU := gzp*(szi/cxi)*((1)*mubar.Ga[mu].mu + (-1)*tabar.Ga[mu].ta + (1)*vmbar.Ga[mu].vm + (-1)*vtbar.Ga[mu].vt)*Z[mu];
|
|---|
| 404 |
|
|---|
| 405 | LZPJMUTAU := gzp*(czi/cxi)*((1)*mubar.Ga[mu].mu + (-1)*tabar.Ga[mu].ta + (1)*vmbar.Ga[mu].vm + (-1)*vtbar.Ga[mu].vt)*Zp[mu];
|
|---|
| 406 |
|
|---|
| 407 |
|
|---|
| 408 | LZDM := gzp*(szi/cxi)*QDM*dmbar.Ga[mu].dm*Z[mu];
|
|---|
| 409 |
|
|---|
| 410 | LZPDM := gzp*(czi/cxi)*QDM*dmbar.Ga[mu].dm*Zp[mu];
|
|---|
| 411 |
|
|---|
| 412 | LZZPSMtotal := LZJEM + LZPJEM + JZJZSMneg + LZJZ + LZPJZ + LZPDM + LZDM + LZWWneg + LZWW + LZPWW;
|
|---|
| 413 |
|
|---|
| 414 |
|
|---|
| 415 | Ltotal := LSM + LNewkin + LHS0ZZPtotal + LHS0SMtotal + LZZPSMtotal + LZPJMUTAU + LZJMUTAU;
|
|---|