Alternative LeftRight Symmetric Model
Author
Mustafa Ashry
Department of Mathematics, Faculty of Science, Cairo University, 12613 Giza, Egypt
Center for Fundamental Physics (CFP), Zewail City of Science and Technology, Sheikh Zayed, 12588 Giza, Egypt
Emails
mustafa[AT]sci.cu.edu.eg
mashry[AT]zewailcity.edu.eg
Model Description
The Alternative LeftRight Symmetric Model (ALRM) is gauged by the LeftRight symmetry group SU(3)_{C}×SU(2)_{L}×SU(2)_{R}×U(1)_{BL}. The latter B and L being the baryon and lepton numbers. An extra discrete symmetry S is imposed to distinguish between Higgs fields and their dual fields and hence their interactions; causing the absence of the treelevel flavorchanging neutral currents mediated by Higgs bosons.
As in the SM, lefthanded fermions compose SU(2)_{L} doublets. Righthanded charged leptons form SU(2)_{R} doublets with corresponding extra particles (scotinos) and righthanded upquarks form SU(2)_{R} doublets with corresponding extra downtype exotic quarks. Righthanded neutrinos and downquarks are SU(2)_{L,R} singlets. The Higgs sector composes of an SU(2)_{L}doublet, an SU(2)_{R}doublet and a bidoublet.
The electroweak leftright symmetry SU(2)_{L}×SU(2)_{R}×U(1)_{BL} is spontaneously broken down to the SM electroweak symmetry SU(2)_{L}×U(1)_{Y}, Y being the hypercharge, by the SU(2)_{R}doublet vev, then the SM electroweak symmetry is spontaneously broken down to the U(1)_{em} through the bidoublet and the SU(2)_{L}doublet vevs. Accordingly, all fermions and gauge bosons (except of course photon) become massive via Higgs mechanism. The physical gauge sector of the model contains the electroweak gauge bosons (photon, W and Z bosons, whose masses were fixed by the experimental SM values) in addition to two extra gauge bosons (W' and Z' ) correspond to the SU(2)_{R} group, analogous to those of the SU(2)_{L} group. Also the Weinberg angle is fixed here as an input parameter by its experimental value.
Dirac (massive) neutrinos are considered with the mixing MNS matrix implemented in the normal hierarchy. The case of Majorana neutrinos is considered in many other models' files and any type of seesaw mechanisms can be brought to be implemented here easily. Three mixed generations of quarks are considered and hence the general case of the CKM matrix is implemented. In addition, it was considered that the leftright symmetry is manifest, that is the left and right MNS and CKM mixing matrices are coincident. However, this can be generalized directly.
The model contains ten physical Higgs bosons: four neutral CPeven higgs bosons, one (the lightest) of which is considered to be the SMlike one with mass fixed to have the value mh=125 GeV. Four charged Higgs bosons and two CPodd pseudoscalar Higgs bosons. The mass spectra are calculated and the rotation matrices are implemented analytically.
Minimization conditions and spectrum relations are all used to express the whole model parameters and spectra in terms of only five independent (external) parameters: tanbeta, lambda_{2}, lambda_{3}, alpha_{1}, alpha_{2} and mu_{3},. As in any twoHiggs doublet model, e.g., MSSM, tanbeta is the ratio between two vevs. The parameters lambda_{2}, lambda_{3}, alpha_{1}, alpha_{2} are dimensionless potential parameters, while mu_{3}, is a dimensionfull potential parameter.
The effective loopinduced scalar and pseudoscalar higgsgluongluon and higgsgammagamma vertices were implemented at leading order (LO). For the complete gg>gammagamma and pp>gammagamma analysis, Madgraph is used as the Monte Carlo (MC) event generator (EG), then Pythia is used for parton showering (PS), and for matrix element (ME) and PS merging, and also for hadronization and jet matching. Afterward, Delphes is used as a detector simulator, and Madanalysis is used for event file analysis and in recasting the LHC results. Finally, Root is used to produce the following histogram figures:
References: Please cite
 M. Ashry and S. Khalil, Phenomenological aspects of a TeVscale alternative leftright model, Physical Review D 91, 015009 (2015)
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.015009  https://inspirehep.net/record/1258411 1310.3315  Mustafa Ashry, TeVscale leftright symmetric model with minimal Higgs sector, Master Thesis, Cairo University, Cairo (2015), Egypt
http://scholar.cu.edu.eg/?q=science_math_mashry/files/mashry_msc_thesis.pdf
Acknowledgements
The author would like to thank his colleagues W. Abdallah, the late colleague A. Elsayed and A. Moursy for their helpful hints and useful discussions. Thanks to Prof. B. Fuks and Prof. M. E. Peskin for their guiding notes.
Attachments (10)

ALRM_LO_UFO.tar.xz
(196.9 KB) 
added by mashry 12 months ago.
UFO Files

ALRM_LO_CH.tar.xz
(46.4 KB) 
added by mashry 12 months ago.
CALCHEP Files

ALRM_LO_FA.tar.xz
(33.7 KB) 
added by mashry 12 months ago.
FEYNARTS Files

ALRM_LO_SH.tar.xz
(24.5 KB) 
added by mashry 12 months ago.
SHERPA Files

ALRM_LO_WO.tar.xz
(59.4 KB) 
added by mashry 12 months ago.
WHIZARD Files

ALRM_LO.tar.xz
(6.7 MB) 
added by mashry 12 months ago.
This file contains the model file and an example Mathematica® notebook that loads, checks the model, calculates Feynman rules and produces different outputs (UFO, CalcHEP,...). It contains also pdf references files for the model.

ppaa_alrm_sm_reco.png
(11.3 KB) 
added by mashry 11 months ago.
ProtonProton collision at the LHC Diphotons including Higgs in the ALRM and the SM at the reconstruction/detector level

ALRM_LO.fr
(60.4 KB) 
added by mashry 11 months ago.
Model File

ggaa_alrm_sm_reco.png
(12.7 KB) 
added by mashry 11 months ago.
GluonGluon fusion into Diphotons via Higgs in the ALRM and the SM at the reconstruction/detector level

ALRM_LO_hgg_haa.fr
(62.2 KB) 
added by mashry 10 months ago.
Model File with all scalar and pseudoscalar higgsgg and higgsaa effective vertices