Version 6 (modified by 6 years ago) ( diff ) | ,
---|
$wgUseTeX = true;
4-fermion EFT with FCNC implementation
Authors:
- Yoav Afik (yoavafik@…)
- Jonathan Cohen (jcohen@…)
- Eitan Gozani
- Enrique Kajomovitz
- Yoram Rozen
Department of Physics, Technion: Israel Institute of Technology Haifa, Israel
Description of the model:
This is a Contact Interaction (CI) model.
The lagrangian of the model is described by:
\begin{eqnarray} \mathcal{L}_{eff} = \frac{C_{ij}^{U \mu}}{v^2} (\bar{u}_{L}^{i} \gamma_{\mu} u_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}) + \frac{C_{ij}^{D \mu}}{v^2} (\bar{d}_{L}^{i} \gamma_{\mu} d_{L}^{j}) (\bar{\mu}_{L} \gamma_{\mu} \mu_{L}), \end{eqnarray}
At the first model, only the off-diagonal elements for the b-s admixtures are considered, since those are the ones related to the observed b-s-l-l anomalies. The matrices take the form:
\begin{eqnarray} C_{ij}^{U \mu} = \begin{pmatrix} C_{u \mu} & 0 & 0 \\ 0 & C_{c \mu} & 0 \\ 0 & 0 & C_{t \mu} \end{pmatrix} , C_{ij}^{D \mu} = \begin{pmatrix} C_{d \mu} & 0 & 0 \\ 0 & C_{s \mu} & C_{b s \mu}^{*} \\ 0 & C_{b s \mu} & C_{t \mu} \end{pmatrix} \end{eqnarray}
A more general model is also attached, contains the full terms:
#!latex
\begin{eqnarray}
C_{ij}{U \mu} =
\begin{pmatrix} C_{u \mu} & 0 & 0
0 & C_{c \mu} & 0
0 & 0 & C_{t \mu} \end{pmatrix}
,
C_{ij}{D \mu} =
\begin{pmatrix} C_{d \mu} & 0 & 0
0 & C_{s \mu} & C_{b s \mu}{*}
0 & C_{b s \mu} & C_{t \mu} \end{pmatrix}
\end{eqnarray}
}}}
Similar couplings to electrons are considered as well for complicity.
Sample commands for MadGraph5_aMC@NLO:
define p = g u c d s b u~ c~ d~ s~ b~ define j = g u c d s b u~ c~ d~ s~ b~ generate p p > mu+ mu- add process p p > mu+ mu- j add process p p > mu+ mu- j j
Reference:
- Please cite as: Afik, Y., Cohen, J., Gozani, E. et al. J. High Energ. Phys. (2018) 2018: 56.
- Link to paper: https://link.springer.com/article/10.1007/JHEP08(2018)056
Attachments (2)
- bsll_5FS_full.zip (44.9 KB ) - added by 6 years ago.
- bsll_5FS_non-diagonal.zip (44.7 KB ) - added by 6 years ago.
Download all attachments as: .zip