Effective 4 top operators :

Implemented operators are

$\mathcal{O}_{R} = \!\left( \bar{t}_R \gamma^\mu t_R \right) \!\left( \bar{t}_R \gamma_\mu t_R \right)$ $\mathcal{O}_{L}^{(1)} = \!\left( \bar{Q}_L \gamma^\mu Q_L \right) \!\left( \bar{Q}_L \gamma_\mu Q_L \right)$ $\mathcal{O}_{L}^{(8)} = \!\left( \bar{Q}_L \gamma^\mu T^A Q_L \right) \!\left( \bar{Q}_L \gamma_\mu T^A Q_L \right)$ $\mathcal{O}_{B}^{(1)} = \!\left( \bar{Q}_L \gamma_\mu Q_L \right) \!\left( \bar{t}_R \gamma_\mu t_R \right)$ $\mathcal{O}_{B}^{(8)} = \!\left( \bar{Q}_L \gamma_\mu T^A Q_L \right) \!\left( \bar{t}_R \gamma_\mu T^A t_R \right)$

There coefficients are respectively named CRL2, C1LL2,C8LL2, C1BL2, C8BL2, they are in TeV-2 (they include 1/Lambda2) and they have a coupling order NP=2.

Last modified 4 years ago Last modified on 02/01/17 09:24:50

Attachments (2)

Download all attachments as: .zip