Changes between Version 71 and Version 72 of ALRM
- Timestamp:
- Apr 28, 2016, 10:39:44 AM (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
ALRM
v71 v72 23 23 As any other left-right symmetric model, ALRM is a QFT gauged by ''SU(2)_L×SU(2)_R×U(1)_B-L''. The later ''B'' and ''L'' being the baryon and lepton numbers. An extra discrete symmetry ''S'' is imposed to differentiate between Higgs fields and their dual fields and hence their interactions. 24 24 25 As in the SM, left fermions compose ''SU(2)_L'' doublets. Right charged leptons are accommodated in ''SU(2)_R'' doublets with corresponding extra particles (scotinos) and right up-quarks in ''SU(2)_R'' doublets with corresponding extra down-type exotic quarks. Right neutrinos and down-quarks are ''SU(2)_L,R'' singlets. The Higgs sector composes of an ''SU(2)_L''-doublet, an ''SU(2)_R''-doublet and a bidoublet. The physical gauge sector of the model contains the electroweak gauge bosons (photon, ''W'' and ''Z'' bosons) and two extra gauge bosons (''W' '' and ''Z''') correspond to the ''SU(2)_R'' group.25 As in the SM, left fermions compose ''SU(2)_L'' doublets. Right charged leptons are accommodated in ''SU(2)_R'' doublets with corresponding extra particles (scotinos) and right up-quarks in ''SU(2)_R'' doublets with corresponding extra down-type exotic quarks. Right neutrinos and down-quarks are ''SU(2)_L,R'' singlets. The Higgs sector composes of an ''SU(2)_L''-doublet, an ''SU(2)_R''-doublet and a bidoublet. The physical gauge sector of the model contains the electroweak gauge bosons (photon, ''W'' and ''Z'' bosons) and two extra gauge bosons (''W' '' and ''Z' '') correspond to the ''SU(2)_R'' group. 26 26 27 27 The left-right symmetry is broken to the SM SU(2)_L×U(1)_Y, Y being the hypercharge, by the SU(2)_R-doublet vev, then the electroweak symmetry is broken to the U(1)_em through the bidoublet and the SU(2)_L-doublet vevs. Accordingly, all ferminos and gauge bosons (except of course photon) become massive via Higgs mechanism.