| 167 | root examples/macro.C'("out_pp_jj_js.root","out_pp_zp_ww_js.root")' |
| 168 | }}} |
| 169 | |
| 170 | 6. Now improve the calorimeter resolution in the card, both energy and angular resolutions (roughly by a factor 20) |
| 171 | {{{ |
| 172 | set PhiBins {} |
| 173 | for {set i -360} {$i <= 360} {incr i} { |
| 174 | add PhiBins [expr {$i * $pi/360.0}] |
| 175 | } |
| 176 | |
| 177 | # 0.01 unit in eta up to eta = 2.5 |
| 178 | for {set i -1000} {$i <= 1000} {incr i} { |
| 179 | set eta [expr {$i * 0.005}] |
| 180 | add EtaPhiBins $eta $PhiBins |
| 181 | } |
| 182 | |
| 183 | |
| 184 | ... |
| 185 | |
| 186 | # set ECalResolutionFormula {resolution formula as a function of eta and energy} |
| 187 | # Eta shape from arXiv:1306.2016, Energy shape from arXiv:1502.02701 |
| 188 | set ECalResolutionFormula { (abs(eta) <= 1.5) *0.01*(1+0.64*eta^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) + |
| 189 | (abs(eta) > 1.5 && abs(eta) <= 2.5) *0.05* (2.16 + 5.6*(abs(eta)-2)^2) * sqrt(energy^2*0.008^2 + energy*0.11^2 + 0.40^2) + |
| 190 | (abs(eta) > 2.5 && abs(eta) <= 5.0) *0.05* sqrt(energy^2*0.107^2 + energy*2.08^2)} |
| 191 | |
| 192 | |
| 193 | }}} |
| 194 | |
| 195 | 7. Re-run Delphes simulation and macro.C with the new configuration and appreciate the effect of improved resolution on the final distributions: |
| 196 | {{{ |
| 197 | ./DelphesSTDHEP cards/delphes_card_CMS.tcl out_pp_zp_ww_js_nc.root pp_zp_ww.hep |
| 198 | ./DelphesSTDHEP cards/delphes_card_CMS.tcl out_pp_jj_js_nc.root pp_jj.hep |