| | 83 | and afternormalizing the kinetic terms and rotating to the mass eigenbasis, the masses of the vector bosons are given by |
| | 84 | |
| | 85 | {{{#!latex |
| | 86 | \begin{align*} |
| | 87 | m_\gamma &= 0 \notag \\ |
| | 88 | m_{Z}^2&= |
| | 89 | \dfrac{v^2}{4}(g^2+{g'}^2) \; \left(1-\dfrac{v^2}{v_S^2} \; \dfrac{s_{Z'}^2{g'}^2}{8g_{Z'}^2 q_S^2}\right) |
| | 90 | + \mathcal{O}\left( \dfrac{v^6}{v_{S}^4} \right) \\ |
| | 91 | m_{Z'}^2&= |
| | 92 | \dfrac{g_{Z'}^2q_S^2v_S^2}{2 c_{Z'}^2} + \dfrac{v^2}{4}{g'}^2 t_{Z'}^2 |
| | 93 | % + \dfrac{v^4}{v_S^2} \; \dfrac{s_{Z'}^2{g'}^2}{8g_{Z'}^2 q_S^2}(g^2+{g'}^2) |
| | 94 | + \mathcal{O}\left( \dfrac{v^4}{v_S^2} \right) \;. |
| | 95 | \end{align*} |
| | 96 | }}} |
| | 97 | |
| | 98 | As a second structural ingredient we give mass to the new gauge boson |
| | 99 | by introducing a complex scalar $S$ with the potential |
| | 100 | |
| | 101 | {{{#!latex |
| | 102 | \begin{align*} |
| | 103 | \mathcal{L}_\text{scalar} |
| | 104 | = \frac{1}{2}\, ( D_\mu S) (D^\mu S)^\dagger |
| | 105 | + \mu_S^2 \, S^\dagger S |
| | 106 | + \frac{\lambda_S}{2} (S^\dagger S)^2 |
| | 107 | + \lambda_{HS} \, H^\dagger H \, S^\dagger S\; . |
| | 108 | \end{align*} |
| | 109 | }}} |
| | 110 | |
| | 111 | In this case the covariant derivative introduces the charge $q_S$ of |
| | 112 | the heavy scalar under the new gauge group.[[BR]] |
| | 113 | |
| | 114 | The couplings of the mass eigenstates to fermions and scalars play an important role in the following analysis and we find |
| | 115 | |
| | 116 | {{{#!latex |
| | 117 | \begin{align*} |
| | 118 | \mathcal{L_\text{fermion}}&= ej_\text{em} A \notag\\ |
| | 119 | &\phantom{=}- c_w s_3 t_{Z'} ej_\text{em} Z +(c_3+s_ws_3t_{Z'})\frac{e}{s_wc_w}j_Z Z + \frac{s_3}{c_{Z'}}g_{Z'}j_{Z'} Z\notag\\ |
| | 120 | &\phantom{=}- c_w c_3 t_{Z'} ej_\text{em} Z' +(s_wc_3t_{Z'}-s_3)\frac{e}{s_wc_w}j_Z Z' |
| | 121 | + \frac{c_3}{c_{Z'}}g_{Z'}j_{Z'} Z' |
| | 122 | \end{align*} |
| | 123 | }}} |
| | 124 | |
| | 125 | and |
| | 126 | |
| | 127 | {{{#!latex |
| | 128 | \begin{align*} |
| | 129 | \mathcal{L_\text{scalar}}&\ni \frac{v}{8}(g^2+g^{\prime 2}) (c_\alpha H-s_\alpha S) Z_{\mu}Z^\mu \\ |
| | 130 | &\phantom{\ni} +\frac{v}{4}s_wt_{Z'}(g^2+g^{\prime 2}) (c_\alpha H-s_\alpha S) Z_\mu Z^{\prime \mu}\notag\\ |
| | 131 | &\phantom{\ni} +\frac{v}{8} s_w^2 t_{Z'}^2\bigg[c_\alpha \bigg(g^2\!+\!g^{\prime 2}\!+\!\frac{4g_{Z'}^2 q_S^2 t_\alpha}{s_w^2s_{Z'}^2}\frac{v_S}{v} \bigg) H- s_\alpha \bigg(g^2\!+\!g^{\prime 2}\!-\!\frac{4g_{Z'}^2 q_S^2 t_\alpha}{s_w^2 s_{Z'}^2}\frac{v_S}{v} \bigg)S\bigg] Z'_\mu Z^{\prime \mu}\notag\,. |
| | 132 | \end{align*} |
| | 133 | }}} |
| | 134 | |
| | 135 | The phenomenology of |
| | 136 | anomaly-free $U(1)$-extensions can thus be described by a small number of |
| | 137 | model parameters. The Lagrangian features the most relevant new |
| | 138 | parameters |
| | 139 | |
| | 140 | {{{#!latex |
| | 141 | \begin{align*} |
| | 142 | \{ \; m_\chi, \, g_{Z'}, m_{Z'}, s_{Z'}, \, m_S, \lambda_{HS}\; \} \; . |
| | 143 | \end{align*} |
| | 144 | }}} |
| | 145 | |
| | 146 | The charges under the new $U(1)$-symmetry we assume to be of order |
| | 147 | one. As long as we focus on a heavy dark matter mediator with |
| | 148 | on-shell decays, $m_{Z'} > 2 m_\chi$, the dark matter mass mainly |
| | 149 | enters the computation of the mediator widths $\Gamma_{S,Z'}$.\bigskip |
| | 150 | |
| | 151 | The vector and scalar mediator masses are typically related. |
| | 152 | A hierarchy with a comparably light scalar |
| | 153 | $\lambda_S \ll g_{Z'}$ is possible, but not the focus of our |
| | 154 | paper. Alternatively, the scalar can be heavier than the |
| | 155 | vector, $g_{Z'}\ll \lambda_S< 4\pi$. In this case, the small gauge |
| | 156 | coupling suppresses the interaction of the new gauge boson with the |
| | 157 | Standard Model. This does not only affect the LHC production cross section, it |
| | 158 | also reduces the annihilation cross section in the early universe to |
| | 159 | the point where an efficient annihilation is only possible around the |
| | 160 | pole condition $m_{Z'} = 2 m_\chi$. |
| | 161 | |
| | 162 | The phenomenology of the vector mediator is determined by its |
| | 163 | couplings to the Standard Model and by its mass $m_{Z'}$. In |
| | 164 | Eq.\eqref{eq:all_mixings} we see that couplings to SM fermions can |
| | 165 | arise through kinetic mixing ($\tchi$), through mixing with the |
| | 166 | $Z$-boson ($s_3$), or through the $U(1)$ charges of the fermions |
| | 167 | ($g_{Z'}$). |
| | 168 | |
| | 169 | The properties of the new scalar $S$ are largely independent of the |
| | 170 | dark matter properties. All couplings to a pair of SM particles |
| | 171 | proceed through the Higgs portal ($s_\alpha$), with the possible |
| | 172 | exception of a the coupling to right-handed neutrinos in the case of |
| | 173 | $U(1)_{B-L}$. Interesting features only arise in couplings linking |
| | 174 | both mediators, like the $Z'$-$S$-$Z$ coupling. |
| | 175 | |
| | 176 | |