TopEffTh: TopEffTh.fr

File TopEffTh.fr, 9.5 KB (added by Céline Degrande, 9 years ago)

feynrules model file, version 1.1

Line 
1(***************************************************************************************************************)
2(****** This is the FeynRules mod-file for the Top effective theory ******)
3(****** ******)
4(****** Authors: C. Degrande ******)
5(****** ******)
6(***************************************************************************************************************)
7
8M$ModelName = "TopEffTh";
9
10
11M$Information = {Authors -> {"C. Degrande"},
12 Version -> "1.1",
13 Date -> "04. 11. 2010",
14 Institutions -> {"Universite catholique de Louvain (CP3)"},
15 Emails -> {"celine.degrande@uclouvain.be"},
16 URLs -> "http://feynrules.phys.ucl.ac.be"};
17
18FeynmanGauge = False;
19
20(*version 1.1 four-fermion without intermediate heavy particles, updated for the new sm.fr*)
21
22
23M$InteractionOrderHierarchy = {
24{QCD,2},
25{QED,4},
26{NP,1}
27}
28
29M$InteractionOrderLimit = {
30{NP,2}
31}
32
33
34
35(**************** Parameters *************)
36
37M$Parameters = {
38
39 (* External parameters *)
40
41 Lambda== {
42 ParameterType -> External,
43 ParameterName -> Lambda,
44 BlockName -> DIM6,
45 InteractionOrder -> {NP,-1},
46 Value -> 1000,
47 TeX -> \[CapitalLambda],
48 Description -> "Scale of the new physics"},
49
50 RC3phiq== {
51 ParameterType -> External,
52 ParameterName -> RC3phiq,
53 BlockName -> DIM6,
54 InteractionOrder -> {QED,1},
55 Value -> 1,
56 TeX -> Subsuperscript[RC,\[Phi]q,"(3)"],
57 Description -> "Real part of the coefficient of O3phiq"},
58
59 IC3phiq== {
60 ParameterType -> External,
61 ParameterName -> IC3phiq,
62 BlockName -> DIM6,
63 InteractionOrder -> {QED,1},
64 Value -> 1,
65 TeX -> Subsuperscript[IC,\[Phi]q,"(3)"],
66 Description -> "Imaginary part of the coefficient of O3phiq"},
67
68 RCtW== {
69 ParameterType -> External,
70 ParameterName -> RCtW,
71 BlockName -> DIM6,
72 InteractionOrder -> {QED,1},
73 Value -> 1,
74 TeX -> Subscript[RC,tW],
75 Description -> "Real part of the coefficient of OtW"},
76
77 ICtW== {
78 ParameterType -> External,
79 ParameterName -> ICtW,
80 BlockName -> DIM6,
81 InteractionOrder -> {QED,1},
82 Value -> 1,
83 TeX -> Subscript[IC,tW],
84 Description -> "Imaginary part of the coefficient of OtW"},
85
86 RCtG== {
87 ParameterType -> External,
88 ParameterName -> RCtG,
89 BlockName -> DIM6,
90 InteractionOrder -> {QED,1},
91 Value -> 1,
92 TeX -> Subscript[RC,tG],
93 Description -> "Real part of the coefficient of OtG"},
94
95 ICtG== {
96 ParameterType -> External,
97 ParameterName -> ICtG,
98 BlockName -> DIM6,
99 InteractionOrder -> {QED,1},
100 Value -> 1,
101 TeX -> Subscript[IC,tG],
102 Description -> "Imaginary part of the coefficient of OtG"},
103
104 CG== {
105 ParameterType -> External,
106 ParameterName -> CG,
107 BlockName -> DIM6,
108 Value -> 1,
109 TeX -> Subscript[C,G],
110 Description -> "coefficient of OG"},
111
112 CphiG== {
113 ParameterType -> External,
114 ParameterName -> CphiG,
115 BlockName -> DIM6,
116 InteractionOrder -> {QED,1},
117 Value -> 1,
118 TeX -> Subscript[C,\[Phi]G],
119 Description -> "coefficient of OphiG"},
120
121(*Four-fermion operators parameters*)
122
123 C13qq== {
124 ParameterType -> External,
125 ParameterName -> C13qq,
126 BlockName -> FourFermion,
127 Value -> 1,
128 TeX -> Subsuperscript[C,qq,"(1,3)"],
129 Description -> "coefficient of O13qq"},
130
131 C81qq== {
132 ParameterType -> External,
133 ParameterName -> C81qq,
134 BlockName -> FourFermion,
135 Value -> 1,
136 TeX -> Subsuperscript[C,qq,"(8,1)"],
137 Description -> "coefficient of O81qq"},
138
139 C83qq== {
140 ParameterType -> External,
141 ParameterName -> C83qq,
142 BlockName -> FourFermion,
143 Value -> 1,
144 TeX -> Subsuperscript[C,qq,"(8,3)"],
145 Description -> "coefficient of O83qq"},
146
147 C8ut== {
148 ParameterType -> External,
149 ParameterName -> C8ut,
150 BlockName -> FourFermion,
151 Value -> 1,
152 TeX -> Subsuperscript[C,ut,"(8)"],
153 Description -> "coefficient of O8ut"},
154
155 C8dt== {
156 ParameterType -> External,
157 ParameterName -> C8dt,
158 BlockName -> FourFermion,
159 Value -> 1,
160 TeX -> Subsuperscript[C,dt,"(8)"],
161 Description -> "coefficient of O8dt"},
162
163 C1qu== {
164 ParameterType -> External,
165 ParameterName -> C1qu,
166 BlockName -> FourFermion,
167 Value -> 1,
168 TeX -> Subsuperscript[C,qu,"(1)"],
169 Description -> "coefficient of O1qu"},
170
171 C1qd== {
172 ParameterType -> External,
173 ParameterName -> C1qd,
174 BlockName -> FourFermion,
175 Value -> 1,
176 TeX -> Subsuperscript[C,qd,"(1)"],
177 Description -> "coefficient of O1qd"},
178
179 C1qt== {
180 ParameterType -> External,
181 ParameterName -> C1qt,
182 BlockName -> FourFermion,
183 Value -> 1,
184 TeX -> Subsuperscript[C,qt,"(1)"],
185 Description -> "coefficient of O1qt"},
186
187
188(* Internal parameters *)
189
190
191 C3phiq== {
192 ParameterType -> Internal,
193 ComplexParameter->True,
194 ParameterName -> C3phiq,
195 InteractionOrder -> {QED,1},
196 Value -> RC3phiq + I IC3phiq,
197 TeX -> Subsuperscript[C,\[Phi]q,"(3)"],
198 Description -> "coefficient of O3phiq"},
199
200 CtW== {
201 ParameterType -> Internal,
202 ComplexParameter->True,
203 ParameterName -> CtW,
204 InteractionOrder -> {QED,1},
205 Value -> RCtW + I ICtW,
206 TeX -> Subscript[C,tW],
207 Description -> "coefficient of OtW"},
208
209 CtG== {
210 ParameterType -> Internal,
211 ComplexParameter->True,
212 InteractionOrder -> {QED,1},
213 ParameterName -> CtG,
214 Value -> RCtG + I ICtG,
215 TeX -> Subscript[C,tG],
216 Description -> "coefficient of OtG"}
217
218}
219
220
221LnH := C3phiq/Lambda^2 Module[{ii,jj,kk,ll,mm,cc,sp,sp1,mu,ff},
222ExpandIndices[ I*Phibar[ii]DC[Phi[jj],mu]2*Ta[kk,ii,jj] 2*Ta[kk,ll,mm] QLbar[sp,ll,3,cc].QL[sp1,mm,3,cc] Ga[mu,sp,sp1] , FlavorExpand -> {SU2D,SU2W}]];
223L3phiq :=LnH+ HC[LnH]
224
225
226LtWnH:=Module[{ii,cc1,cc2,sp,sp1,sp2,jj,kk,aa},CtW/Lambda^2*QLbar[sp, kk, 3, cc1].uR [sp2, 3, cc1]I/2(Ga[mu,sp,sp1]Ga[nu,sp1,sp2]-Ga[nu,sp,sp1]Ga[mu,sp1,sp2]) Phibar[jj] Eps[ii, jj] 2*Ta[aa,kk,ii] FS[Wi,mu,nu,aa]];
227LtW:=LtWnH+HC[LtWnH];
228
229LtGnH := CtG/Lambda^2 Module[{ii,cc1,cc2,sp,sp1,sp2,jj,kk,aa},
230QLbar[sp, ii, 3, cc1].uR [sp2, 3, cc2]I/2*(Ga[mu,sp,sp1]Ga[nu,sp1,sp2]-Ga[nu,sp,sp1]Ga[mu,sp1,sp2]) Phibar[jj] Eps[ii, jj] 2*T[aa,cc1,cc2] FS[G,mu,nu,aa]];
231LtG = LtGnH+HC[LtGnH];
232
233LG := CG/Lambda^2 Module[{aa, bb, cc, mu, nu, rho},
234 f[aa, bb, cc] FS[G, mu, nu, aa] FS[G, nu, rho, bb] FS[G, rho, mu, cc]];
235
236LphiG := CphiG/Lambda^2/2 Module[{aa, mu, nu}, (Phibar[kk] Phi[kk] - vev^2/2) FS[G, mu, nu, aa] FS[G, mu, nu, aa]];(*-v^2/2 ensure the right normalisation of the kinematic term at the O(Lambda^-2)*)
237
238(*Four-fermion operators*)
239
240(*For single top*)
241
242L13qq:=C13qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,kk,3,cc] Ga[mu,sp1,sp2]2*Ta[ii,jj,kk]) (QLbar[sp3,jj1,1,cc1].QL[sp4,kk1,1,cc1] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1]+QLbar[sp3,jj1,2,cc1].QL[sp4,kk1,2,cc1] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1])];
243
244(*Triplet octed for qq->tt*)
245
246L83qq:=C83qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,kk,3,cc2] Ga[mu,sp1,sp2]2*Ta[ii,jj,kk]) T[aa,cc,cc2]T[aa,cc3,cc4](QLbar[sp3,jj1,1,cc3].QL[sp4,kk1,1,cc4] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1]+QLbar[sp3,jj1,2,cc3].QL[sp4,kk1,2,cc4] Ga[mu,sp3,sp4]2*Ta[ii,jj1,kk1])];
247
248(*Octet for qq->tt*)
249
250L81qq:=C81qq /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].QL[sp2,jj,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](QLbar[sp3,jj1,1,cc3].QL[sp4,jj1,1,cc4] Ga[mu,sp3,sp4]+QLbar[sp3,jj1,2,cc3].QL[sp4,jj1,2,cc4] Ga[mu,sp3,sp4])];
251
252L8dt:=C8dt /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (uRbar[sp1,3,cc].uR[sp2,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](dRbar[sp3,1,cc3].dR[sp4,1,cc4] Ga[mu,sp3,sp4]+dRbar[sp3,2,cc3].dR[sp4,2,cc4] Ga[mu,sp3,sp4])];
253
254L8ut:=C8ut /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (uRbar[sp1,3,cc].uR[sp2,3,cc2] Ga[mu,sp1,sp2]) T[aa,cc,cc2]T[aa,cc3,cc4](uRbar[sp3,1,cc3].uR[sp4,1,cc4] Ga[mu,sp3,sp4]+uRbar[sp3,2,cc3].uR[sp4,2,cc4] Ga[mu,sp3,sp4])];
255
256(*t singlet for qq->tt*)
257
258L1qu:=C1qu /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].uR[sp1,1,cc] ) (uRbar[sp3,1,cc3].QL[sp3,jj,3,cc3])+(QLbar[sp1,jj,3,cc].uR[sp1,2,cc] ) (uRbar[sp3,2,cc3].QL[sp3,jj,3,cc3])];
259
260L1qt:=C1qt /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,1,cc].uR[sp1,3,cc] ) (uRbar[sp3,3,cc3].QL[sp3,jj,1,cc3])+(QLbar[sp1,jj,2,cc].uR[sp1,3,cc] ) (uRbar[sp3,3,cc3].QL[sp3,jj,2,cc3])];
261
262L1qd:=C1qd /Lambda^2 Module[{ii,jj,kk,kk1,jj1,mu,aa,cc,sp1,sp2,sp3,sp4,cc1,cc2,cc3}, (QLbar[sp1,jj,3,cc].dR[sp1,1,cc] ) (dRbar[sp3,1,cc3].QL[sp3,jj,3,cc3])+(QLbar[sp1,jj,3,cc].dR[sp1,2,cc] ) (dRbar[sp3,2,cc3].QL[sp3,jj,3,cc3])];
263
264L6:=L1qd+L1qu+L1qt+L8ut+L8dt+L81qq+L83qq+L13qq+LphiG+LG+LtG+LtW+L3phiq;