| | 29 | The $Z'$ couplings to currents of SM fermionsare given by:[[BR]] |
| | 30 | |
| | 31 | {{{#!latex |
| | 32 | \begin{alignat}{9} |
| | 33 | \mathcal{L}_\text{fermion} = -g_{Z'} j'_\mu & {Z'}^\mu \notag \\ |
| | 34 | j'_\mu&= 0 \qquad && U(1)_X \notag \\ |
| | 35 | j'_\mu&= \bar L_i \gamma_\mu L_i |
| | 36 | + \bar \ell_i\gamma_\mu \ell_i |
| | 37 | - \bar L_j \gamma_\mu L_j -\bar\ell_j\gamma_\mu \ell_j |
| | 38 | \qquad && U(1)_{L_i-L_j} \notag \\ |
| | 39 | j'_\mu&= \frac{1}{3}\bar Q \gamma_\mu Q |
| | 40 | + \frac{1}{3}\bar u_R\gamma_\mu u_R |
| | 41 | + \frac{1}{3}\bar d_R\gamma_\mu d_R |
| | 42 | - \bar L \gamma_\mu L |
| | 43 | + \bar \ell\gamma_\mu \ell |
| | 44 | \qquad && U(1)_{B-L} \; , |
| | 45 | \end{alignat} |
| | 46 | }}} |
| | 47 | |
| | 48 | where $g_{Z'}$ denotes the dark gauge coupling. The different |
| | 49 | coupling structures shown above can be understood in terms of a flavor |
| | 50 | structure of a dark gauge coupling matrix. |
| | 51 | |
| | 52 | The fermion current structure can be |
| | 53 | generalized to include the dark matter current. To couple to the gauge |
| | 54 | mediator the dark matter fermion has to be a Dirac fermion. To avoid |
| | 55 | new anomalies, the dark matter candidate cannot be chiral and its |
| | 56 | charges under the new gauge group are $q_{\chi_L}=q_{\chi_R}$. This |
| | 57 | defines a dark fermion Lagrangian with a vector mass term |
| | 58 | |
| | 59 | |
| | 60 | {{{#!latex |
| | 61 | \begin{align*} |
| | 62 | \mathcal{L}_\text{DM}= i \bar \chi \not{D} \chi - m_\chi \bar \chi \chi \; , |
| | 63 | \end{align*} |
| | 64 | }}} |
| | 65 | |
| | 66 | with the covariant derivative of the SM-singlet fermion |
| | 67 | {{{#!latex |
| | 68 | $D_\mu=\partial_\mu -ig_{Z'} q_\chi \hat Z'_\mu$. |
| | 69 | }}} |
| | 70 | |
| | 71 | In all cases, the kinetic term for the $U(1)$ gauge bosons is not canonically normalized |
| | 72 | |