1 | (* ********************************************************* *)
|
---|
2 | (* ***** ***** *)
|
---|
3 | (* ***** FeynRules model file: electroweakinos ***** *)
|
---|
4 | (* ***** Author: B. Fuks ***** *)
|
---|
5 | (* ***** ***** *)
|
---|
6 | (* ********************************************************* *)
|
---|
7 |
|
---|
8 | (* ************************** *)
|
---|
9 | (* ***** Information ***** *)
|
---|
10 | (* ************************** *)
|
---|
11 | M$Information = { Authors->{"Benjamin Fuks"}, Date->"01.02.18", Version->"1.5", Institutions->{"LPTHE Paris / Sorbonne U."}, Emails->{"fuks@lpthe.jussieu.fr"} };
|
---|
12 | M$ModelName = "MSSM-NLO";
|
---|
13 | FeynmanGauge = True;
|
---|
14 |
|
---|
15 | (* Changelog *)
|
---|
16 | (* v1.1 - 09.11.16 - Bug in the SUSY restoring counterterms fixed *)
|
---|
17 | (* v1.2 - 23.11.16 - Bug with the ghosts *)
|
---|
18 | (* v1.3 - 07.09.17 - Adding the SUSY breaking part *)
|
---|
19 | (* v1.4 - 25.10.17 - Fixing a few bugs *)
|
---|
20 | (* v1.5 - 01.02.19 - Fixing LMass + removing the constant and linear terms *)
|
---|
21 |
|
---|
22 |
|
---|
23 | (* ************************** *)
|
---|
24 | (* ***** Gauge groups ***** *)
|
---|
25 | (* ************************** *)
|
---|
26 | M$GaugeGroups = {
|
---|
27 | U1Y == { Abelian->True, CouplingConstant->gp, Superfield->BSF, Charge->Y},
|
---|
28 | SU2L == { Abelian->False, CouplingConstant->gw, Superfield->WSF, StructureConstant->ep, Representations->{Ta,SU2D}, Definitions->{Ta[a__]->PauliSigma[a]/2, ep->Eps}},
|
---|
29 | SU3C == { Abelian->False, CouplingConstant->gs, Superfield->GSF, StructureConstant->f, Representations->{{T,Colour}, {Tb,Colourb}}, DTerm->dSUN}
|
---|
30 | };
|
---|
31 |
|
---|
32 | (* ************************** *)
|
---|
33 | (* *** Interaction orders *** *)
|
---|
34 | (* ************************** *)
|
---|
35 | M$InteractionOrderHierarchy = { {QCD, 1}, {QED, 2} };
|
---|
36 |
|
---|
37 | (* ************************** *)
|
---|
38 | (* ***** Gauge ***** *)
|
---|
39 | (* ***** Parameters ***** *)
|
---|
40 | (* ***** (FeynArts) ***** *)
|
---|
41 | (* ************************** *)
|
---|
42 |
|
---|
43 | GaugeXi[ V[1] ] = GaugeXi[A];
|
---|
44 | GaugeXi[ V[2] ] = GaugeXi[Z];
|
---|
45 | GaugeXi[ V[3] ] = GaugeXi[W];
|
---|
46 | GaugeXi[ V[4] ] = GaugeXi[G];
|
---|
47 | GaugeXi[ U[1] ] = GaugeXi[G];
|
---|
48 |
|
---|
49 | (* ************************** *)
|
---|
50 | (* ***** Indices ***** *)
|
---|
51 | (* ************************** *)
|
---|
52 | IndexRange[Index[SU2W]] = Unfold[Range[3]]; IndexStyle[SU2W,j]; IndexRange[Index[SU2D]] = Unfold[Range[2]]; IndexStyle[SU2D,k];
|
---|
53 | IndexRange[Index[Gluon ]] = NoUnfold[Range[8]]; IndexStyle[Gluon, a]; IndexRange[Index[Colour ]] = NoUnfold[Range[3]]; IndexStyle[Colour, m];
|
---|
54 | IndexRange[Index[Colourb]] = NoUnfold[Range[3]]; IndexStyle[Colourb,m];
|
---|
55 | IndexRange[Index[NEU ]] = Range[4]; IndexStyle[NEU, i];
|
---|
56 | IndexRange[Index[CHA ]] = Range[2]; IndexStyle[CHA, i];
|
---|
57 | IndexRange[Index[GEN ]] = Range[3]; IndexStyle[GEN, f];
|
---|
58 | IndexRange[Index[SCA ]] = Range[6]; IndexStyle[SCA, i];
|
---|
59 | IndexRange[Index[Nsf ]] = Range[2]; IndexStyle[Nsf, i];
|
---|
60 |
|
---|
61 | (* ************************** *)
|
---|
62 | (* ***** NLO Variables ****** *)
|
---|
63 | (******************************)
|
---|
64 | FR$LoopSwitches = {{Gf, MW}};
|
---|
65 |
|
---|
66 | (* ************************** *)
|
---|
67 | (* ***** Superfields ***** *)
|
---|
68 | (* ************************** *)
|
---|
69 | M$Superfields = {
|
---|
70 | VSF[1] == { ClassName->BSF, GaugeBoson->B, Gaugino->bow},
|
---|
71 | VSF[2] == { ClassName->WSF, GaugeBoson->Wi, Gaugino->wow, Indices->{Index[SU2W]}},
|
---|
72 | VSF[3] == { ClassName->GSF, GaugeBoson->G, Gaugino->gow, Indices->{Index[Gluon]} },
|
---|
73 | CSF[1] == { ClassName->HU, Chirality->Left, Weyl->huw, Scalar->hus, QuantumNumbers->{Y-> 1/2}, Indices->{Index[SU2D]}},
|
---|
74 | CSF[2] == { ClassName->HD, Chirality->Left, Weyl->hdw, Scalar->hds, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D]}},
|
---|
75 | CSF[3] == { ClassName->LL, Chirality->Left, Weyl->LLw, Scalar->LLs, QuantumNumbers->{Y->-1/2}, Indices->{Index[SU2D], Index[GEN]}},
|
---|
76 | CSF[4] == { ClassName->ER, Chirality->Left, Weyl->ERw, Scalar->ERs, QuantumNumbers->{Y-> 1}, Indices->{Index[GEN]}},
|
---|
77 | CSF[5] == { ClassName->VR, Chirality->Left, Weyl->VRw, Scalar->VRs, Indices->{Index[GEN]}},
|
---|
78 | CSF[6] == { ClassName->QL, Chirality->Left, Weyl->QLw, Scalar->QLs, QuantumNumbers->{Y-> 1/6}, Indices->{Index[SU2D], Index[GEN], Index[Colour]}},
|
---|
79 | CSF[7] == { ClassName->UR, Chirality->Left, Weyl->URw, Scalar->URs, QuantumNumbers->{Y->-2/3}, Indices->{Index[GEN], Index[Colourb]} },
|
---|
80 | CSF[8] == { ClassName->DR, Chirality->Left, Weyl->DRw, Scalar->DRs, QuantumNumbers->{Y-> 1/3}, Indices->{Index[GEN], Index[Colourb]} }
|
---|
81 | };
|
---|
82 |
|
---|
83 | (* ************************** *)
|
---|
84 | (* ***** Fields ***** *)
|
---|
85 | (* ************************** *)
|
---|
86 | M$ClassesDescription = {
|
---|
87 | (* Gauge bosons: unphysical vector fields *)
|
---|
88 | V[11] == { ClassName->B, Unphysical->True, SelfConjugate->True, Definitions->{B[mu_]->-sw Z[mu]+cw A[mu]} },
|
---|
89 | V[12] == { ClassName->Wi, Unphysical->True, SelfConjugate->True, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
90 | Definitions-> {Wi[mu_,1]->(Wbar[mu]+W[mu])/Sqrt[2], Wi[mu_,2]->(Wbar[mu]-W[mu])/(I*Sqrt[2]), Wi[mu_,3]->cw Z[mu] + sw A[mu]} },
|
---|
91 |
|
---|
92 | (* Gauge bosons: physical vector fields *)
|
---|
93 | V[1] == { ClassName->A, SelfConjugate->True, Mass->0, Width->0, PDG->22, ParticleName->"a"},
|
---|
94 | V[2] == { ClassName->Z, SelfConjugate->True, Mass->{MZ, 91.1876}, Width->{WZ,2.4952}, PDG->23 },
|
---|
95 | V[3] == { ClassName->W, SelfConjugate->False, Mass->{MW, 79.82436}, Width->{WW, 2.085}, PDG->24, ParticleName->"W+", AntiParticleName->"W-", QuantumNumbers->{Q->1} },
|
---|
96 | V[4] == { ClassName->G, SelfConjugate->True, Mass->0, Width->0, PDG->21, Indices->{Index[Gluon]}, ParticleName->"g" },
|
---|
97 |
|
---|
98 | (* Gauginos: unphysical Weyls *)
|
---|
99 | W[20] == { ClassName->bow, Unphysical->True, Chirality->Left, SelfConjugate->False, Definitions->{bow[s_]:>Module[{i}, -I*Conjugate[NN[i,1]]*neuw[s,i]]}},
|
---|
100 | W[21] == { ClassName->wow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
101 | Definitions->{
|
---|
102 | wow[s_,1]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]+Conjugate[VV[i,1]]*chpw[s,i])/(I*Sqrt[2])],
|
---|
103 | wow[s_,2]:>Module[{i},(Conjugate[UU[i,1]]*chmw[s,i]-Conjugate[VV[i,1]]*chpw[s,i])/(-Sqrt[2])],
|
---|
104 | wow[s_,3]:>Module[{i},-I*Conjugate[NN[i,2]]*neuw[s,i]]} },
|
---|
105 | W[22] == { ClassName->gow, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]}, Definitions->{gow[inds__]->-I*goww[inds]} },
|
---|
106 |
|
---|
107 | (* Higgsinos: unphysical Weyls *)
|
---|
108 | W[23] == { ClassName->huw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
---|
109 | Definitions->{
|
---|
110 | huw[s_,1]:> Module[{i}, Conjugate[VV[i,2]]*chpw[s,i]],
|
---|
111 | huw[s_,2]:> Module[{i}, Conjugate[NN[i,4]]*neuw[s,i]] } },
|
---|
112 | W[24] == { ClassName->hdw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
113 | Definitions->{
|
---|
114 | hdw[s_,1]:> Module[{i}, Conjugate[NN[i,3]]*neuw[s,i]],
|
---|
115 | hdw[s_,2]:> Module[{i}, Conjugate[UU[i,2]]*chmw[s,i]]} },
|
---|
116 |
|
---|
117 | (* Gauginos/Higgsinos: physical Weyls *)
|
---|
118 | W[1] == { ClassName->neuw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[NEU]}, FlavorIndex->NEU },
|
---|
119 | W[2] == { ClassName->chpw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q-> 1} } ,
|
---|
120 | W[3] == { ClassName->chmw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, QuantumNumbers->{Q->-1} } ,
|
---|
121 | W[4] == { ClassName->goww, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[Gluon]} },
|
---|
122 |
|
---|
123 | (* Gauginos/Higgsinos: physical Diracs *)
|
---|
124 | F[1] == { ClassName->neu, SelfConjugate->True, Indices->{Index[NEU]}, FlavorIndex->NEU, WeylComponents->neuw, PDG->{1000022,1000023,1000025,1000035},
|
---|
125 | ClassMembers->{neu1,neu2,neu3,neu4}, ParticleName->{"n1","n2","n3","n4"}, Mass->{Mneu,{Mneu1,50},{Mneu2,100},{Mneu3,100},{Mneu4,100}}, Width->{{Wneu1,5},{Wneu2,5},{Wneu3,5},{Wneu4,5}} },
|
---|
126 | F[2] == { ClassName->ch, SelfConjugate->False, Indices->{Index[CHA]}, FlavorIndex->CHA, WeylComponents->{chpw,chmwbar},
|
---|
127 | ClassMembers->{ch1,ch2}, ParticleName->{"x1+","x2+"}, AntiParticleName->{"x1-","x2-"}, QuantumNumbers->{Q ->1},
|
---|
128 | Mass->{Mch, {Mch1,100}, {Mch2,100}}, Width->{{Wch1,5}, {Wch2,5}}, PDG->{1000024,1000037} },
|
---|
129 | F[3] == { ClassName->go, SelfConjugate->True, Indices->{Index[Gluon]}, WeylComponents->goww, Mass->{Mgo,1000}, Width->{Wgo,10}, PDG->1000021},
|
---|
130 |
|
---|
131 | (* Higgs: unphysical scalars *)
|
---|
132 | S[21] == { ClassName->hus, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y-> 1/2},
|
---|
133 | Definitions->{ hus[1]->Cos[beta]*H + Sin[beta]*GP, hus[2]-> (vu + Cos[alp]*h0 + Sin[alp]*H0 + I*Cos[beta]*A0 + I*Sin[beta]*G0)/Sqrt[2] } },
|
---|
134 | S[22] == { ClassName->hds, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
135 | Definitions->{ hds[1]->(vd - Sin[alp]*h0 + Cos[alp]*H0 + I*Sin[beta]*A0 - I*Cos[beta]*G0)/Sqrt[2],hds[2]->Sin[beta]*Hbar - Cos[beta]*GPbar} },
|
---|
136 |
|
---|
137 | (* Higgs: physical fields and Goldstones *)
|
---|
138 | S[1] == { ClassName->h0, SelfConjugate->True, Mass->{MH01,125.}, Width->{WH01,0.00407}, PDG->25, ParticleName->"h01" },
|
---|
139 | S[2] == { ClassName->H0, SelfConjugate->True, Mass->{MH02,300.}, Width->{WH02,0.5 }, PDG->35, ParticleName->"h02" },
|
---|
140 | S[3] == { ClassName->A0, SelfConjugate->True, Mass->{MA0, 300.}, Width->{WA0, 0.6 }, PDG->36 },
|
---|
141 | S[4] == { ClassName->H, SelfConjugate->False, Mass->{MH, 300.}, Width->{WH, 0.5 }, PDG->37, ParticleName->"H+", AntiParticleName->"H-", QuantumNumbers->{Q-> 1} },
|
---|
142 | S[5] == { ClassName->G0, SelfConjugate->True, Mass->{MZ, 91.8176 }, Width->{WZ,2.4952}, Goldstone->Z, PDG->250 },
|
---|
143 | S[6] == { ClassName->GP, SelfConjugate->False, Mass->{MW, 79.82436}, Width->{WW,2.085}, Goldstone->W, ParticleName->"G+", AntiParticleName->"G-", PDG->251, QuantumNumbers->{Q-> 1} },
|
---|
144 |
|
---|
145 | (* Fermions: unphysical Weyls *)
|
---|
146 | W[25] == { ClassName->LLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN]}, FlavorIndex->SU2D,
|
---|
147 | QuantumNumbers->{Y->-1/2},
|
---|
148 | Definitions->{LLw[s_,1,ff_] -> vLw[s,ff], LLw[s_,2,ff_]->eLw[s,ff]}},
|
---|
149 | W[26] == { ClassName->QLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[SU2D],Index[GEN],Index[Colour]},FlavorIndex->SU2D,
|
---|
150 | QuantumNumbers->{Y->1/6},
|
---|
151 | Definitions->{QLw[s_,1,ff_,cc_]->uLw[s,ff,cc], QLw[s_,2,ff_,cc_] -> dLw[s,ff,cc]}},
|
---|
152 |
|
---|
153 | (* Fermions: physical Weyls *)
|
---|
154 | W[5] == { ClassName->vLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
155 | W[6] == { ClassName->eLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
156 | W[7] == { ClassName->VRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN },
|
---|
157 | W[8] == { ClassName->ERw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1} },
|
---|
158 | W[9] == { ClassName->uLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
---|
159 | W[10]== { ClassName->dLw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN },
|
---|
160 | W[11]== { ClassName->URw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3} },
|
---|
161 | W[12]== { ClassName->DRw, Unphysical->True, Chirality->Left, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3} },
|
---|
162 |
|
---|
163 | (* Fermions: physical Dirac *)
|
---|
164 | F[4] == { ClassName->vl, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{vLw,VRwbar}, PDG->{12,14,16},
|
---|
165 | ClassMembers->{ve,vm,vt}, Mass->0, Width->0 },
|
---|
166 | F[5] == { ClassName->l, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, WeylComponents->{eLw,ERwbar}, PDG->{11,13,15},
|
---|
167 | QuantumNumbers->{Q->-1}, ParticleName->{"e-","mu-","tau-"}, AntiParticleName->{"e+","mu+","tau+"},
|
---|
168 | ClassMembers->{e,mu,ta}, Mass->{Ml, {Me,5.11*^-4}, {MMU,0.10566}, {MTA,1.777}}, Width->0 },
|
---|
169 | F[6] == { ClassName->uq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{uLw,URwbar}, PDG->{2,4,6}, QuantumNumbers->{Q-> 2/3},
|
---|
170 | ClassMembers->{u,c,t}, Mass->{Muq,{MU, 2.55*^-3}, {MC,1.27}, {MT,172}}, Width->{0,0,{WT,1.50833649}} },
|
---|
171 | F[7] == { ClassName->dq, SelfConjugate->False, Indices->{Index[GEN],Index[Colour]}, FlavorIndex->GEN, WeylComponents->{dLw,DRwbar}, PDG->{1,3,5}, QuantumNumbers->{Q->-1/3},
|
---|
172 | ClassMembers->{d,s,b}, Mass->{Mdq,{MD,5.04*^-3}, {MS,0.101}, {MB,4.7}}, Width->0 },
|
---|
173 |
|
---|
174 | (* Sfermion: unphysical scalars *)
|
---|
175 | S[23] == { ClassName->LLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN]}, FlavorIndex->SU2D, QuantumNumbers->{Y->-1/2},
|
---|
176 | Definitions->{ LLs[1,ff_] -> sn[ff], LLs[2,ff_]:> Module[{ff2}, Conjugate[RlL[ff2,ff]]*sl[ff2]] } },
|
---|
177 | S[24] == { ClassName->ERs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1},
|
---|
178 | Definitions->{ ERs[ff_] :> Module[{ff2}, slbar[ff2]*RlR[ff2,ff]]} },
|
---|
179 | S[25] == { ClassName->VRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN,
|
---|
180 | Definitions->{ VRs[_] -> 0 } },
|
---|
181 | S[26] == { ClassName->QLs, Unphysical->True, SelfConjugate->False, Indices->{Index[SU2D], Index[GEN],Index[Colour]}, FlavorIndex->SU2D, QuantumNumbers->{Y->1/6},
|
---|
182 | Definitions->{
|
---|
183 | QLs[1,ff_,cc_]:>Module[{ff2},Conjugate[RuL[ff2,ff]]*su[ff2,cc]],
|
---|
184 | QLs[2,ff_,cc_]:>Module[{ff2,ff3},Conjugate[RdL[ff2,ff3]]*CKM[ff,ff3]*sd[ff2,cc]]} },
|
---|
185 | S[27] == { ClassName->URs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y->-2/3},
|
---|
186 | Definitions->{ URs[ff_,cc_]:>Module[{ff2}, subar[ff2,cc]*RuR[ff2,ff]]} },
|
---|
187 | S[28] == { ClassName->DRs, Unphysical->True, SelfConjugate->False, Indices->{Index[GEN],Index[Colourb]}, FlavorIndex->GEN, QuantumNumbers->{Y-> 1/3},
|
---|
188 | Definitions->{ DRs[ff_,cc_]:>Module[{ff2}, sdbar[ff2,cc]*RdR[ff2,ff]]} },
|
---|
189 |
|
---|
190 | (* Sfermion: physical scalars *)
|
---|
191 | S[7] == { ClassName->sn, SelfConjugate->False, Indices->{Index[GEN]}, FlavorIndex->GEN, PDG->{1000012,1000014,1000016},
|
---|
192 | ClassMembers-> {sne, snm, snt}, Mass->{Msn,{Msne,100}, {Msnm,100}, {Msnt,100}}, Width->{{Wsne,5},{Wsnm,5},{Wsnt,5}} },
|
---|
193 | S[8] == { ClassName->sl, SelfConjugate->False, Indices->{Index[SCA]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1}, PDG->{1000011,1000013,1000015,2000011,2000013,2000015},
|
---|
194 | ClassMembers->{seL,smuL,stau1,seR,smuR,stau2}, ParticleName->{"seL-","smuL-","stau1-","seR-","smuR-","stau2-"}, AntiParticleName->{"seL+","smuL+","stau1+","seR+","smuR+","stau2+"},
|
---|
195 | Mass->{Msl,{MseL,100},{MsmuL,100},{Mstau1,100},{MseR,100},{MsmuR,100},{Mstau2,100}}, Width->{{WseL,5},{WsmuL,5},{Wstau1,5}, {WseR,5},{WsmuR,5},{Wstau2,5}} },
|
---|
196 |
|
---|
197 | S[9] == { ClassName->su, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q-> 2/3},
|
---|
198 | ClassMembers->{suL,scL,st1,suR,scR,st2}, Mass->{Msu,{MsuL,1000},{MscL,1000},{Mst1,1000},{MsuR,1001},{MscR,1001},{Mst2,1001}}, Width->{{WsuL,10},{WscL,10},{WstL,10},{WsuR,10},{WscR,10},{WstR,10}},
|
---|
199 | PDG->{1000002,1000004,1000006,2000002,2000004,2000006} },
|
---|
200 | S[10]== { ClassName->sd, SelfConjugate->False, Indices->{Index[SCA],Index[Colour]}, FlavorIndex->SCA, QuantumNumbers->{Q->-1/3},
|
---|
201 | ClassMembers->{sdL,ssL,sb1,sdR,ssR,sb2}, Mass->{Msd,{MsdL,1000},{MssL,1000},{Msb1,1000},{MsdR,1001},{MssR,1001},{Msb2,1001}}, Width->{{WsdL,10},{WssL,10},{WsbL,10},{WsdR,10},{WssR,10},{WsbR,10}},
|
---|
202 | PDG->{1000001,1000003,1000005,2000001,2000003,2000005} } ,
|
---|
203 |
|
---|
204 | (* Ghost: related to unphysical gauge bosons *)
|
---|
205 | U[11] == { ClassName->ghWi, Unphysical->True, SelfConjugate->False, Ghost->Wi, Indices->{Index[SU2W]}, FlavorIndex->SU2W,
|
---|
206 | Definitions->{ghWi[1]->(ghWp+ghWm)/Sqrt[2], ghWi[2]->(ghWm-ghWp)/(I*Sqrt[2]), ghWi[3]->cw ghZ+sw ghA} } ,
|
---|
207 | U[12] == { ClassName->ghB, Unphysical->True, SelfConjugate->False, Ghost->B,
|
---|
208 | Definitions->{ghB->-sw ghZ+cw ghA} },
|
---|
209 |
|
---|
210 | (* Ghost: related to physical gauge bosons *)
|
---|
211 | U[1] == { ClassName->ghG, SelfConjugate->False, Ghost->G, Mass->0, Width->0, QuantumNumbers->{GhostNumber->1}, Indices->{Index[Gluon]} },
|
---|
212 | U[2] == { ClassName->ghA, SelfConjugate->False, Ghost->A, Mass->0, Width->0, QuantumNumbers->{GhostNumber->1 } },
|
---|
213 | U[3] == { ClassName->ghZ, SelfConjugate->False, Ghost->Z, Mass->{MZ, 91.1876}, Width->{WZ,2.4952}, QuantumNumbers->{GhostNumber->1 } },
|
---|
214 | U[4] == { ClassName->ghWp, SelfConjugate->False, Ghost->W, Mass->{MW, 79.82436}, Width->{WW,2.085 }, QuantumNumbers->{GhostNumber->1, Q-> 1} },
|
---|
215 | U[5] == { ClassName->ghWm, SelfConjugate->False, Ghost->Wbar, Mass->{MW, 79.82436}, Width->{WW,2.085 }, QuantumNumbers->{GhostNumber->1, Q->-1} }
|
---|
216 | };
|
---|
217 |
|
---|
218 |
|
---|
219 | (* ************************** *)
|
---|
220 | (* ***** Parameters ***** *)
|
---|
221 | (* ************************** *)
|
---|
222 | M$Parameters = {
|
---|
223 | (* Couplings constants: external parameters *)
|
---|
224 | aEWM1 == { ParameterType->External, BlockName->SMINPUTS, OrderBlock->1, InteractionOrder->{QED,-2}, Value -> 127.9, Description->"Inverse of the EW coupling at the Z pole"},
|
---|
225 | Gf == { TeX -> Subscript[G,f], ParameterType->External, BlockName->SMINPUTS, OrderBlock->2, InteractionOrder->{QED, 2}, Value -> 1.16637*^-5, Description->"Fermi constant"},
|
---|
226 | aS == { TeX->Subscript[\[Alpha],s], ParameterType->External, BlockName->SMINPUTS, OrderBlock->3, InteractionOrder->{QCD, 2}, Value -> 0.1184, Description->"Strong coupling at the Z pole"},
|
---|
227 |
|
---|
228 | (* Mixing: external parameters *)
|
---|
229 | NN == { TeX->N, ParameterType->External, ComplexParameter->False, BlockName->NMIX, Indices->{Index[NEU],Index[NEU]}, Unitary->True, Description-> "Neutralino mixing matrix",
|
---|
230 | Value -> { NN[1,1]->1, NN[1,2]->0, NN[1,3]-> 0, NN[1,4]->0,
|
---|
231 | NN[2,1]->0, NN[2,2]->1, NN[2,3]-> 0, NN[2,4]->0,
|
---|
232 | NN[3,1]->0, NN[3,2]->0, NN[3,3]-> 0.707107, NN[3,4]->0.707107,
|
---|
233 | NN[4,1]->0, NN[4,2]->0, NN[4,3]->-0.707107, NN[4,4]->0.707107 } },
|
---|
234 | UU == { TeX->U, ParameterType->External, ComplexParameter->False, BlockName->UMIX, Indices->{Index[CHA],Index[CHA]}, Unitary->True, Description-> "Chargino mixing matrix U",
|
---|
235 | Value -> { UU[1,1]->1, UU[1,2]->0, UU[2,1]->0, UU[2,2]->1} },
|
---|
236 | VV == { TeX->V, ParameterType->External, ComplexParameter->False, BlockName->VMIX, Indices->{Index[CHA],Index[CHA]}, Unitary->True, Description-> "Chargino mixing matrix V",
|
---|
237 | Value -> { VV[1,1]->1, VV[1,2]->0, VV[2,1]->0, VV[2,2]->1} },
|
---|
238 |
|
---|
239 | (* Electroweak internal parameters *)
|
---|
240 | cw == { TeX->Subscript[c,w], ParameterType->Internal, Value->MW/MZ },
|
---|
241 | sw == { TeX->Subscript[s,w], ParameterType->Internal, Value->Sqrt[1-cw^2] },
|
---|
242 | ee == { TeX->e, ParameterType->Internal, Value->Sqrt[4 Pi / aEWM1], InteractionOrder->{QED,1} },
|
---|
243 | gs == { TeX->Subscript[g,s], ParameterType->Internal, Value->Sqrt[4 Pi aS], InteractionOrder->{QCD,1}, ParameterName->G },
|
---|
244 | gp == { TeX->g', ParameterType->Internal, Definitions-> {gp->ee/cw}, InteractionOrder->{QED,1} },
|
---|
245 | gw == { TeX->Subscript[g,w], ParameterType->Internal, Definitions-> {gw->ee/sw}, InteractionOrder->{QED,1} },
|
---|
246 |
|
---|
247 | (* Higgs sector: external parameters *)
|
---|
248 | tb == { ParameterType->External, ComplexParameter->False, Value->10 , BlockName -> HMIX, OrderBlock->2},
|
---|
249 | MUH == { ParameterType->External, ComplexParameter->False, Value->200, BlockName -> HMIX, OrderBlock->1},
|
---|
250 | alp == { TeX->\[Alpha], ParameterType->External, ComplexParameter->False, BlockName->ALPHA, Description-> "Neutral Higgses mixing angle", Value->-0.1},
|
---|
251 |
|
---|
252 | (* Higgs sector: internal parameters *)
|
---|
253 | beta == { TeX->\[Beta], ParameterType->Internal, ComplexParameter->False, Value->ArcTan[tb], Description->"Arctan of the ratio of the two Higgs vevs"},
|
---|
254 | vev == { TeX->v, ParameterType->Internal, Value->2*MZ*sw*cw/ee, InteractionOrder->{QED,-1},
|
---|
255 | Description->"Higgs vacuum expectation value"},
|
---|
256 | vd == { TeX->Subscript[v,d], ParameterType->Internal, Value->vev*Cos[beta], InteractionOrder->{QED,-1},
|
---|
257 | Description->"Down-type Higgs vacuum expectation value"},
|
---|
258 | vu == { TeX->Subscript[v,u], ParameterType->Internal, Value->vev*Sin[beta], InteractionOrder->{QED,-1},
|
---|
259 | Description->"Up-type Higgs vacuum expectation value"},
|
---|
260 |
|
---|
261 | (* Superpotential: external parameters *)
|
---|
262 | yu == { TeX->Superscript[y,u], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]},
|
---|
263 | Definitions:>{yu[i_?NumericQ,j_?NumericQ]:>0 /;(i!=j)}, Value->{yu[1,1]->Sqrt[2] MU/vu, yu[2,2]->Sqrt[2] MC/vu, yu[3,3]->Sqrt[2] MT/vu}, InteractionOrder->{QED,1}, Description-> "Up-type quark Yukawa matrix"},
|
---|
264 | yd == { TeX->Superscript[y,d], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]},
|
---|
265 | Definitions:>{yd[i_?NumericQ,j_?NumericQ]:>0 /;(i!=j)}, Value->{yd[1,1]->Sqrt[2] MD/vd, yd[2,2]->Sqrt[2] MS/vd, yd[3,3]->Sqrt[2] MB/vd}, InteractionOrder->{QED,1}, Description-> "Down-type quark Yukawa matrix"},
|
---|
266 | ye == { TeX->Superscript[y,e], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]},
|
---|
267 | Definitions:>{ye[i_?NumericQ,j_?NumericQ]:>0 /;(i!=j)}, Value->{ye[1,1]->Sqrt[2] Me/vd, ye[2,2]->Sqrt[2] MMU/vd, ye[3,3]->Sqrt[2] MTA/vd},InteractionOrder->{QED,1}, Description-> "Charged lepton Yukawa matrix"},
|
---|
268 |
|
---|
269 | (* Fermion mixing *)
|
---|
270 | cabi == { ParameterType->External, BlockName->CKMBLOCK, OrderBlock->1, Value->0.227736, Description->"Cabibbo angle" },
|
---|
271 | CKM == { TeX->Superscript[V,CKM], ParameterType->Internal, Indices->{Index[GEN], Index[GEN]}, Unitary->True,
|
---|
272 | Value -> {CKM[1,1] -> Cos[cabi], CKM[1,2] -> Sin[cabi], CKM[1,3] -> 0,
|
---|
273 | CKM[2,1] -> -Sin[cabi], CKM[2,2] -> Cos[cabi], CKM[2,3] -> 0,
|
---|
274 | CKM[3,1] -> 0, CKM[3,2] -> 0, CKM[3,3] -> 1} },
|
---|
275 |
|
---|
276 | (* Sfermion mixing matrices *)
|
---|
277 | Rtau == { TeX->Subscript[S,\[Tau]], ParameterType->External, BlockName->STAUMIX, Indices -> {Index[Nsf], Index[Nsf]}, Unitary->True, Description->"Stau mixing matrix",
|
---|
278 | Value-> { Rtau[1,1] -> 0.707107, Rtau[1,2] -> 0.707107, Rtau[2,1] -> -0.707107, Rtau[2,2] -> 0.707107 } },
|
---|
279 | Rl == { TeX->Superscript[R,l], ParameterType->Internal, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
280 | Definitions->{ Rl[1,1]->1 , Rl[1,2]->0, Rl[1,3]->0, Rl[1,4]->0, Rl[1,5]->0, Rl[1,6]->0,
|
---|
281 | Rl[2,1]->0 , Rl[2,2]->1, Rl[2,3]->0, Rl[2,4]->0, Rl[2,5]->0, Rl[2,6]->0,
|
---|
282 | Rl[3,1]->0 , Rl[3,2]->0, Rl[3,3]->Rtau[1,1], Rl[3,4]->0, Rl[3,5]->0, Rl[3,6]->Rtau[1,2],
|
---|
283 | Rl[4,1]->0 , Rl[4,2]->0, Rl[4,3]->0, Rl[4,4]->1, Rl[4,5]->0, Rl[4,6]->0,
|
---|
284 | Rl[5,1]->0 , Rl[5,2]->0, Rl[5,3]->0, Rl[5,4]->0, Rl[5,5]->1, Rl[5,6]->0,
|
---|
285 | Rl[6,1]->0 , Rl[6,2]->0, Rl[6,3]->Rtau[2,1], Rl[6,4]->0, Rl[6,5]->0, Rl[6,6]->Rtau[2,2]} },
|
---|
286 | RlL == { TeX->Superscript[RL,l], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RlL[i_,j_]:>Rl[i,j] /;NumericQ[j]} },
|
---|
287 | RlR == { TeX->Superscript[RR,l], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RlR[i_,j_]:>Rl[i,j+3]/;NumericQ[j]} },
|
---|
288 |
|
---|
289 | Rtop == { TeX->Subscript[S,t], ParameterType->External, BlockName->STOPMIX, Indices -> {Index[Nsf], Index[Nsf]}, Unitary->True, Description->"Stop mixing matrix",
|
---|
290 | Value-> { Rtop[1,1] -> 0.707107, Rtop[1,2] -> 0.707107, Rtop[2,1] -> -0.707107, Rtop[2,2] -> 0.707107 } },
|
---|
291 | Ru == { TeX->Superscript[R,u], ParameterType->Internal, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
292 | Definitions->{ Ru[1,1]->1 , Ru[1,2]->0, Ru[1,3]->0, Ru[1,4]->0, Ru[1,5]->0, Ru[1,6]->0,
|
---|
293 | Ru[2,1]->0 , Ru[2,2]->1, Ru[2,3]->0, Ru[2,4]->0, Ru[2,5]->0, Ru[2,6]->0,
|
---|
294 | Ru[3,1]->0 , Ru[3,2]->0, Ru[3,3]->Rtop[1,1], Ru[3,4]->0, Ru[3,5]->0, Ru[3,6]->Rtop[1,2],
|
---|
295 | Ru[4,1]->0 , Ru[4,2]->0, Ru[4,3]->0, Ru[4,4]->1, Ru[4,5]->0, Ru[4,6]->0,
|
---|
296 | Ru[5,1]->0 , Ru[5,2]->0, Ru[5,3]->0, Ru[5,4]->0, Ru[5,5]->1, Ru[5,6]->0,
|
---|
297 | Ru[6,1]->0 , Ru[6,2]->0, Ru[6,3]->Rtop[2,1], Ru[6,4]->0, Ru[6,5]->0, Ru[6,6]->Rtop[2,2]} },
|
---|
298 | RuL == { TeX->Superscript[RL,u], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RuL[i_,j_]:>Ru[i,j] /;NumericQ[j]} },
|
---|
299 | RuR == { TeX->Superscript[RR,u], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RuR[i_,j_]:>Ru[i,j+3]/;NumericQ[j]} },
|
---|
300 |
|
---|
301 | Rbot == { TeX->Subscript[S,b], ParameterType->External, BlockName->SBOTMIX, Indices -> {Index[Nsf], Index[Nsf]}, Unitary->True, Description->"Sbottom mixing matrix",
|
---|
302 | Value-> { Rbot[1,1] -> 0.707107, Rbot[1,2] -> 0.707107, Rbot[2,1] -> -0.707107, Rbot[2,2] -> 0.707107 } },
|
---|
303 | Rd == { TeX->Superscript[R,d], ParameterType->Internal, ComplexParameter->False, Indices->{Index[SCA],Index[SCA]}, Unitary->True,
|
---|
304 | Definitions->{ Rd[1,1]->1 , Rd[1,2]->0, Rd[1,3]->0, Rd[1,4]->0, Rd[1,5]->0, Rd[1,6]->0,
|
---|
305 | Rd[2,1]->0 , Rd[2,2]->1, Rd[2,3]->0, Rd[2,4]->0, Rd[2,5]->0, Rd[2,6]->0,
|
---|
306 | Rd[3,1]->0 , Rd[3,2]->0, Rd[3,3]->Rbot[1,1], Rd[3,4]->0, Rd[3,5]->0, Rd[3,6]->Rbot[1,2],
|
---|
307 | Rd[4,1]->0 , Rd[4,2]->0, Rd[4,3]->0, Rd[4,4]->1, Rd[4,5]->0, Rd[4,6]->0,
|
---|
308 | Rd[5,1]->0 , Rd[5,2]->0, Rd[5,3]->0, Rd[5,4]->0, Rd[5,5]->1, Rd[5,6]->0,
|
---|
309 | Rd[6,1]->0 , Rd[6,2]->0, Rd[6,3]->Rbot[2,1], Rd[6,4]->0, Rd[6,5]->0, Rd[6,6]->Rbot[2,2]} },
|
---|
310 | RdL == { TeX->Superscript[RL,d], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RdL[i_,j_]:>Rd[i,j] /;NumericQ[j]} },
|
---|
311 | RdR == { TeX->Superscript[RR,d], ParameterType-> Internal, ComplexParameter->False, Indices->{Index[SCA],Index[GEN]}, Unitary->False, Definitions->{RdR[i_,j_]:>Rd[i,j+3]/;NumericQ[j]} },
|
---|
312 |
|
---|
313 | (* Soft terms *)
|
---|
314 | Mx1 == { ParameterType->External, BlockName->MSOFT, OrderBlock->1, Value->100, Description->"Bino mass" },
|
---|
315 | Mx2 == { ParameterType->External, BlockName->MSOFT, OrderBlock->2, Value->200, Description->"Wino mass" },
|
---|
316 | Mx3 == { ParameterType->External, BlockName->MSOFT, OrderBlock->3, Value->600, Description->"Gluino mass"},
|
---|
317 |
|
---|
318 | mHu2 == { TeX->Subsuperscript[m,Subscript[H,u],2], ParameterType->External, BlockName->MSOFT, OrderBlock->22, Value->-130000, Description->"Up-type Higgs squared mass"},
|
---|
319 | mHd2 == { TeX->Subsuperscript[m,Subscript[H,d],2], ParameterType->External, BlockName->MSOFT, OrderBlock->21, Value-> 32000, Description->"Down-type Higgs squared mass"},
|
---|
320 |
|
---|
321 | meL == { ParameterType->External, BlockName->MSOFT, OrderBlock->31, Value->200, Description->"seL squared mass" },
|
---|
322 | mmuL == { ParameterType->External, BlockName->MSOFT, OrderBlock->32, Value->200, Description->"smuL squared mass" },
|
---|
323 | mtauL== { ParameterType->External, BlockName->MSOFT, OrderBlock->33, Value->200, Description->"stauL squared mass" },
|
---|
324 | meR == { ParameterType->External, BlockName->MSOFT, OrderBlock->34, Value->150, Description->"seR squared mass" },
|
---|
325 | mmuR == { ParameterType->External, BlockName->MSOFT, OrderBlock->35, Value->150, Description->"smuR squared mass" },
|
---|
326 | mtauR== { ParameterType->External, BlockName->MSOFT, OrderBlock->36, Value->150, Description->"stauR squared mass" },
|
---|
327 | muL == { ParameterType->External, BlockName->MSOFT, OrderBlock->41, Value->550, Description->"suL squared mass" },
|
---|
328 | mcL == { ParameterType->External, BlockName->MSOFT, OrderBlock->42, Value->550, Description->"scL squared mass" },
|
---|
329 | mtL == { ParameterType->External, BlockName->MSOFT, OrderBlock->43, Value->500, Description->"stL squared mass" },
|
---|
330 | muR == { ParameterType->External, BlockName->MSOFT, OrderBlock->44, Value->500, Description->"suR squared mass" },
|
---|
331 | mcR == { ParameterType->External, BlockName->MSOFT, OrderBlock->45, Value->500, Description->"scR squared mass" },
|
---|
332 | mtR == { ParameterType->External, BlockName->MSOFT, OrderBlock->46, Value->400, Description->"stR squared mass" },
|
---|
333 | mdR == { ParameterType->External, BlockName->MSOFT, OrderBlock->47, Value->500, Description->"sdR squared mass" },
|
---|
334 | msR == { ParameterType->External, BlockName->MSOFT, OrderBlock->48, Value->500, Description->"ssR squared mass" },
|
---|
335 | mbR == { ParameterType->External, BlockName->MSOFT, OrderBlock->49, Value->500, Description->"sbR squared mass" },
|
---|
336 |
|
---|
337 | ae == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->AE, Description->"Charged slepton trilinear coupling",
|
---|
338 | Definitions:>{ae[i_,j_]:>0 /;(i!=j)}, Value->{ae[1,1]->0, ae[2,2]->0, ae[3,3]->-250} },
|
---|
339 | au == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->AU, Description->"Up-type squark trilinear coupling",
|
---|
340 | Definitions:>{au[i_,j_]:>0 /;(i!=j)}, Value->{au[1,1]->0, au[2,2]->0, au[3,3]->-500} },
|
---|
341 | ad == { ParameterType->External, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, BlockName->AD, Description->"Down-type squark trilinear coupling",
|
---|
342 | Definitions:>{ad[i_,j_]:>0 /;(i!=j)}, Value->{ad[1,1]->0, ad[2,2]->0, ad[3,3]->-800} },
|
---|
343 |
|
---|
344 | (* Soft terms: internal parameters *)
|
---|
345 | bb == { TeX->b, ParameterType->Internal, ComplexParameter->False, Value->(mHu2-mHd2)*Tan[2*alp]/2 - MZ^2*(Cos[2*beta]*Tan[2*alp] + Sin[2*beta]/2), Description->"Higgs bilinear soft term"},
|
---|
346 | mL2 == { TeX->Subsuperscript[m,OverTilde[L],2], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Left-handed slepton squared mass matrix",
|
---|
347 | Definitions:>{mL2[i_,j_]:>0 /;(i!=j)}, Value->{ mL2[1,1]->meL^2, mL2[2,2]->mmuL^2, mL2[3,3]->mtauL^2} },
|
---|
348 | mE2 == { TeX->Subsuperscript[m,OverTilde[E],2], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Right-handed slepton squared mass matrix",
|
---|
349 | Definitions:>{mE2[i_,j_]:>0 /;(i!=j)}, Value->{ mE2[1,1]->meR^2, mE2[2,2]->mmuR^2, mE2[3,3]->mtauR^2} },
|
---|
350 | mQ2 == { TeX->Subsuperscript[m,OverTilde[Q],2], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Left-handed squark squared mass matrix",
|
---|
351 | Definitions:>{mQ2[i_,j_]:>0 /;(i!=j)}, Value->{ mQ2[1,1]->muL^2, mQ2[2,2]->mcL^2, mQ2[3,3]->mtL^2} },
|
---|
352 | mU2 == { TeX->Subsuperscript[m,OverTilde[U],2], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Right-handed up-type squark squared mass matrix",
|
---|
353 | Definitions:>{mU2[i_,j_]:>0 /;(i!=j)}, Value->{ mU2[1,1]->muR^2, mU2[2,2]->mcR^2, mU2[3,3]->mtR^2} },
|
---|
354 | mD2 == { TeX->Subsuperscript[m,OverTilde[D],2], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Right-handed down-type squark squared mass matrix",
|
---|
355 | Definitions:>{mD2[i_,j_]:>0 /;(i!=j)}, Value->{ mD2[1,1]->mdR^2, mD2[2,2]->msR^2, mD2[3,3]->mbR^2} },
|
---|
356 |
|
---|
357 | te == { TeX->Subscript[T,e], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Charged slepton trilinear coupling",
|
---|
358 | Definitions:>{te[i_,j_]:>0 /;(i!=j)}, Value->{te[i_,j_]:>If[i==j, ae[i,j]*ye[i,j]]}, InteractionOrder->{QED,1} },
|
---|
359 | tu == { TeX->Subscript[T,u], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Up-type squark trilinear coupling",
|
---|
360 | Definitions:>{tu[i_,j_]:>0 /;(i!=j)}, Value->{tu[i_,j_]:>If[i==j, au[i,j]*yu[i,j]]}, InteractionOrder->{QED,1} },
|
---|
361 | td == { TeX->Subscript[T,d], ParameterType->Internal, ComplexParameter->False, Indices->{Index[GEN],Index[GEN]}, Description->"Down-type squark trilinear coupling",
|
---|
362 | Definitions:>{td[i_,j_]:>0 /;(i!=j)}, Value->{td[i_,j_]:>If[i==j, ad[i,j]*yd[i,j]]}, InteractionOrder->{QED,1} }
|
---|
363 | };
|
---|
364 |
|
---|
365 | (* ************************** *)
|
---|
366 | (* **** Diracification **** *)
|
---|
367 | (* ************************** *)
|
---|
368 | ToDirac[exp_]:= Module[{tmp=Expand[exp]},
|
---|
369 | Colourb=Colour;
|
---|
370 |
|
---|
371 | tmp = OptimizeIndex[#] &/@ (If[Head[tmp]===Plus,List@@tmp,List[tmp]]/.Tb[a_,i_,j_]->-T[a,j,i]);
|
---|
372 |
|
---|
373 | tmp = Expand[(ExpandIndices[#, FlavorExpand->{SU2W, SU2D}] /. {
|
---|
374 | cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2),
|
---|
375 | cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw,
|
---|
376 | Power[PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)],2]->PauliSigma[1,i,j]^2 + PauliSigma[3,i,j]^2 + PauliSigma[2,i,j]^2,
|
---|
377 | PauliSigma[a_,i_?(NumericQ[#] &),j_?(NumericQ[#] &)] PauliSigma[a_,k_?(NumericQ[#] &),l_?(NumericQ[#] &)]->
|
---|
378 | PauliSigma[1,i,j] PauliSigma[1,k,l] + PauliSigma[2,i,j] PauliSigma[2,k,l] + PauliSigma[3,i,j] PauliSigma[3,k,l]})] &/@ tmp;
|
---|
379 | tmp = Plus@@tmp//.{cw^n_?(Mod[#,2]===0&)->(1 - sw^2)^(n/2), cw^n_?(Mod[#, 2]===1 &)->(1 - sw^2)^((n - 1)/2) cw};
|
---|
380 |
|
---|
381 | tmp = OptimizeIndex /@ WeylToDirac /@ OptimizeIndex /@ If[Head[tmp]===Plus,List@@tmp,List[tmp]];
|
---|
382 | Clear[Colourb];
|
---|
383 | Expand[Plus@@tmp]];
|
---|
384 |
|
---|
385 | (* ************************** *)
|
---|
386 | (* ***** Lagrangian ***** *)
|
---|
387 | (* ************************** *)
|
---|
388 | LChiral := Plus@@( Theta2Thetabar2Component[#] &/@ (List @@ CSFKineticTerms[]) )/.{
|
---|
389 | Times[aaa___, del[del[field_, mu_], mu_], bbb___] :> -del[field, mu] del[Times[aaa, bbb], mu]};
|
---|
390 | LVector := Module[{}, Plus@@(Module[{tmp}, tmp = SF2Components[#]; Expand[tmp[[2, 5]] + tmp[[2, 6]]]] &/@ (List @@ VSFKineticTerms[]))];
|
---|
391 |
|
---|
392 | SPot:= Module[{ff1,ff2,cc1},
|
---|
393 | yu[ff1,ff2] UR[ff1,cc1] (QL[1,ff2,cc1] HU[2] - QL[2,ff2,cc1] HU[1]) -
|
---|
394 | yd[ff1,ff2] DR[ff1,cc1] (QL[1,ff2,cc1] HD[2] - QL[2,ff2,cc1] HD[1]) -
|
---|
395 | ye[ff1,ff2] ER[ff1] (LL[1,ff2] HD[2] - LL[2,ff2] HD[1]) +
|
---|
396 | MUH (HU[1] HD[2] - HU[2] HD[1])];
|
---|
397 | LSuperW:= ( Plus@@ (Module[{tmp},tmp=SF2Components[#];tmp[[2,5]]+tmp[[2,6]]] &/@ (List @@ Expand[SPot+HC[SPot]])) );
|
---|
398 |
|
---|
399 | LMass:=Plus@@(Block[{inds=$IndList[#]/.Index[bla_]:>Index[bla,Symbol[ToString[bla]<>"$1"]], afield=anti[#]},
|
---|
400 | Which[
|
---|
401 | FermionQ[#]===True , -Mass[#] afield[Sequence@@inds].#[Sequence@@inds],
|
---|
402 | ScalarFieldQ[#]===True, -Mass[#]^2 afield[Sequence@@inds] #[Sequence@@inds],
|
---|
403 | VectorFieldQ[#]===True, Mass[#]^2 afield[Sequence@@inds] #[Sequence@@inds],
|
---|
404 | True, ERROR[#]]/If[SelfConjugateQ[#]===True,2,1] /. {fld_?(FieldQ[#]===True&)[] -> fld}
|
---|
405 | ] & /@ (Symbol /@ Flatten[PartList[[All, 2]], 1][[All, 8]]));
|
---|
406 |
|
---|
407 | LKin := Plus@@(Block[{inds=$IndList[#]/.Index[bla_]:>Index[bla,Symbol[ToString[bla]<>"$1"]], afield=anti[#]},
|
---|
408 | Which[
|
---|
409 | GhostFieldQ[#]===True , -afield[Sequence@@inds].del[del[#[Sequence@@inds],mu],mu],
|
---|
410 | FermionQ[#]===True , I Ga[mu,Index[Spin,Spin$1],Index[Spin,Spin$2]] afield[Sequence@@inds].del[(#[Sequence@@inds]/.Spin$1->Spin$2),mu],
|
---|
411 | ScalarFieldQ[#]===True, del[afield[Sequence@@inds],mu] del[#[Sequence@@inds],mu],
|
---|
412 | VectorFieldQ[#]===True, -1/2 FS[anti[#],mu,Sequence@@inds] FS[#,mu,Sequence@@inds],
|
---|
413 | True, ERROR2[#]]/If[SelfConjugateQ[#]===True,2,1] /. {fld_?(FieldQ[#]===True&)[] -> fld}
|
---|
414 | ] & /@ (Symbol /@ Flatten[PartList[[All, 2]], 1][[All, 8]]))/.{ee->0,gs->0,gw->0,gp->0};
|
---|
415 |
|
---|
416 | (* Soft SUSY-breaking Lagrangian *)
|
---|
417 | LSoft := Module[{Mino, MSca, Tri, Bil},
|
---|
418 | (* Gaugino mass terms *)
|
---|
419 | Mino:=Module[{s,gl}, Mx1*bow[s].bow[s] + Mx2*wow[s,gl].wow[s,gl] + Mx3*goww[s,gl].goww[s,gl]];
|
---|
420 | (* Scalar mass terms *)
|
---|
421 | MSca:=Module[{ii,ff1,ff2,ff3,ff4,cc1},
|
---|
422 | - mHu2*HC[hus[ii]]*hus[ii] - mHd2*HC[hds[ii]]*hds[ii] -
|
---|
423 | mL2[ff1,ff2]*HC[LLs[ii,ff1]]*LLs[ii,ff2] - mE2[ff1,ff2]*HC[ERs[ff1]]*ERs[ff2] -
|
---|
424 | CKM[ff1,ff2]*mQ2[ff2,ff3]*Conjugate[CKM[ff4,ff3]]*HC[QLs[ii,ff1,cc1]]*QLs[ii,ff4,cc1] -
|
---|
425 | mU2[ff1,ff2]*HC[URs[ff1,cc1]]*URs[ff2,cc1] - mD2[ff1,ff2]*HC[DRs[ff1,cc1]]*DRs[ff2,cc1] ];
|
---|
426 | (* Trilinear couplings *)
|
---|
427 | Tri:=-tu[ff1,ff2]*URs[ff1,cc1] (QLs[1,ff2,cc1] hus[2] - QLs[2,ff2,cc1] hus[1]) +
|
---|
428 | Conjugate[CKM[ff3,ff2]]*td[ff1,ff2]*DRs[ff1,cc1] (QLs[1,ff3,cc1] hds[2] - QLs[2,ff3,cc1] hds[1]) +
|
---|
429 | te[ff1,ff2]*ERs[ff1] (LLs[1,ff2] hds[2] - LLs[2,ff2] hds[1]) ;
|
---|
430 | (* Bilinear couplings *)
|
---|
431 | Bil:=-bb*(hus[1] hds[2] - hus[2] hds[1]);
|
---|
432 | (* Everything together *)
|
---|
433 | (Mino+HC[Mino])/2 + MSca + Tri + HC[Tri] + Bil + HC[Bil]];
|
---|
434 |
|
---|
435 |
|
---|
436 | (* Ghost Lagrangian and gauge fixing terms *)
|
---|
437 | LFeynmanGFix := Module[{VectorizeU,VectorizeD, Phiu,Phid,Phiu0,Phid0, phid1,phid2,phiu1,phiu2, GF1,GF2,GF3,LGF, nrules, kk,ll, LGh1,LGh2,LGh3,LGhS,LGh, genu,gend, gh,ghbar},
|
---|
438 | (* Expression the doublets in the nu/nd basis *)
|
---|
439 | VectorizeU[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
---|
440 | VectorizeD[{a_, b_}] := Simplify[{Sqrt[2] Re[Expand[a]], Sqrt[2] Im[Expand[a]], Sqrt[2] Re[Expand[b]], Sqrt[2] Im[Expand[b]]} /. {Im[_]->0, Re[num_]->num}];
|
---|
441 |
|
---|
442 | (* Higgs doublets *)
|
---|
443 | Phiu = Expand[ {(phiu1 + I phiu2)/Sqrt[2], (Cos[alp]*h0+Sin[alp]*H0 + I*Cos[beta]*A0+I*Sin[beta]*G0)/Sqrt[2]} ];
|
---|
444 | Phid = Expand[ {(-Sin[alp]*h0+Cos[alp]*H0 + I*Sin[beta]*A0-I*Cos[beta]*G0)/Sqrt[2], (phid1 + I phid2)/Sqrt[2]} ]; (* vevs *)
|
---|
445 | Phiu0 = {0, vu/Sqrt[2]};
|
---|
446 | Phid0 = {vd/Sqrt[2], 0};
|
---|
447 | (* Back to the physical Higgses and Goldstones *)
|
---|
448 | nrules := {
|
---|
449 | phid1 -> (-Cos[beta]*GPbar - Cos[beta]*GP + Sin[beta]*Hbar + Sin[beta]*H)/Sqrt[2],
|
---|
450 | phid2 -> (-Cos[beta]*GPbar + Cos[beta]*GP + Sin[beta]*Hbar - Sin[beta]*H)/(I Sqrt[2]),
|
---|
451 | phiu1 -> ( Sin[beta]*GP + Sin[beta]*GPbar + Cos[beta]*H + Cos[beta]*Hbar)/Sqrt[2],
|
---|
452 | phiu2 -> (Sin[beta]*GP - Sin[beta]*GPbar + Cos[beta]*H - Cos[beta]*Hbar)/(I Sqrt[2])};
|
---|
453 |
|
---|
454 | (* Gauge-fixing functions *)
|
---|
455 | GF1 := Module[{mu}, del[B[mu] , mu] - gp VectorizeU[-I/2 Phiu0].VectorizeU[Phiu] - gp VectorizeD[I/2 Phid0].VectorizeD[Phid] ];
|
---|
456 | GF2[k_] := Module[{mu}, del[Wi[mu,k], mu] - gw VectorizeU[-I/2 PauliSigma[k].Phiu0].VectorizeU[Phiu] - gw VectorizeD[-I/2 PauliSigma[k].Phid0].VectorizeD[Phid] ];
|
---|
457 | GF3[a_] := Module[{mu}, del[G[mu,a] , mu] ];
|
---|
458 | (* Gauge-fixing Lagrangian *)
|
---|
459 | LGF = Expand[-1/2*(GF1 HC[GF1] + Sum[GF2[kk] HC[GF2[kk]], {kk, 1, 3}]) /.nrules /. {HC[a_]->a, h0->0, H0->0, A0->0, H->0, Hbar->0}];
|
---|
460 | LGF = OptimizeIndex[Expand[ExpandIndices[LGF, FlavorExpand->SU2W]]];
|
---|
461 |
|
---|
462 | (* Ghost Lagrangians *)
|
---|
463 | LGh1 = -ghBbar.del[DC[ghB,mu],mu];
|
---|
464 | LGh2 = -ghWibar[kk].del[DC[ghWi[kk], mu], mu];
|
---|
465 | LGh3 = -ghGbar[kk].del[DC[ghG[kk],mu],mu];
|
---|
466 | genu := {-I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
467 | gend := { I/2 gp IdentityMatrix[2], -I/2 gw PauliSigma[1], -I/2 gw PauliSigma[2], -I/2 gw PauliSigma[3]};
|
---|
468 | gh = {ghB, ghWi[1], ghWi[2], ghWi[3]};
|
---|
469 | ghbar = {ghBbar, ghWibar[1], ghWibar[2], ghWibar[3]};
|
---|
470 | LGhS = Sum[
|
---|
471 | -ghbar[[kk]].gh[[ll]] (VectorizeU[genu[[kk]].Phiu0].VectorizeU[genu[[ll]].(Phiu+Phiu0)] + VectorizeD[gend[[kk]].Phid0].VectorizeD[gend[[ll]].(Phid+Phid0)]),
|
---|
472 | {kk,1,4},{ll,1,4}];
|
---|
473 | LGh = ExpandIndices[LGh1+LGh2+LGh3+LGhS, FlavorExpand->SU2W] /.nrules;
|
---|
474 | LGF+LGh];
|
---|
475 |
|
---|
476 |
|
---|
477 | (* Collecting all the pieces together *)
|
---|
478 | LSUSY := Block[{tmplag, nofi},
|
---|
479 | (* The lagrangian*)
|
---|
480 | tmplag=ToDirac[SolveEqMotionF[SolveEqMotionD[LVector+LChiral+LSuperW]]];
|
---|
481 | tmplag=ExpandIndices[tmplag + LSoft,FlavorExpand->True];
|
---|
482 |
|
---|
483 | (* mass and kinetic terms *)
|
---|
484 | tmplag=tmplag-GetQuadraticTerms[tmplag];
|
---|
485 | tmplag=tmplag + LKin + LMass + LFeynmanGFix;
|
---|
486 |
|
---|
487 | (* constant terms *)
|
---|
488 | nofi=tmplag /. {_?(FieldQ[#]===True&)[__]->0, _?(FieldQ[#]===True&) -> 0};
|
---|
489 |
|
---|
490 | (* output *)
|
---|
491 | tmplag = Expand[tmplag-nofi];
|
---|
492 | Return[Select[tmplag, Length[GetFieldContent[#]] > 1 &]];
|
---|
493 | ];
|
---|
494 |
|
---|
495 |
|
---|
496 | ComT[a_, b_, cc1_, cc2_] := Module[{ccp}, T[a, cc1, ccp] T[b, ccp, cc2] + T[b, cc1, ccp] T[a, ccp, cc2]];
|
---|
497 |
|
---|
498 | LCT := Block[{lg,lw,lb,ly, tmpLD},
|
---|
499 |
|
---|
500 | lg= -Sqrt[2] I gs aS/(3 Pi) T[a,cc1,cc2] (QLsbar[ii,ff,cc1] gow[s1,a].QLw[s1,ii,ff,cc2] + URwbar[s1,ff,cc2].gowbar[s1,a] URs[ff,cc1] + DRwbar[s1,ff,cc2].gowbar[s1,a] DRs[ff,cc1]);
|
---|
501 | lw = Sqrt[2] I gw aS/(6 Pi) Ta[a,ii1,ii2] (QLsbar[ii1,ff,cc] wow[s1,a].QLw[s1,ii2,ff,cc]);
|
---|
502 | lb = -Sqrt[2] I gp aS/(6 Pi) (-1/6 QLsbar[ii,ff,cc] bow[s1].QLw[s1,ii,ff,cc] -2/3 URwbar[s1,ff,cc].bowbar[s1] URs[ff,cc] + 1/3 DRwbar[s1,ff,cc].bowbar[s1] DRs[ff,cc]);
|
---|
503 | ly = yu[ff1,ff2] aS/(6 Pi) (QLs[1,ff2,cc] URw[sp,ff1,cc].huw[sp,2] - QLs[2,ff2,cc] URw[sp,ff1,cc].huw[sp,1] + URs[ff1,cc] QLw[sp,1,ff2,cc].huw[sp,2] - URs[ff1,cc] QLw[sp,2,ff2,cc].huw[sp,1]) -
|
---|
504 | yd[ff1,ff2] aS/(6 Pi) (QLs[1,ff2,cc] DRw[sp,ff1,cc].hdw[sp,2] - QLs[2,ff2,cc] DRw[sp,ff1,cc].hdw[sp,1] + DRs[ff1,cc] QLw[sp,1,ff2,cc].hdw[sp,2] - DRs[ff1,cc] QLw[sp,2,ff2,cc].hdw[sp,1]);
|
---|
505 |
|
---|
506 | tmpLD = 1/2 gs^2 aS/(4 Pi) * ComT[a, b, cc1, cc2] * ComT[a, b, cc3, cc4] *
|
---|
507 | (URsbar[ff1, cc2] URs[ff1, cc1] + DRsbar[ff1, cc2] DRs[ff1, cc1] + QLsbar[ii1, ff1, cc1] QLs[ii1, ff1, cc2])*
|
---|
508 | (URsbar[ff2, cc4] URs[ff2, cc3] + DRsbar[ff2, cc4] DRs[ff2, cc3] + QLsbar[ii2, ff2, cc3] QLs[ii2, ff2, cc4]);
|
---|
509 |
|
---|
510 | Return[ToDirac[tmpLD + lg + lw + lb + ly + HC[lg+lb+lw+ly]]];
|
---|
511 | ];
|
---|
512 |
|
---|
513 |
|
---|