| 1 | %
|
|---|
| 2 | %
|
|---|
| 3 | % This TeX-file has been automatically generated by FeynRules.
|
|---|
| 4 | %
|
|---|
| 5 | % C. Duhr, 2008
|
|---|
| 6 | %
|
|---|
| 7 | %
|
|---|
| 8 |
|
|---|
| 9 | \documentclass[11pt]{article}
|
|---|
| 10 |
|
|---|
| 11 | \usepackage{amsfonts}
|
|---|
| 12 | \usepackage{amsmath}
|
|---|
| 13 |
|
|---|
| 14 | \newenvironment{respr}[0]{\sloppy\begin{flushleft}\hspace*{0.75cm}\(}{\)\end{flushleft}\fussy}
|
|---|
| 15 |
|
|---|
| 16 | \setlength{\topmargin}{-.2 cm}
|
|---|
| 17 | \setlength{\evensidemargin}{.0 cm}
|
|---|
| 18 | \setlength{\oddsidemargin}{.0 cm}
|
|---|
| 19 | \setlength{\textheight}{8.5 in}
|
|---|
| 20 | \setlength{\textwidth}{6.4 in}
|
|---|
| 21 |
|
|---|
| 22 |
|
|---|
| 23 | \begin{document}
|
|---|
| 24 |
|
|---|
| 25 |
|
|---|
| 26 | \section{Model description}
|
|---|
| 27 | This file contains the Feynman rules for the model \verb+Higgs_Effective_Couplings+.
|
|---|
| 28 | The Feynman rules have been generated automatically by FeynRules1.2.2.
|
|---|
| 29 |
|
|---|
| 30 | \subsection{Model information}
|
|---|
| 31 |
|
|---|
| 32 | Author(s) of the model file: \\
|
|---|
| 33 | \indent N. Christensen\\
|
|---|
| 34 | \indent C. Duhr\\
|
|---|
| 35 | Date: {04. 03. 2008}\\
|
|---|
| 36 |
|
|---|
| 37 | \subsection{Index description}
|
|---|
| 38 |
|
|---|
| 39 | \begin{center}\begin{tabular}{|c|c|c|}
|
|---|
| 40 | \hline
|
|---|
| 41 | Index & Index range & Symbol\\
|
|---|
| 42 | \hline
|
|---|
| 43 | Generation & 1 \ldots 3 & $ f $\\
|
|---|
| 44 | \hline
|
|---|
| 45 | Colour & 1 \ldots 3 & $ i $\\
|
|---|
| 46 | \hline
|
|---|
| 47 | Gluon & 1 \ldots 8 & $ a $\\
|
|---|
| 48 | \hline
|
|---|
| 49 | SU2W & 1 \ldots 3 & N/A
|
|---|
| 50 | \\ \hline
|
|---|
| 51 | \end{tabular}\end{center}
|
|---|
| 52 | \subsection{Particle content of the model}
|
|---|
| 53 |
|
|---|
| 54 | \begin{enumerate}
|
|---|
| 55 | \item
|
|---|
| 56 | \begin{tabular}{ll}
|
|---|
| 57 | Class: F(1) = $ \text{vl} $, & Fieldtype: Dirac Field.\\
|
|---|
| 58 | \multicolumn{2}{l}{Indices: Spin, Generation.}\\
|
|---|
| 59 | \multicolumn{2}{l}{Class Members: \text{ve}, vm, vt.}
|
|---|
| 60 | \end{tabular}
|
|---|
| 61 | \item
|
|---|
| 62 | \begin{tabular}{ll}
|
|---|
| 63 | Class: F(2) = $ l $, & Fieldtype: Dirac Field.\\
|
|---|
| 64 | \multicolumn{2}{l}{Indices: Spin, Generation.}\\
|
|---|
| 65 | \multicolumn{2}{l}{Class Members: e, m, tt.}
|
|---|
| 66 | \end{tabular}
|
|---|
| 67 | \item
|
|---|
| 68 | \begin{tabular}{ll}
|
|---|
| 69 | Class: F(3) = $ \text{uq} $, & Fieldtype: Dirac Field.\\
|
|---|
| 70 | \multicolumn{2}{l}{Indices: Spin, Generation, Colour.}\\
|
|---|
| 71 | \multicolumn{2}{l}{Class Members: u, c, t.}
|
|---|
| 72 | \end{tabular}
|
|---|
| 73 | \item
|
|---|
| 74 | \begin{tabular}{ll}
|
|---|
| 75 | Class: F(4) = $ \text{dq} $, & Fieldtype: Dirac Field.\\
|
|---|
| 76 | \multicolumn{2}{l}{Indices: Spin, Generation, Colour.}\\
|
|---|
| 77 | \multicolumn{2}{l}{Class Members: d, s, b.}
|
|---|
| 78 | \end{tabular}
|
|---|
| 79 | \item
|
|---|
| 80 | \begin{tabular}{ll}
|
|---|
| 81 | Class: U(1) = $ \text{ghA} $, & Fieldtype: Ghost Field.\\
|
|---|
| 82 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 83 | \end{tabular}
|
|---|
| 84 | \item
|
|---|
| 85 | \begin{tabular}{ll}
|
|---|
| 86 | Class: U(2) = $ \text{ghZ} $, & Fieldtype: Ghost Field.\\
|
|---|
| 87 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 88 | \end{tabular}
|
|---|
| 89 | \item
|
|---|
| 90 | \begin{tabular}{ll}
|
|---|
| 91 | Class: U(31) = $ \text{ghWp} $, & Fieldtype: Ghost Field.\\
|
|---|
| 92 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 93 | \end{tabular}
|
|---|
| 94 | \item
|
|---|
| 95 | \begin{tabular}{ll}
|
|---|
| 96 | Class: U(32) = $ \text{ghWm} $, & Fieldtype: Ghost Field.\\
|
|---|
| 97 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 98 | \end{tabular}
|
|---|
| 99 | \item
|
|---|
| 100 | \begin{tabular}{ll}
|
|---|
| 101 | Class: U(4) = $ \text{ghG} $, & Fieldtype: Ghost Field.\\
|
|---|
| 102 | \multicolumn{2}{l}{Indices: Gluon.}\\
|
|---|
| 103 | \end{tabular}
|
|---|
| 104 | \item
|
|---|
| 105 | \begin{tabular}{ll}
|
|---|
| 106 | Class: U(5) = $ \text{ghWi} $, & Fieldtype: Ghost Field (Unphysical).\\
|
|---|
| 107 | \multicolumn{2}{l}{Indices: SU2W.}\\
|
|---|
| 108 | \end{tabular}
|
|---|
| 109 | \item
|
|---|
| 110 | \begin{tabular}{ll}
|
|---|
| 111 | Class: U(6) = $ \text{ghB} $, & Fieldtype: Ghost Field (Unphysical).\\
|
|---|
| 112 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 113 | \end{tabular}
|
|---|
| 114 | \item
|
|---|
| 115 | \begin{tabular}{ll}
|
|---|
| 116 | Class: V(1) = $ A $, & Fieldtype: Real Vectorfield.\\
|
|---|
| 117 | \multicolumn{2}{l}{Indices: Lorentz.}\\
|
|---|
| 118 | \end{tabular}
|
|---|
| 119 | \item
|
|---|
| 120 | \begin{tabular}{ll}
|
|---|
| 121 | Class: V(2) = $ Z $, & Fieldtype: Real Vectorfield.\\
|
|---|
| 122 | \multicolumn{2}{l}{Indices: Lorentz.}\\
|
|---|
| 123 | \end{tabular}
|
|---|
| 124 | \item
|
|---|
| 125 | \begin{tabular}{ll}
|
|---|
| 126 | Class: V(3) = $ W $, & Fieldtype: Complex Vectorfield.\\
|
|---|
| 127 | \multicolumn{2}{l}{Indices: Lorentz.}\\
|
|---|
| 128 | \end{tabular}
|
|---|
| 129 | \item
|
|---|
| 130 | \begin{tabular}{ll}
|
|---|
| 131 | Class: V(4) = $ G $, & Fieldtype: Real Vectorfield.\\
|
|---|
| 132 | \multicolumn{2}{l}{Indices: Lorentz, Gluon.}\\
|
|---|
| 133 | \end{tabular}
|
|---|
| 134 | \item
|
|---|
| 135 | \begin{tabular}{ll}
|
|---|
| 136 | Class: V(5) = $ \text{Wi} $, & Fieldtype: Real Vectorfield (Unphysical).\\
|
|---|
| 137 | \multicolumn{2}{l}{Indices: Lorentz, SU2W.}\\
|
|---|
| 138 | \end{tabular}
|
|---|
| 139 | \item
|
|---|
| 140 | \begin{tabular}{ll}
|
|---|
| 141 | Class: V(6) = $ B $, & Fieldtype: Real Vectorfield (Unphysical).\\
|
|---|
| 142 | \multicolumn{2}{l}{Indices: Lorentz.}\\
|
|---|
| 143 | \end{tabular}
|
|---|
| 144 | \item
|
|---|
| 145 | \begin{tabular}{ll}
|
|---|
| 146 | Class: S(1) = $ H $, & Fieldtype: Real Scalar Field.\\
|
|---|
| 147 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 148 | \end{tabular}
|
|---|
| 149 | \item
|
|---|
| 150 | \begin{tabular}{ll}
|
|---|
| 151 | Class: S(2) = $ \phi $, & Fieldtype: Real Scalar Field.\\
|
|---|
| 152 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 153 | \end{tabular}
|
|---|
| 154 | \item
|
|---|
| 155 | \begin{tabular}{ll}
|
|---|
| 156 | Class: S(3) = $ \text{phi2} $, & Fieldtype: Complex Scalar Field.\\
|
|---|
| 157 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 158 | \end{tabular}
|
|---|
| 159 | \item
|
|---|
| 160 | \begin{tabular}{ll}
|
|---|
| 161 | Class: S(4) = $ \text{h1} $, & Fieldtype: Real Scalar Field.\\
|
|---|
| 162 | \multicolumn{2}{l}{Indices: N/A.}\\
|
|---|
| 163 | \end{tabular}
|
|---|
| 164 | \end{enumerate}
|
|---|
| 165 |
|
|---|
| 166 |
|
|---|
| 167 | %%
|
|---|
| 168 | %% The Vertices
|
|---|
| 169 | %%
|
|---|
| 170 | \section{Vertices}
|
|---|
| 171 |
|
|---|
| 172 | \subsection{ 3-point vertices}
|
|---|
| 173 |
|
|---|
| 174 | \begin{itemize}
|
|---|
| 175 | \item
|
|---|
| 176 | Vertex $\{H,1\} $, $\{A,2\} $, $\{A,3\} $
|
|---|
| 177 | \begin{respr}
|
|---|
| 178 | -i A_H \big(p_2^{\mu _3} p_3^{\mu _2}-\eta _{\mu _2,\mu _3} p_2.p_3\big)\end{respr}
|
|---|
| 179 | \item
|
|---|
| 180 | Vertex $\{H,1\} $, $\{G,2\} $, $\{G,3\} $
|
|---|
| 181 | \begin{respr}
|
|---|
| 182 | -i G_H \delta _{a_2,a_3} \big(p_2^{\mu _3} p_3^{\mu _2}-\eta _{\mu _2,\mu _3} p_2.p_3\big)\end{respr}
|
|---|
| 183 | \item
|
|---|
| 184 | Vertex $\{\text{h1},1\} $, $\{G,2\} $, $\{G,3\} $
|
|---|
| 185 | \begin{respr}
|
|---|
| 186 | \frac{1}{8} i G_h \big(\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\beta $2}} p_2^{\text{$\beta $2}} p_3^{\text{$\alpha $2}}+\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\delta $2}} p_2^{\text{$\delta $2}} p_3^{\text{$\alpha $2}}-\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\beta $2}} p_2^{\text{$\alpha $2}} p_3^{\text{$\beta $2}}-\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\beta $2}} p_2^{\text{$\gamma $2}} p_3^{\text{$\beta $2}}+\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\beta $2}} p_2^{\text{$\beta $2}} p_3^{\text{$\gamma $2}}+\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\delta $2}} p_2^{\text{$\delta $2}} p_3^{\text{$\gamma $2}}-\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\delta $2}} p_2^{\text{$\alpha $2}} p_3^{\text{$\delta $2}}-\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\delta $2}} p_2^{\text{$\gamma $2}} p_3^{\text{$\delta $2}}\big) \delta _{a_2,a_3}\end{respr}
|
|---|
| 187 | \item
|
|---|
| 188 | Vertex $\{\text{h1},1\} $, $\{A,2\} $, $\{A,3\} $
|
|---|
| 189 | \begin{respr}
|
|---|
| 190 | \frac{1}{8} i A_h \big(\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\beta $2}} p_2^{\text{$\beta $2}} p_3^{\text{$\alpha $2}}+\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\delta $2}} p_2^{\text{$\delta $2}} p_3^{\text{$\alpha $2}}-\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\beta $2}} p_2^{\text{$\alpha $2}} p_3^{\text{$\beta $2}}-\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\beta $2}} p_2^{\text{$\gamma $2}} p_3^{\text{$\beta $2}}+\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\beta $2}} p_2^{\text{$\beta $2}} p_3^{\text{$\gamma $2}}+\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\delta $2}} p_2^{\text{$\delta $2}} p_3^{\text{$\gamma $2}}-\epsilon _{\mu _2,\mu _3,\text{$\alpha $2},\text{$\delta $2}} p_2^{\text{$\alpha $2}} p_3^{\text{$\delta $2}}-\epsilon _{\mu _2,\mu _3,\text{$\gamma $2},\text{$\delta $2}} p_2^{\text{$\gamma $2}} p_3^{\text{$\delta $2}}\big)\end{respr}
|
|---|
| 191 | \end{itemize}
|
|---|
| 192 |
|
|---|
| 193 | \subsection{ 4-point vertices}
|
|---|
| 194 |
|
|---|
| 195 | \begin{itemize}
|
|---|
| 196 | \item
|
|---|
| 197 | Vertex $\{H,1\} $, $\{G,2\} $, $\{G,3\} $, $\{G,4\} $
|
|---|
| 198 | \begin{respr}
|
|---|
| 199 | G_H g_s f_{a_2,a_3,a_4} \big(p_2^{\mu _4} \eta _{\mu _2,\mu _3}-p_3^{\mu _4} \eta _{\mu _2,\mu _3}-p_2^{\mu _3} \eta _{\mu _2,\mu _4}+p_4^{\mu _3} \eta _{\mu _2,\mu _4}+p_3^{\mu _2} \eta _{\mu _3,\mu _4}-p_4^{\mu _2} \eta _{\mu _3,\mu _4}\big)\end{respr}
|
|---|
| 200 | \item
|
|---|
| 201 | Vertex $\{\text{h1},1\} $, $\{G,2\} $, $\{G,3\} $, $\{G,4\} $
|
|---|
| 202 | \begin{respr}
|
|---|
| 203 | \frac{1}{4} G_h g_s f_{a_2,a_3,a_4} \big(\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\alpha $2}} p_2^{\text{$\alpha $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\beta $2}} p_2^{\text{$\beta $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\gamma $2}} p_2^{\text{$\gamma $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\delta $2}} p_2^{\text{$\delta $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\alpha $2}} p_3^{\text{$\alpha $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\beta $2}} p_3^{\text{$\beta $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\gamma $2}} p_3^{\text{$\gamma $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\delta $2}} p_3^{\text{$\delta $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\alpha $2}} p_4^{\text{$\alpha $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\beta $2}} p_4^{\text{$\beta $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\gamma $2}} p_4^{\text{$\gamma $2}}+\epsilon _{\mu _2,\mu _3,\mu _4,\text{$\delta $2}} p_4^{\text{$\delta $2}}\big)\end{respr}
|
|---|
| 204 | \end{itemize}
|
|---|
| 205 |
|
|---|
| 206 | \subsection{ 5-point vertices}
|
|---|
| 207 |
|
|---|
| 208 | \begin{itemize}
|
|---|
| 209 | \item
|
|---|
| 210 | Vertex $\{H,1\} $, $\{G,2\} $, $\{G,3\} $, $\{G,4\} $, $\{G,5\} $
|
|---|
| 211 | \begin{respr}
|
|---|
| 212 | i G_H g_s^2 \big(f_{a_2,a_4,\text{a1}} f_{a_3,a_5,\text{a1}} \eta _{\mu _2,\mu _5} \eta _{\mu _3,\mu _4}+f_{a_2,a_3,\text{a1}} f_{a_4,a_5,\text{a1}} \eta _{\mu _2,\mu _5} \eta _{\mu _3,\mu _4}+f_{a_2,a_5,\text{a1}} f_{a_3,a_4,\text{a1}} \eta _{\mu _2,\mu _4} \eta _{\mu _3,\mu _5}-f_{a_2,a_3,\text{a1}} f_{a_4,a_5,\text{a1}} \eta _{\mu _2,\mu _4} \eta _{\mu _3,\mu _5}-f_{a_2,a_5,\text{a1}} f_{a_3,a_4,\text{a1}} \eta _{\mu _2,\mu _3} \eta _{\mu _4,\mu _5}-f_{a_2,a_4,\text{a1}} f_{a_3,a_5,\text{a1}} \eta _{\mu _2,\mu _3} \eta _{\mu _4,\mu _5}\big)\end{respr}
|
|---|
| 213 | \item
|
|---|
| 214 | Vertex $\{\text{h1},1\} $, $\{G,2\} $, $\{G,3\} $, $\{G,4\} $, $\{G,5\} $
|
|---|
| 215 | \begin{respr}
|
|---|
| 216 | -i G_h g_s^2 \epsilon _{\mu _2,\mu _3,\mu _4,\mu _5} \big(f_{a_2,a_5,\text{a1}} f_{a_3,a_4,\text{a1}}-f_{a_2,a_4,\text{a1}} f_{a_3,a_5,\text{a1}}+f_{a_2,a_3,\text{a1}} f_{a_4,a_5,\text{a1}}\big)\end{respr}
|
|---|
| 217 | \end{itemize}
|
|---|
| 218 |
|
|---|
| 219 |
|
|---|
| 220 | \end{document}
|
|---|