Version 7 (modified by 6 years ago) ( diff ) | ,
---|
4-fermion EFT with FCNC implementation
Authors:
- Yoav Afik (yoavafik@…)
- Jonathan Cohen (jcohen@…)
- Eitan Gozani
- Enrique Kajomovitz
- Yoram Rozen
Department of Physics, Technion: Israel Institute of Technology Haifa, Israel
Description of the model:
This is a Contact Interaction model.
The lagrangian of the model is described by:
\begin{eqnarray} \mathcal{L}_{eff} = \frac{C_{ij}^{U \mu}}{v^2} (\bar{u}_{L}^{i} \gamma_{\mu} u_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + \frac{C_{ij}^{D \mu}}{v^2} (\bar{d}_{L}^{i} \gamma_{\mu} d_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + \\ \frac{C_{ij}^{U e}}{v^2} (\bar{u}_{L}^{i} \gamma_{\mu} u_{L}^{j}) (\bar{e}_{L} \gamma_{\mu} e_{L}) + \frac{C_{ij}^{D e}}{v^2} (\bar{d}_{L}^{i} \gamma_{\mu} d_{L}^{j}) (\bar{e}_{L} \gamma_{\mu} e_{L}) \end{eqnarray}
Only the off-diagonal elements for the b-s admixtures are considered, since those are the ones related to the observed b-s-l-l anomalies. The matrices take the form:
\begin{eqnarray} C_{ij}^{U \mu} = \begin{pmatrix} C_{u \mu} & 0 & 0 \\ 0 & C_{c \mu} & 0 \\ 0 & 0 & C_{t \mu} \end{pmatrix} , C_{ij}^{D \mu} = \begin{pmatrix} C_{d \mu} & 0 & 0 \\ 0 & C_{s \mu} & C_{b s \mu}^{*} \\ 0 & C_{b s \mu} & C_{b \mu} \end{pmatrix} \end{eqnarray} \begin{eqnarray} C_{ij}^{U e} = \begin{pmatrix} C_{u e} & 0 & 0 \\ 0 & C_{c e} & 0 \\ 0 & 0 & C_{t e} \end{pmatrix} , C_{ij}^{D e} = \begin{pmatrix} C_{d e} & 0 & 0 \\ 0 & C_{s e} & C_{b s e}^{*} \\ 0 & C_{b s e} & C_{b e} \end{pmatrix} \end{eqnarray}
A more general model is also attached, contains the full diagonal and non-diagonal terms.
\begin{eqnarray} C_{ij}^{U \mu} = \begin{pmatrix} C_{u \mu} & C_{c u \mu}^{*} & C_{t u \mu}^{*} \\ C_{c u \mu} & C_{c \mu} & C_{t c \mu}^{*} \\ C_{t u \mu} & C_{t c \mu} & C_{t \mu} \end{pmatrix} , C_{ij}^{D \mu} = \begin{pmatrix} C_{d \mu} & C_{s d \mu}^{*} & C_{b d \mu}^{*} \\ C_{s d \mu} & C_{s \mu} & C_{b s \mu}^{*} \\ C_{b d \mu} & C_{b s \mu} & C_{b \mu} \end{pmatrix} \end{eqnarray} \begin{eqnarray} C_{ij}^{U e} = \begin{pmatrix} C_{u e} & C_{c u e}^{*} & C_{t u e}^{*} \\ C_{c u e} & C_{c e} & C_{t c e}^{*} \\ C_{t u e} & C_{t c e} & C_{t e} \end{pmatrix} , C_{ij}^{D e} = \begin{pmatrix} C_{d e} & C_{s d e}^{*} & C_{b d e}^{*} \\ C_{s d e} & C_{s e} & C_{b s e}^{*} \\ C_{b d e} & C_{b s e} & C_{b e} \end{pmatrix} \end{eqnarray}
Sample commands for MadGraph5_aMC@NLO:
define p = g u c d s b u~ c~ d~ s~ b~ define j = g u c d s b u~ c~ d~ s~ b~ generate p p > mu+ mu- add process p p > mu+ mu- j add process p p > mu+ mu- j j
Reference:
- Please cite as: Afik, Y., Cohen, J., Gozani, E. et al. J. High Energ. Phys. (2018) 2018: 56.
- Link to paper: https://link.springer.com/article/10.1007/JHEP08(2018)056
Attachments (2)
- bsll_5FS_full.zip (44.9 KB ) - added by 6 years ago.
- bsll_5FS_non-diagonal.zip (44.7 KB ) - added by 6 years ago.
Download all attachments as: .zip
Note:
See TracWiki
for help on using the wiki.