| 1 | Effective 4 top operators : |
| 2 | |
| 3 | Implemented operators are |
| 4 | |
| 5 | [[latex( $\mathcal{O}_{R} = \!\left( \bar{t}_R \gamma^\mu t_R \right) \!\left( \bar{t}_R \gamma_\mu t_R \right)$ )]] |
| 6 | [[latex( $\mathcal{O}_{L}^{(1)} = \!\left( \bar{Q}_L \gamma^\mu Q_L \right) \!\left( \bar{Q}_L \gamma_\mu Q_L \right)$ )]] |
| 7 | [[latex( $\mathcal{O}_{L}^{(8)} = \!\left( \bar{Q}_L \gamma^\mu T^A Q_L \right) \!\left( \bar{Q}_L \gamma_\mu T^A Q_L \right)$ )]] |
| 8 | [[latex( $\mathcal{O}_{B}^{(1)} = \!\left( \bar{Q}_L \gamma_\mu Q_L \right) \!\left( \bar{t}_R \gamma_\mu t_R \right)$ )]] |
| 9 | [[latex( $\mathcal{O}_{B}^{(8)} = \!\left( \bar{Q}_L \gamma_\mu T^A Q_L \right) \!\left( \bar{t}_R \gamma_\mu T^A t_R \right)$ )]] |
| 10 | |
| 11 | There coefficients are respectively named CRL2, C1LL2,C8LL2, C1BL2, C8BL2, they are in TeV^-2^ (they include 1/Lambda^2^) and they have a coupling order NP=2. |
| 12 | |