1 | (***************************************************************************************************************)
|
---|
2 | (****** This is the FeynRules mod-file for the Top effective theory ******)
|
---|
3 | (****** ******)
|
---|
4 | (****** Authors: C. Degrande ******)
|
---|
5 | (****** ******)
|
---|
6 | (***************************************************************************************************************)
|
---|
7 |
|
---|
8 | M$ModelName = "TopEffTh";
|
---|
9 |
|
---|
10 |
|
---|
11 | M$Information = {Authors -> {"C. Degrande"},
|
---|
12 | Version -> "1.1",
|
---|
13 | Date -> "04. 11. 2010",
|
---|
14 | Institutions -> {"Universite catholique de Louvain (CP3)"},
|
---|
15 | Emails -> {"celine.degrande@uclouvain.be"},
|
---|
16 | URLs -> "http://feynrules.phys.ucl.ac.be"};
|
---|
17 |
|
---|
18 | FeynmanGauge = False;
|
---|
19 |
|
---|
20 | (*version 1.1 four-fermion without intermediate heavy particles, updated for the new sm.fr*)
|
---|
21 |
|
---|
22 |
|
---|
23 | M$InteractionOrderHierarchy = {
|
---|
24 | {QCD,2},
|
---|
25 | {QED,4},
|
---|
26 | {NP,1}
|
---|
27 | }
|
---|
28 |
|
---|
29 | M$InteractionOrderLimit = {
|
---|
30 | {NP,2}
|
---|
31 | }
|
---|
32 |
|
---|
33 |
|
---|
34 |
|
---|
35 | (**************** Parameters *************)
|
---|
36 |
|
---|
37 | M$Parameters = {
|
---|
38 |
|
---|
39 | (* External parameters *)
|
---|
40 |
|
---|
41 | Lambda== {
|
---|
42 | ParameterType -> External,
|
---|
43 | ParameterName -> Lambda,
|
---|
44 | BlockName -> DIM6,
|
---|
45 | InteractionOrder -> {NP,-1},
|
---|
46 | Value -> 1000,
|
---|
47 | TeX -> \[CapitalLambda],
|
---|
48 | Description -> "Scale of the new physics"},
|
---|
49 |
|
---|
50 | RC3phiq== {
|
---|
51 | ParameterType -> External,
|
---|
52 | ParameterName -> RC3phiq,
|
---|
53 | BlockName -> DIM6,
|
---|
54 | InteractionOrder -> {QED,1},
|
---|
55 | Value -> 1,
|
---|
56 | TeX -> Subsuperscript[RC,\[Phi]q,"(3)"],
|
---|
57 | Description -> "Real part of the coefficient of O3phiq"},
|
---|
58 |
|
---|
59 | IC3phiq== {
|
---|
60 | ParameterType -> External,
|
---|
61 | ParameterName -> IC3phiq,
|
---|
62 | BlockName -> DIM6,
|
---|
63 | InteractionOrder -> {QED,1},
|
---|
64 | Value -> 1,
|
---|
65 | TeX -> Subsuperscript[IC,\[Phi]q,"(3)"],
|
---|
66 | Description -> "Imaginary part of the coefficient of O3phiq"},
|
---|
67 |
|
---|
68 | RCtW== {
|
---|
69 | ParameterType -> External,
|
---|
70 | ParameterName -> RCtW,
|
---|
71 | BlockName -> DIM6,
|
---|
72 | InteractionOrder -> {QED,1},
|
---|
73 | Value -> 1,
|
---|
74 | TeX -> Subscript[RC,tW],
|
---|
75 | Description -> "Real part of the coefficient of OtW"},
|
---|
76 |
|
---|
77 | ICtW== {
|
---|
78 | ParameterType -> External,
|
---|
79 | ParameterName -> ICtW,
|
---|
80 | BlockName -> DIM6,
|
---|
81 | InteractionOrder -> {QED,1},
|
---|
82 | Value -> 1,
|
---|
83 | TeX -> Subscript[IC,tW],
|
---|
84 | Description -> "Imaginary part of the coefficient of OtW"},
|
---|
85 |
|
---|
86 | RCtG== {
|
---|
87 | ParameterType -> External,
|
---|
88 | ParameterName -> RCtG,
|
---|
89 | BlockName -> DIM6,
|
---|
90 | InteractionOrder -> {QED,1},
|
---|
91 | Value -> 1,
|
---|
92 | TeX -> Subscript[RC,tG],
|
---|
93 | Description -> "Real part of the coefficient of OtG"},
|
---|
94 |
|
---|
95 | ICtG== {
|
---|
96 | ParameterType -> External,
|
---|
97 | ParameterName -> ICtG,
|
---|
98 | BlockName -> DIM6,
|
---|
99 | InteractionOrder -> {QED,1},
|
---|
100 | Value -> 1,
|
---|
101 | TeX -> Subscript[IC,tG],
|
---|
102 | Description -> "Imaginary part of the coefficient of OtG"},
|
---|
103 |
|
---|
104 | CG== {
|
---|
105 | ParameterType -> External,
|
---|
106 | ParameterName -> CG,
|
---|
107 | BlockName -> DIM6,
|
---|
108 | Value -> 1,
|
---|
109 | TeX -> Subscript[C,G],
|
---|
110 | Description -> "coefficient of OG"},
|
---|
111 |
|
---|
112 | CphiG== {
|
---|
113 | ParameterType -> External,
|
---|
114 | ParameterName -> CphiG,
|
---|
115 | BlockName -> DIM6,
|
---|
116 | InteractionOrder -> {QED,1},
|
---|
117 | Value -> 1,
|
---|
118 | TeX -> Subscript[C,\[Phi]G],
|
---|
119 | Description -> "coefficient of OphiG"},
|
---|
120 |
|
---|
121 | (*Four-fermion operators parameters*)
|
---|
122 |
|
---|
123 | C13qq== {
|
---|
124 | ParameterType -> External,
|
---|
125 | ParameterName -> C13qq,
|
---|
126 | BlockName -> FourFermion,
|
---|
127 | Value -> 1,
|
---|
128 | TeX -> Subsuperscript[C,qq,"(1,3)"],
|
---|
129 | Description -> "coefficient of O13qq"},
|
---|
130 |
|
---|
131 | C81qq== {
|
---|
132 | ParameterType -> External,
|
---|
133 | ParameterName -> C81qq,
|
---|
134 | BlockName -> FourFermion,
|
---|
135 | Value -> 1,
|
---|
136 | TeX -> Subsuperscript[C,qq,"(8,1)"],
|
---|
137 | Description -> "coefficient of O81qq"},
|
---|
138 |
|
---|
139 | C83qq== {
|
---|
140 | ParameterType -> External,
|
---|
141 | ParameterName -> C83qq,
|
---|
142 | BlockName -> FourFermion,
|
---|
143 | Value -> 1,
|
---|
144 | TeX -> Subsuperscript[C,qq,"(8,3)"],
|
---|
145 | Description -> "coefficient of O83qq"},
|
---|
146 |
|
---|
147 | C8ut== {
|
---|
148 | ParameterType -> External,
|
---|
149 | ParameterName -> C8ut,
|
---|
150 | BlockName -> FourFermion,
|
---|
151 | Value -> 1,
|
---|
152 | TeX -> Subsuperscript[C,ut,"(8)"],
|
---|
153 | Description -> "coefficient of O8ut"},
|
---|
154 |
|
---|
155 | C8dt== {
|
---|
156 | ParameterType -> External,
|
---|
157 | ParameterName -> C8dt,
|
---|
158 | BlockName -> FourFermion,
|
---|
159 | Value -> 1,
|
---|
160 | TeX -> Subsuperscript[C,dt,"(8)"],
|
---|
161 | Description -> "coefficient of O8dt"},
|
---|
162 |
|
---|
163 | C1qu== {
|
---|
164 | ParameterType -> External,
|
---|
165 | ParameterName -> C1qu,
|
---|
166 | BlockName -> FourFermion,
|
---|
167 | Value -> 1,
|
---|
168 | TeX -> Subsuperscript[C,qu,"(1)"],
|
---|
169 | Description -> "coefficient of O1qu"},
|
---|
170 |
|
---|
171 | C1qd== {
|
---|
172 | ParameterType -> External,
|
---|
173 | ParameterName -> C1qd,
|
---|
174 | BlockName -> FourFermion,
|
---|
175 | Value -> 1,
|
---|
176 | TeX -> Subsuperscript[C,qd,"(1)"],
|
---|
177 | Description -> "coefficient of O1qd"},
|
---|
178 |
|
---|
179 | C1qt== {
|
---|
180 | ParameterType -> External,
|
---|
181 | ParameterName -> C1qt,
|
---|
182 | BlockName -> FourFermion,
|
---|
183 | Value -> 1,
|
---|
184 | TeX -> Subsuperscript[C,qt,"(1)"],
|
---|
185 | Description -> "coefficient of O1qt"},
|
---|
186 |
|
---|
187 |
|
---|
188 | (* Internal parameters *)
|
---|
189 |
|
---|
190 |
|
---|
191 | C3phiq== {
|
---|
192 | ParameterType -> Internal,
|
---|
193 | ComplexParameter->True,
|
---|
194 | ParameterName -> C3phiq,
|
---|
195 | InteractionOrder -> {QED,1},
|
---|
196 | Value -> RC3phiq + I IC3phiq,
|
---|
197 | TeX -> Subsuperscript[C,\[Phi]q,"(3)"],
|
---|
198 | Description -> "coefficient of O3phiq"},
|
---|
199 |
|
---|
200 | CtW== {
|
---|
201 | ParameterType -> Internal,
|
---|
202 | ComplexParameter->True,
|
---|
203 | ParameterName -> CtW,
|
---|
204 | InteractionOrder -> {QED,1},
|
---|
205 | Value -> RCtW + I ICtW,
|
---|
206 | TeX -> Subscript[C,tW],
|
---|
207 | Description -> "coefficient of OtW"},
|
---|
208 |
|
---|
209 | CtG== {
|
---|
210 | ParameterType -> Internal,
|
---|
211 | ComplexParameter->True,
|
---|
212 | InteractionOrder -> {QED,1},
|
---|
213 | ParameterName -> CtG,
|
---|
214 | Value -> RCtG + I ICtG,
|
---|
215 | TeX -> Subscript[C,tG],
|
---|
216 | Description -> "coefficient of OtG"}
|
---|
217 |
|
---|
218 | }
|
---|
219 |
|
---|
220 |
|
---|
221 | LnH := C3phiq/Lambda^2 Module[{ii,jj,kk,ll,mm,cc,sp,sp1,mu,ff},
|
---|
222 | ExpandIndices[ I*Phibar[ii]DC[Phi[jj],mu]2*Ta[kk,ii,jj] 2*Ta[kk,ll,mm] QLbar[sp,ll,3,cc].QL[sp1,mm,3,cc] Ga[mu,sp,sp1] , FlavorExpand -> {SU2D,SU2W}]];
|
---|
223 | L3phiq :=LnH+ HC[LnH]
|
---|
224 |
|
---|
225 |
|
---|
226 | LtWnH:=Module[{ii,cc1,cc2,sp,sp1,sp2,jj,kk,aa},CtW/Lambda^2*QLbar[sp, kk, 3, cc1].uR [sp2, 3, cc1]I/2(Ga[mu,sp,sp1]Ga[nu,sp1,sp2]-Ga[nu,sp,sp1]Ga[mu,sp1,sp2]) Phibar[jj] Eps[ii, jj] 2*Ta[aa,kk,ii] FS[Wi,mu,nu,aa]];
|
---|
227 | LtW:=LtWnH+HC[LtWnH];
|
---|
228 |
|
---|
229 | LtGnH := CtG/Lambda^2 Module[{ii,cc1,cc2,sp,sp1,sp2,jj,kk,aa},
|
---|
230 | QLbar[sp, ii, 3, cc1].uR [sp2, 3, cc2]I/2*(Ga[mu,sp,sp1]Ga[nu,sp1,sp2]-Ga[nu,sp,sp1]Ga[mu,sp1,sp2]) Phibar[jj] Eps[ii, jj] 2*T[aa,cc1,cc2] FS[G,mu,nu,aa]];
|
---|
231 | LtG = LtGnH+HC[LtGnH];
|
---|
232 |
|
---|
233 | LG := CG/Lambda^2 Module[{aa, bb, cc, mu, nu, rho},
|
---|
234 | f[aa, bb, cc] FS[G, mu, nu, aa] FS[G, nu, rho, bb] FS[G, rho, mu, cc]];
|
---|
235 |
|
---|
236 | LphiG := CphiG/Lambda^2/2 Module[{aa, mu, nu}, (Phibar[kk] Phi[kk] - vev^2/2) FS[G, mu, nu, aa] FS[G, mu, nu, aa]];(*-v^2/2 ensure the right normalisation of the kinematic term at the O(Lambda^-2)*)
|
---|
237 |
|
---|
238 | (*Four-fermion operators*)
|
---|
239 |
|
---|
240 | (*For single top*)
|
---|
241 |
|
---|
242 | L13qq:=C13qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,kk,3,cc] Ga[mu,sp1,sp2]2*Ta[ii,jj,kk]) (QLbar[sp3,jj1,1,cc1].QL[sp4,kk1,1,cc1] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1]+QLbar[sp3,jj1,2,cc1].QL[sp4,kk1,2,cc1] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1])];
|
---|
243 |
|
---|
244 | (*Triplet octed for qq->tt*)
|
---|
245 |
|
---|
246 | L83qq:=C83qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,kk,3,cc2] Ga[mu,sp1,sp2]2*Ta[ii,jj,kk]) T[aa,cc,cc2]T[aa,cc3,cc4](QLbar[sp3,jj1,1,cc3].QL[sp4,kk1,1,cc4] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1]+QLbar[sp3,jj1,2,cc3].QL[sp4,kk1,2,cc4] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1])];
|
---|
247 |
|
---|
248 | (*Octet for qq->tt*)
|
---|
249 |
|
---|
250 | L81qq:=C81qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,jj,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](QLbar[sp3,jj1,1,cc3].QL[sp4,jj1,1,cc4] Ga[mu,sp3,sp4]+QLbar[sp3,jj1,2,cc3].QL[sp4,jj1,2,cc4] Ga[mu,sp3,sp4])];
|
---|
251 |
|
---|
252 | L8dt:=C8dt /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (uRbar[sp1,3,cc].uR[sp2,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](dRbar[sp3,1,cc3].dR[sp4,1,cc4] Ga[mu,sp3,sp4]+dRbar[sp3,2,cc3].dR[sp4,2,cc4] Ga[mu,sp3,sp4])];
|
---|
253 |
|
---|
254 | L8ut:=C8ut /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (uRbar[sp1,3,cc].uR[sp2,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](uRbar[sp3,1,cc3].uR[sp4,1,cc4] Ga[mu,sp3,sp4]+uRbar[sp3,2,cc3].uR[sp4,2,cc4] Ga[mu,sp3,sp4])];
|
---|
255 |
|
---|
256 | (*t singlet for qq->tt*)
|
---|
257 |
|
---|
258 | L1qu:=C1qu /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].uR[sp1,1,cc] ) (uRbar[sp3,1,cc3].QL[sp3,jj,3,cc3])+(QLbar[sp1,jj,3,cc].uR[sp1,2,cc] ) (uRbar[sp3,2,cc3].QL[sp3,jj,3,cc3])];
|
---|
259 |
|
---|
260 | L1qt:=C1qt /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,1,cc].uR[sp1,3,cc] ) (uRbar[sp3,3,cc3].QL[sp3,jj,1,cc3])+(QLbar[sp1,jj,2,cc].uR[sp1,3,cc] ) (uRbar[sp3,3,cc3].QL[sp3,jj,2,cc3])];
|
---|
261 |
|
---|
262 | L1qd:=C1qd /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].dR[sp1,1,cc] ) (dRbar[sp3,1,cc3].QL[sp3,jj,3,cc3])+(QLbar[sp1,jj,3,cc].dR[sp1,2,cc] ) (dRbar[sp3,2,cc3].QL[sp3,jj,3,cc3])];
|
---|
263 |
|
---|
264 | L6:=L1qd+L1qu+L1qt+L8ut+L8dt+L81qq+L83qq+L13qq+LphiG+LG+LtG+LtW+L3phiq;
|
---|