Changes in display/Delphes3DGeometry.cc [77e9ae1:f53a4d2] in git
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
display/Delphes3DGeometry.cc
r77e9ae1 rf53a4d2 17 17 */ 18 18 19 #include <algorithm> 20 #include <cassert> 19 #include <set> 21 20 #include <map> 22 #include <set>23 #include <sstream>24 21 #include <utility> 25 22 #include <vector> 23 #include <algorithm> 24 #include <sstream> 25 #include <cassert> 26 26 27 27 #include "TAxis.h" 28 #include "TGeoManager.h" 29 #include "TGeoVolume.h" 30 #include "TGeoMedium.h" 31 #include "TGeoNode.h" 32 #include "TGeoCompositeShape.h" 33 #include "TGeoMatrix.h" 34 #include "TGeoTube.h" 35 #include "TGeoCone.h" 36 #include "TGeoArb8.h" 28 37 #include "TF2.h" 29 38 #include "TFormula.h" 30 #include "TGeoArb8.h"31 #include "TGeoCompositeShape.h"32 #include "TGeoCone.h"33 #include "TGeoManager.h"34 #include "TGeoMatrix.h"35 #include "TGeoMedium.h"36 #include "TGeoNode.h"37 #include "TGeoTube.h"38 #include "TGeoVolume.h"39 39 #include "TH1F.h" 40 40 #include "TMath.h" … … 48 48 using namespace std; 49 49 50 Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) 51 { 52 53 //--- the geometry manager 54 geom_ = geom == NULL ? gGeoManager : geom; 55 //gGeoManager->DefaultColors(); 56 57 //--- define some materials 58 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0, 0, 0); 59 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98, 13, 2.7); // placeholder 60 if(transp) 61 { 62 matVacuum->SetTransparency(85); 63 matAl->SetTransparency(85); 64 } 65 66 //--- define some media 67 TGeoMedium *Vacuum = new TGeoMedium("Vacuum", 1, matVacuum); 68 TGeoMedium *Al = new TGeoMedium("Root Material", 2, matAl); 69 vacuum_ = Vacuum; 70 tkmed_ = Vacuum; // placeholder 71 calomed_ = Al; // placeholder 72 mudetmed_ = Al; // placeholder 73 74 // custom parameters 75 contingency_ = 10.; 76 calo_barrel_thickness_ = 50.; 77 calo_endcap_thickness_ = 75.; 78 muonSystem_thickn_ = 10.; 79 80 // read these parameters from the Delphes Card (with default values) 81 etaAxis_ = NULL; 82 phiAxis_ = NULL; 83 tk_radius_ = 120.; 84 tk_length_ = 150.; 85 tk_etamax_ = 3.0; 86 tk_Bz_ = 1.; 87 muonSystem_radius_ = 200.; 50 Delphes3DGeometry::Delphes3DGeometry(TGeoManager *geom, bool transp) { 51 52 //--- the geometry manager 53 geom_ = geom==NULL? gGeoManager : geom; 54 //gGeoManager->DefaultColors(); 55 56 //--- define some materials 57 TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0); 58 TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); // placeholder 59 if(transp) { 60 matVacuum->SetTransparency(85); 61 matAl->SetTransparency(85); 62 } 63 64 //--- define some media 65 TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum); 66 TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl); 67 vacuum_ = Vacuum; 68 tkmed_ = Vacuum; // placeholder 69 calomed_ = Al; // placeholder 70 mudetmed_ = Al; // placeholder 71 72 // custom parameters 73 contingency_ = 10.; 74 calo_barrel_thickness_ = 50.; 75 calo_endcap_thickness_ = 75.; 76 muonSystem_thickn_ = 10.; 77 78 // read these parameters from the Delphes Card (with default values) 79 etaAxis_ = NULL; 80 phiAxis_ = NULL; 81 tk_radius_ = 120.; 82 tk_length_ = 150.; 83 tk_etamax_ = 3.0; 84 tk_Bz_ = 1.; 85 muonSystem_radius_ = 200.; 88 86 } 89 87 90 88 void Delphes3DGeometry::readFile(const char *configFile, 91 const char *ParticlePropagator, const char *TrackingEfficiency, 92 const char *MuonEfficiency, const char *Calorimeters) 93 { 94 95 ExRootConfReader *confReader = new ExRootConfReader; 96 confReader->ReadFile(configFile); 97 98 tk_radius_ = confReader->GetDouble(Form("%s::Radius", ParticlePropagator), 1.0) * 100.; // tk_radius 99 tk_length_ = confReader->GetDouble(Form("%s::HalfLength", ParticlePropagator), 3.0) * 100.; // tk_length 100 tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz 101 102 TString buffer; 103 const char *it; 104 105 { 106 TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", TrackingEfficiency), "abs(eta)<3.0"); 107 tkEffFormula.ReplaceAll("pt", "x"); 108 tkEffFormula.ReplaceAll("eta", "y"); 109 tkEffFormula.ReplaceAll("phi", "0."); 110 111 buffer.Clear(); 112 for(it = tkEffFormula.Data(); *it; ++it) 113 { 114 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue; 115 buffer.Append(*it); 116 } 117 118 TF2 *tkEffFunction = new TF2("tkEff", buffer, 0, 1000, -10, 10); 119 TH1F etaHisto("eta", "eta", 100, 5., -5.); 120 Double_t pt, eta; 121 for(int i = 0; i < 1000; ++i) 122 { 123 tkEffFunction->GetRandom2(pt, eta); 124 etaHisto.Fill(eta); 125 } 126 Int_t bin = -1; 127 bin = etaHisto.FindFirstBinAbove(0.5); 128 Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.; 129 bin = etaHisto.FindLastBinAbove(0.5); 130 Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.; 131 tk_etamax_ = TMath::Max(fabs(etamin), fabs(etamax)); // tk_etamax 132 delete tkEffFunction; 133 } 134 135 { 136 muondets_.push_back("muons"); 137 TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula", MuonEfficiency), "abs(eta)<2.0"); 138 muonEffFormula.ReplaceAll("pt", "x"); 139 muonEffFormula.ReplaceAll("eta", "y"); 140 muonEffFormula.ReplaceAll("phi", "0."); 141 142 buffer.Clear(); 143 for(it = muonEffFormula.Data(); *it; ++it) 144 { 145 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\') continue; 146 buffer.Append(*it); 147 } 148 149 TF2 *muEffFunction = new TF2("muEff", buffer, 0, 1000, -10, 10); 150 TH1F etaHisto("eta2", "eta2", 100, 5., -5.); 151 Double_t pt, eta; 152 for(int i = 0; i < 1000; ++i) 153 { 154 muEffFunction->GetRandom2(pt, eta); 155 etaHisto.Fill(eta); 156 } 157 Int_t bin = -1; 158 bin = etaHisto.FindFirstBinAbove(0.5); 159 Double_t etamin = (bin > -1) ? etaHisto.GetBinLowEdge(bin) : -10.; 160 bin = etaHisto.FindLastBinAbove(0.5); 161 Double_t etamax = (bin > -1) ? etaHisto.GetBinLowEdge(bin + 1) : -10.; 162 muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin), fabs(etamax)); // muonSystem_etamax 163 delete muEffFunction; 164 } 165 166 std::string s(Calorimeters); 167 std::replace(s.begin(), s.end(), ',', ' '); 168 std::istringstream stream(s); 169 std::string word; 170 while(stream >> word) calorimeters_.push_back(word); 171 172 caloBinning_.clear(); // calo binning 173 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) 174 { 175 set<pair<Double_t, Int_t> > caloBinning; 176 ExRootConfParam paramEtaBins, paramPhiBins; 177 ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins", calo->c_str())); 178 Int_t size = param.GetSize(); 179 for(int i = 0; i < size / 2; ++i) 180 { 181 paramEtaBins = param[i * 2]; 182 paramPhiBins = param[i * 2 + 1]; 183 assert(paramEtaBins.GetSize() == 1); 184 caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(), paramPhiBins.GetSize() - 1)); 185 } 186 caloBinning_[*calo] = caloBinning; 187 } 188 189 set<pair<Double_t, Int_t> > caloBinning = caloBinning_[*calorimeters_.begin()]; 190 Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo 191 unsigned int ii = 0; 192 for(set<pair<Double_t, Int_t> >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) 193 { 194 etaBins[ii++] = itEtaSet->first; 195 } 196 etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins); 197 phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT 198 199 muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size() + muonSystem_thickn_; 200 muonSystem_length_ = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + muonSystem_thickn_; 201 202 delete confReader; 203 } 204 205 TGeoVolume *Delphes3DGeometry::getDetector(bool withTowers) 206 { 207 // compute the envelope 208 Double_t system_radius = tk_radius_ + calo_barrel_thickness_ + 3 * contingency_; 209 Double_t system_length = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size() + contingency_; 210 // the detector volume 211 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length); 212 // build the detector 213 std::pair<Double_t, Double_t> limits = addTracker(top); 214 Double_t radius = limits.first; 215 Double_t length = limits.second; 216 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) 217 { 218 limits = addCalorimeter(top, calo->c_str(), radius, length, caloBinning_[*calo]); 219 if(withTowers) 220 { 221 addCaloTowers(top, calo->c_str(), radius, length, caloBinning_[*calo]); 222 } 223 radius = limits.first; 224 length = limits.second; 225 } 226 for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) 227 { 228 limits = addMuonDets(top, muon->c_str(), radius, length); 229 radius = limits.first; 230 length = limits.second; 231 } 232 // return the result 233 return top; 234 } 235 236 std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top) 237 { 238 // tracker: a cylinder with two cones substracted 239 new TGeoCone("forwardTkAcceptance", (tk_length_ / 2. + 0.05), 0., tk_radius_, (tk_length_)*2. * exp(-tk_etamax_) / (1 - exp(-2. * tk_etamax_)), tk_radius_); 240 TGeoTranslation *tr1 = new TGeoTranslation("tkacc1", 0., 0., tk_length_ / 2.); 241 tr1->RegisterYourself(); 242 TGeoRotation *negz = new TGeoRotation("tknegz", 0, 180, 0); 243 negz->RegisterYourself(); 244 TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2", 0., 0., -tk_length_ / 2., negz); 245 tr2->RegisterYourself(); 246 TGeoCompositeShape *tracker_cs = new TGeoCompositeShape("tracker_cs", "forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2"); 247 TGeoVolume *tracker = new TGeoVolume("tracker", tracker_cs, tkmed_); 248 tracker->SetLineColor(kYellow); 249 top->AddNode(tracker, 1); 250 return std::make_pair(tk_radius_, tk_length_); 251 } 252 253 std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char *name, 254 Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t> > &caloBinning) 255 { 256 // parameters derived from the inputs 257 Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first), fabs(caloBinning.rbegin()->first)); 258 Double_t calo_barrel_innerRadius = innerBarrelRadius + contingency_; 259 Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_; 260 Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength)); 261 Double_t calo_endcap_innerRadius1 = innerBarrelLength * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax)); 262 Double_t calo_endcap_innerRadius2 = (innerBarrelLength + calo_endcap_thickness_) * 2. * exp(-calo_endcap_etamax) / (1 - exp(-2. * calo_endcap_etamax)); 263 Double_t calo_endcap_outerRadius1 = innerBarrelRadius; 264 Double_t calo_endcap_outerRadius2 = innerBarrelRadius + calo_barrel_thickness_; 265 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_); 266 Double_t calo_endcap_diskThickness = TMath::Max(0., calo_endcap_thickness_ - calo_endcap_coneThickness); 267 268 // calorimeters: tube truncated in eta + cones 269 new TGeoTube(Form("%s_barrel_cylinder", name), calo_barrel_innerRadius, calo_barrel_innerRadius + calo_barrel_thickness_, calo_barrel_length); 270 new TGeoCone(Form("%s_endcap_cone", name), calo_endcap_coneThickness / 2., calo_endcap_innerRadius1, calo_endcap_outerRadius1, calo_endcap_innerRadius2, calo_endcap_outerRadius2); 271 new TGeoTube(Form("%s_endcap_disk", name), calo_endcap_innerRadius2, tk_radius_ + calo_barrel_thickness_, calo_endcap_diskThickness / 2.); 272 TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1", name), 0., 0., (calo_endcap_coneThickness + calo_endcap_diskThickness) / 2.); 273 tr1->RegisterYourself(); 274 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs", name), Form("%s_endcap_cone+%s_endcap_disk:%s_tr1", name, name, name)); 275 TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2.); 276 trc1->RegisterYourself(); 277 TGeoRotation *negz = new TGeoRotation(Form("%s_negz", name), 0, 180, 0); 278 TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.), negz); 279 trc2->RegisterYourself(); 280 TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont", name), 0., 0., innerBarrelLength + calo_endcap_coneThickness / 2. + contingency_); 281 trc1c->RegisterYourself(); 282 TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont", name), 0., 0., -(innerBarrelLength + calo_endcap_coneThickness / 2.) - contingency_, negz); 283 trc2c->RegisterYourself(); 284 TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap", name), calo_endcap_cs, calomed_); 285 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs", name), 286 Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position", name, name, name, name, name)); 287 TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel", name), calo_barrel_cs, calomed_); 288 calo_endcap->SetLineColor(kViolet); 289 calo_endcap->SetFillColor(kViolet); 290 calo_barrel->SetLineColor(kRed); 291 top->AddNode(calo_endcap, 1, trc1c); 292 top->AddNode(calo_endcap, 2, trc2c); 293 top->AddNode(calo_barrel, 1); 294 return std::make_pair(calo_barrel_innerRadius + calo_barrel_thickness_, innerBarrelLength + calo_endcap_thickness_ + contingency_); 295 } 296 297 std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char *name, Double_t innerBarrelRadius, Double_t innerBarrelLength) 298 { 299 // muon system: tube + disks 300 Double_t muonSystem_radius = innerBarrelRadius + contingency_; 301 Double_t muonSystem_length = innerBarrelLength + contingency_; 302 Double_t muonSystem_rmin = muonSystem_length * 2. * exp(-muonSystem_etamax_[name]) / (1 - exp(-2. * muonSystem_etamax_[name])); 303 TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel", name), mudetmed_, muonSystem_radius, muonSystem_radius + muonSystem_thickn_, muonSystem_length); 304 muon_barrel->SetLineColor(kBlue); 305 top->AddNode(muon_barrel, 1); 306 TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap", name), mudetmed_, muonSystem_rmin, muonSystem_radius + muonSystem_thickn_, muonSystem_thickn_ / 2.); 307 muon_endcap->SetLineColor(kBlue); 308 TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position", name), 0., 0., muonSystem_length); 309 trm1->RegisterYourself(); 310 TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position", name), 0., 0., -muonSystem_length); 311 trm1->RegisterYourself(); 312 top->AddNode(muon_endcap, 1, trm1); 313 top->AddNode(muon_endcap, 2, trm2); 314 return std::make_pair(muonSystem_radius, muonSystem_length); 315 } 316 317 void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char *name, 318 Double_t innerBarrelRadius, Double_t innerBarrelLength, set<pair<Double_t, Int_t> > &caloBinning) 319 { 320 321 TGeoVolume *calo_endcap = top->GetNode(Form("%s_endcap_1", name))->GetVolume(); 322 TGeoVolume *calo_barrel = top->GetNode(Form("%s_barrel_1", name))->GetVolume(); 323 Double_t calo_endcap_etamin = -log(innerBarrelRadius / (2 * innerBarrelLength)); 324 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1 - exp(-2. * calo_endcap_etamin)) / (2. * exp(-calo_endcap_etamin)), calo_endcap_thickness_); 325 326 // calo towers in the barrel 327 Double_t vertices[16] = {0., 0., 0., 0., 0., 0., 0., 0.}; // summit of the pyramid 328 Double_t R = tk_radius_ + contingency_ + (contingency_ + calo_barrel_thickness_) * calorimeters_.size(); // radius of the muons system = height of the pyramid 329 Int_t nEtaBins = caloBinning.size(); 330 // this rotation is to make the tower point "up" 331 TGeoRotation *initTowerRot = new TGeoRotation(Form("%s_initTowerRot", name), 0., 90., 0.); 332 TGeoCombiTrans *initTower = new TGeoCombiTrans(Form("%s_initTower", name), 0., -R / 2., 0., initTowerRot); 333 initTower->RegisterYourself(); 334 // eta bins... we build one pyramid per eta slice and then translate it nphi times. 335 // phi bins represented by rotations around z 336 Double_t *y = new Double_t[nEtaBins]; 337 Double_t *dx = new Double_t[nEtaBins]; 338 Int_t *nphi = new Int_t[nEtaBins]; 339 Int_t etaslice = 0; 340 std::map<std::pair<int, int>, TGeoRotation *> phirotations; 341 for(set<pair<Double_t, Int_t> >::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin) 342 { 343 if(abs(bin->first) > calo_endcap_etamin) continue; // only in the barrel 344 nphi[etaslice] = bin->second; 345 y[etaslice] = 0.5 * R * (1 - exp(-2 * bin->first)) / exp(-bin->first); 346 Double_t phiRotationAngle = 360. / nphi[etaslice]; 347 dx[etaslice] = R * tan(TMath::Pi() * phiRotationAngle / 360.); 348 for(int phislice = 0; phislice < nphi[etaslice]; ++phislice) 349 { 350 phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.); 351 phirotations[make_pair(etaslice, phislice)]->RegisterYourself(); 352 } 353 ++etaslice; 354 } 355 nEtaBins = etaslice; 356 for(int i = 0; i < nEtaBins - 1; ++i) 357 { // loop on the eta slices 358 vertices[8] = -dx[i]; 359 vertices[9] = y[i]; 360 vertices[10] = -dx[i]; 361 vertices[11] = y[i + 1]; 362 vertices[12] = dx[i]; 363 vertices[13] = y[i + 1]; 364 vertices[14] = dx[i]; 365 vertices[15] = y[i]; 366 new TGeoArb8(Form("%s_tower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0 367 // intersection between the tower and the calo_barrel 368 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs", name, i), Form("%s_tower%d:%s_initTower*%s_barrel_cs", name, i, name, name)); 369 TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d", name, i), finaltower_cs, calomed_); 370 finaltower->SetLineColor(kRed); 371 for(int j = 0; j < nphi[i]; ++j) 372 { // loop on the phi slices 373 calo_barrel->AddNode(finaltower, j, phirotations[make_pair(i, j)]); 374 } 375 } 376 delete[] y; 377 delete[] dx; 378 delete[] nphi; 379 //the towers in the forward region 380 R = tk_length_ + contingency_ + (contingency_ + calo_endcap_thickness_) * calorimeters_.size(); // Z of the muons system = height of the pyramid 381 nEtaBins = caloBinning.size(); 382 // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place) 383 TGeoTranslation *towerdz = new TGeoTranslation(Form("%s_towerdz", name), 0., 0., R / 2. - (innerBarrelLength + calo_endcap_coneThickness / 2.)); 384 towerdz->RegisterYourself(); 385 // eta bins... we build one pyramid per eta slice and then translate it nphi times. 386 Double_t *r = new Double_t[nEtaBins]; 387 nphi = new Int_t[nEtaBins]; 388 etaslice = 0; 389 phirotations.clear(); 390 for(set<pair<Double_t, Int_t> >::const_iterator bin = caloBinning.begin(); bin != caloBinning.end(); ++bin) 391 { 392 if(bin->first < calo_endcap_etamin) continue; // only in the + endcap 393 r[etaslice] = R * 2 * exp(-bin->first) / (1 - exp(-2 * bin->first)); 394 nphi[etaslice] = bin->second; 395 Double_t phiRotationAngle = 360. / nphi[etaslice]; 396 for(int phislice = 0; phislice < nphi[etaslice]; ++phislice) 397 { 398 phirotations[make_pair(etaslice, phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d", name, etaslice, phislice), phiRotationAngle * phislice, 0., 0.); 399 phirotations[make_pair(etaslice, phislice)]->RegisterYourself(); 400 } 401 ++etaslice; 402 } 403 nEtaBins = etaslice; 404 for(int i = 0; i < nEtaBins - 1; ++i) 405 { // loop on the eta slices 406 vertices[8] = -r[i + 1] * sin(TMath::Pi() / nphi[i]); 407 vertices[9] = r[i + 1] * cos(TMath::Pi() / nphi[i]); 408 vertices[10] = -r[i] * sin(TMath::Pi() / nphi[i]); 409 vertices[11] = r[i] * cos(TMath::Pi() / nphi[i]); 410 vertices[12] = r[i] * sin(TMath::Pi() / nphi[i]); 411 vertices[13] = r[i] * cos(TMath::Pi() / nphi[i]); 412 vertices[14] = r[i + 1] * sin(TMath::Pi() / nphi[i]); 413 vertices[15] = r[i + 1] * cos(TMath::Pi() / nphi[i]); 414 new TGeoArb8(Form("%sfwdtower%d", name, i), R / 2., vertices); // tower in the proper eta slice, at phi=0 415 // intersection between the tower and the calo_endcap 416 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs", name, i), Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs", name, i, name, name)); 417 TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d", name, i), finalfwdtower_cs, calomed_); 418 finalfwdtower->SetLineColor(kViolet); 419 for(int j = 0; j < nphi[i]; ++j) 420 { // loop on the phi slices 421 calo_endcap->AddNode(finalfwdtower, j, phirotations[make_pair(i, j)]); 422 } 423 } 424 delete[] r; 425 delete[] nphi; 426 } 89 const char* ParticlePropagator, const char* TrackingEfficiency, 90 const char* MuonEfficiency, const char* Calorimeters) { 91 92 ExRootConfReader *confReader = new ExRootConfReader; 93 confReader->ReadFile(configFile); 94 95 tk_radius_ = confReader->GetDouble(Form("%s::Radius",ParticlePropagator), 1.0)*100.; // tk_radius 96 tk_length_ = confReader->GetDouble(Form("%s::HalfLength",ParticlePropagator), 3.0)*100.; // tk_length 97 tk_Bz_ = confReader->GetDouble("ParticlePropagator::Bz", 0.0); // tk_Bz 98 99 TString buffer; 100 const char *it; 101 102 103 { 104 TString tkEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",TrackingEfficiency),"abs(eta)<3.0"); 105 tkEffFormula.ReplaceAll("pt","x"); 106 tkEffFormula.ReplaceAll("eta","y"); 107 tkEffFormula.ReplaceAll("phi","0."); 108 109 buffer.Clear(); 110 for(it = tkEffFormula.Data(); *it; ++it) 111 { 112 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue; 113 buffer.Append(*it); 114 } 115 116 TF2* tkEffFunction = new TF2("tkEff",buffer,0,1000,-10,10); 117 TH1F etaHisto("eta","eta",100,5.,-5.); 118 Double_t pt,eta; 119 for(int i=0;i<1000;++i) { 120 tkEffFunction->GetRandom2(pt,eta); 121 etaHisto.Fill(eta); 122 } 123 Int_t bin = -1; 124 bin = etaHisto.FindFirstBinAbove(0.5); 125 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.; 126 bin = etaHisto.FindLastBinAbove(0.5); 127 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.; 128 tk_etamax_ = TMath::Max(fabs(etamin),fabs(etamax)); // tk_etamax 129 delete tkEffFunction; 130 } 131 132 { 133 muondets_.push_back("muons"); 134 TString muonEffFormula = confReader->GetString(Form("%s::EfficiencyFormula",MuonEfficiency),"abs(eta)<2.0"); 135 muonEffFormula.ReplaceAll("pt","x"); 136 muonEffFormula.ReplaceAll("eta","y"); 137 muonEffFormula.ReplaceAll("phi","0."); 138 139 buffer.Clear(); 140 for(it = muonEffFormula.Data(); *it; ++it) 141 { 142 if(*it == ' ' || *it == '\t' || *it == '\r' || *it == '\n' || *it == '\\' ) continue; 143 buffer.Append(*it); 144 } 145 146 TF2* muEffFunction = new TF2("muEff",buffer,0,1000,-10,10); 147 TH1F etaHisto("eta2","eta2",100,5.,-5.); 148 Double_t pt,eta; 149 for(int i=0;i<1000;++i) { 150 muEffFunction->GetRandom2(pt,eta); 151 etaHisto.Fill(eta); 152 } 153 Int_t bin = -1; 154 bin = etaHisto.FindFirstBinAbove(0.5); 155 Double_t etamin = (bin>-1) ? etaHisto.GetBinLowEdge(bin) : -10.; 156 bin = etaHisto.FindLastBinAbove(0.5); 157 Double_t etamax = (bin>-1) ? etaHisto.GetBinLowEdge(bin+1) : -10.; 158 muonSystem_etamax_["muons"] = TMath::Max(fabs(etamin),fabs(etamax)); // muonSystem_etamax 159 delete muEffFunction; 160 } 161 162 std::string s(Calorimeters); 163 std::replace( s.begin(), s.end(), ',', ' ' ); 164 std::istringstream stream( s ); 165 std::string word; 166 while (stream >> word) calorimeters_.push_back(word); 167 168 caloBinning_.clear(); // calo binning 169 for(std::vector<std::string>::const_iterator calo=calorimeters_.begin();calo!=calorimeters_.end(); ++calo) { 170 set< pair<Double_t, Int_t> > caloBinning; 171 ExRootConfParam paramEtaBins, paramPhiBins; 172 ExRootConfParam param = confReader->GetParam(Form("%s::EtaPhiBins",calo->c_str())); 173 Int_t size = param.GetSize(); 174 for(int i = 0; i < size/2; ++i) { 175 paramEtaBins = param[i*2]; 176 paramPhiBins = param[i*2+1]; 177 assert(paramEtaBins.GetSize()==1); 178 caloBinning.insert(std::make_pair(paramEtaBins[0].GetDouble(),paramPhiBins.GetSize()-1)); 179 } 180 caloBinning_[*calo] = caloBinning; 181 } 182 183 set< pair<Double_t, Int_t> > caloBinning = caloBinning_[*calorimeters_.begin()]; 184 Double_t *etaBins = new Double_t[caloBinning.size()]; // note that this is the eta binning of the first calo 185 unsigned int ii = 0; 186 for(set< pair<Double_t, Int_t> >::const_iterator itEtaSet = caloBinning.begin(); itEtaSet != caloBinning.end(); ++itEtaSet) { 187 etaBins[ii++] = itEtaSet->first; 188 } 189 etaAxis_ = new TAxis(caloBinning.size() - 1, etaBins); 190 phiAxis_ = new TAxis(72, -TMath::Pi(), TMath::Pi()); // note that this is fixed while #phibins could vary, also with eta, which doesn't seem possible in ROOT 191 192 muonSystem_radius_ = tk_radius_ + contingency_ + (contingency_+calo_barrel_thickness_)*calorimeters_.size() + muonSystem_thickn_; 193 muonSystem_length_ = tk_length_ + contingency_ + (contingency_+calo_endcap_thickness_)*calorimeters_.size() + muonSystem_thickn_; 194 195 delete confReader; 196 197 } 198 199 TGeoVolume* Delphes3DGeometry::getDetector(bool withTowers) { 200 // compute the envelope 201 Double_t system_radius = tk_radius_+calo_barrel_thickness_+3*contingency_; 202 Double_t system_length = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size()+contingency_; 203 // the detector volume 204 TGeoVolume *top = geom_->MakeBox("Delphes3DGeometry", vacuum_, system_radius, system_radius, system_length); 205 // build the detector 206 std::pair<Double_t, Double_t> limits = addTracker(top); 207 Double_t radius = limits.first; 208 Double_t length = limits.second; 209 for(std::vector<std::string>::const_iterator calo = calorimeters_.begin(); calo != calorimeters_.end(); ++calo) { 210 limits = addCalorimeter(top,calo->c_str(),radius,length,caloBinning_[*calo]); 211 if (withTowers) { 212 addCaloTowers(top,calo->c_str(),radius,length,caloBinning_[*calo]); 213 } 214 radius = limits.first; 215 length = limits.second; 216 } 217 for(std::vector<std::string>::const_iterator muon = muondets_.begin(); muon != muondets_.end(); ++muon) { 218 limits = addMuonDets(top, muon->c_str(), radius, length); 219 radius = limits.first; 220 length = limits.second; 221 } 222 // return the result 223 return top; 224 } 225 226 std::pair<Double_t, Double_t> Delphes3DGeometry::addTracker(TGeoVolume *top) { 227 // tracker: a cylinder with two cones substracted 228 new TGeoCone("forwardTkAcceptance",(tk_length_/2.+0.05),0.,tk_radius_,(tk_length_)*2.*exp(-tk_etamax_)/(1-exp(-2.*tk_etamax_)),tk_radius_); 229 TGeoTranslation *tr1 = new TGeoTranslation("tkacc1",0., 0., tk_length_/2.); 230 tr1->RegisterYourself(); 231 TGeoRotation *negz = new TGeoRotation("tknegz",0,180,0); 232 negz->RegisterYourself(); 233 TGeoCombiTrans *tr2 = new TGeoCombiTrans("tkacc2",0.,0.,-tk_length_/2.,negz); 234 tr2->RegisterYourself(); 235 TGeoCompositeShape* tracker_cs = new TGeoCompositeShape("tracker_cs","forwardTkAcceptance:tkacc1+forwardTkAcceptance:tkacc2"); 236 TGeoVolume *tracker = new TGeoVolume("tracker",tracker_cs,tkmed_); 237 tracker->SetLineColor(kYellow); 238 top->AddNode(tracker,1); 239 return std::make_pair(tk_radius_,tk_length_); 240 } 241 242 std::pair<Double_t, Double_t> Delphes3DGeometry::addCalorimeter(TGeoVolume *top, const char* name, 243 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) { 244 // parameters derived from the inputs 245 Double_t calo_endcap_etamax = TMath::Max(fabs(caloBinning.begin()->first),fabs(caloBinning.rbegin()->first)); 246 Double_t calo_barrel_innerRadius = innerBarrelRadius+contingency_; 247 Double_t calo_barrel_length = innerBarrelLength + calo_barrel_thickness_; 248 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength)); 249 Double_t calo_endcap_innerRadius1 = innerBarrelLength*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax)); 250 Double_t calo_endcap_innerRadius2 = (innerBarrelLength+calo_endcap_thickness_)*2.*exp(-calo_endcap_etamax)/(1-exp(-2.*calo_endcap_etamax)); 251 Double_t calo_endcap_outerRadius1 = innerBarrelRadius; 252 Double_t calo_endcap_outerRadius2 = innerBarrelRadius+calo_barrel_thickness_; 253 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_); 254 Double_t calo_endcap_diskThickness = TMath::Max(0.,calo_endcap_thickness_-calo_endcap_coneThickness); 255 256 // calorimeters: tube truncated in eta + cones 257 new TGeoTube(Form("%s_barrel_cylinder",name),calo_barrel_innerRadius,calo_barrel_innerRadius+calo_barrel_thickness_,calo_barrel_length); 258 new TGeoCone(Form("%s_endcap_cone",name),calo_endcap_coneThickness/2.,calo_endcap_innerRadius1,calo_endcap_outerRadius1,calo_endcap_innerRadius2,calo_endcap_outerRadius2); 259 new TGeoTube(Form("%s_endcap_disk",name),calo_endcap_innerRadius2,tk_radius_+calo_barrel_thickness_,calo_endcap_diskThickness/2.); 260 TGeoTranslation *tr1 = new TGeoTranslation(Form("%s_tr1",name),0., 0., (calo_endcap_coneThickness+calo_endcap_diskThickness)/2.); 261 tr1->RegisterYourself(); 262 TGeoCompositeShape *calo_endcap_cs = new TGeoCompositeShape(Form("%s_endcap_cs",name),Form("%s_endcap_cone+%s_endcap_disk:%s_tr1",name,name,name)); 263 TGeoTranslation *trc1 = new TGeoTranslation(Form("%s_endcap1_position",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.); 264 trc1->RegisterYourself(); 265 TGeoRotation *negz = new TGeoRotation(Form("%s_negz",name),0,180,0); 266 TGeoCombiTrans *trc2 = new TGeoCombiTrans(Form("%s_endcap2_position",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.),negz); 267 trc2->RegisterYourself(); 268 TGeoTranslation *trc1c = new TGeoTranslation(Form("%s_endcap1_position_cont",name),0.,0., innerBarrelLength+calo_endcap_coneThickness/2.+contingency_); 269 trc1c->RegisterYourself(); 270 TGeoCombiTrans *trc2c = new TGeoCombiTrans(Form("%s_endcap2_position_cont",name),0.,0.,-(innerBarrelLength+calo_endcap_coneThickness/2.)-contingency_,negz); 271 trc2c->RegisterYourself(); 272 TGeoVolume *calo_endcap = new TGeoVolume(Form("%s_endcap",name),calo_endcap_cs,calomed_); 273 TGeoCompositeShape *calo_barrel_cs = new TGeoCompositeShape(Form("%s_barrel_cs",name), 274 Form("%s_barrel_cylinder-%s_endcap_cs:%s_endcap1_position-%s_endcap_cs:%s_endcap2_position",name,name,name,name,name)); 275 TGeoVolume *calo_barrel = new TGeoVolume(Form("%s_barrel",name),calo_barrel_cs,calomed_); 276 calo_endcap->SetLineColor(kViolet); 277 calo_endcap->SetFillColor(kViolet); 278 calo_barrel->SetLineColor(kRed); 279 top->AddNode(calo_endcap,1,trc1c); 280 top->AddNode(calo_endcap,2,trc2c); 281 top->AddNode(calo_barrel,1); 282 return std::make_pair(calo_barrel_innerRadius+calo_barrel_thickness_,innerBarrelLength+calo_endcap_thickness_+contingency_); 283 } 284 285 std::pair<Double_t, Double_t> Delphes3DGeometry::addMuonDets(TGeoVolume *top, const char* name, Double_t innerBarrelRadius, Double_t innerBarrelLength) { 286 // muon system: tube + disks 287 Double_t muonSystem_radius = innerBarrelRadius + contingency_; 288 Double_t muonSystem_length = innerBarrelLength + contingency_; 289 Double_t muonSystem_rmin = muonSystem_length*2.*exp(-muonSystem_etamax_[name])/(1-exp(-2.*muonSystem_etamax_[name])); 290 TGeoVolume *muon_barrel = geom_->MakeTube(Form("%s_barrel",name),mudetmed_,muonSystem_radius,muonSystem_radius+muonSystem_thickn_,muonSystem_length); 291 muon_barrel->SetLineColor(kBlue); 292 top->AddNode(muon_barrel,1); 293 TGeoVolume *muon_endcap = geom_->MakeTube(Form("%s_endcap",name),mudetmed_,muonSystem_rmin,muonSystem_radius+muonSystem_thickn_,muonSystem_thickn_/2.); 294 muon_endcap->SetLineColor(kBlue); 295 TGeoTranslation *trm1 = new TGeoTranslation(Form("%sEndcap1_position",name),0.,0.,muonSystem_length); 296 trm1->RegisterYourself(); 297 TGeoTranslation *trm2 = new TGeoTranslation(Form("%sEndcap2_position",name),0.,0.,-muonSystem_length); 298 trm1->RegisterYourself(); 299 top->AddNode(muon_endcap,1,trm1); 300 top->AddNode(muon_endcap,2,trm2); 301 return std::make_pair(muonSystem_radius,muonSystem_length); 302 } 303 304 void Delphes3DGeometry::addCaloTowers(TGeoVolume *top, const char* name, 305 Double_t innerBarrelRadius, Double_t innerBarrelLength, set< pair<Double_t, Int_t> >& caloBinning) { 306 307 TGeoVolume* calo_endcap = top->GetNode(Form("%s_endcap_1",name))->GetVolume(); 308 TGeoVolume* calo_barrel = top->GetNode(Form("%s_barrel_1",name))->GetVolume(); 309 Double_t calo_endcap_etamin = -log(innerBarrelRadius/(2*innerBarrelLength)); 310 Double_t calo_endcap_coneThickness = TMath::Min(calo_barrel_thickness_ * (1-exp(-2.*calo_endcap_etamin)) / (2.*exp(-calo_endcap_etamin)), calo_endcap_thickness_); 311 312 // calo towers in the barrel 313 Double_t vertices[16] = {0.,0.,0.,0.,0.,0.,0.,0.}; // summit of the pyramid 314 Double_t R = tk_radius_ + contingency_+(contingency_+calo_barrel_thickness_)*calorimeters_.size(); // radius of the muons system = height of the pyramid 315 Int_t nEtaBins = caloBinning.size(); 316 // this rotation is to make the tower point "up" 317 TGeoRotation* initTowerRot = new TGeoRotation(Form("%s_initTowerRot",name),0.,90.,0.); 318 TGeoCombiTrans* initTower = new TGeoCombiTrans(Form("%s_initTower",name),0.,-R/2.,0.,initTowerRot); 319 initTower->RegisterYourself(); 320 // eta bins... we build one pyramid per eta slice and then translate it nphi times. 321 // phi bins represented by rotations around z 322 Double_t *y = new Double_t[nEtaBins]; 323 Double_t *dx = new Double_t[nEtaBins]; 324 Int_t *nphi = new Int_t[nEtaBins]; 325 Int_t etaslice = 0; 326 std::map<std::pair<int,int>, TGeoRotation*> phirotations; 327 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) { 328 if(abs(bin->first)>calo_endcap_etamin) continue; // only in the barrel 329 nphi[etaslice] = bin->second; 330 y[etaslice] = 0.5*R*(1-exp(-2*bin->first))/exp(-bin->first); 331 Double_t phiRotationAngle = 360./nphi[etaslice]; 332 dx[etaslice] = R*tan(TMath::Pi()*phiRotationAngle/360.); 333 for(int phislice=0;phislice<nphi[etaslice];++phislice) { 334 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.); 335 phirotations[make_pair(etaslice,phislice)]->RegisterYourself(); 336 } 337 ++etaslice; 338 } 339 nEtaBins = etaslice; 340 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices 341 vertices[8] = -dx[i]; vertices[9] = y[i]; 342 vertices[10] = -dx[i]; vertices[11] = y[i+1]; 343 vertices[12] = dx[i]; vertices[13] = y[i+1]; 344 vertices[14] = dx[i]; vertices[15] = y[i]; 345 new TGeoArb8(Form("%s_tower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0 346 // intersection between the tower and the calo_barrel 347 TGeoCompositeShape *finaltower_cs = new TGeoCompositeShape(Form("%s_ftower%d_cs",name,i),Form("%s_tower%d:%s_initTower*%s_barrel_cs",name,i,name,name)); 348 TGeoVolume *finaltower = new TGeoVolume(Form("%s_ftower%d",name,i),finaltower_cs,calomed_); 349 finaltower->SetLineColor(kRed); 350 for(int j=0;j<nphi[i];++j) { // loop on the phi slices 351 calo_barrel->AddNode(finaltower,j,phirotations[make_pair(i,j)]); 352 } 353 } 354 delete[] y; 355 delete[] dx; 356 delete[] nphi; 357 //the towers in the forward region 358 R = tk_length_+contingency_+(contingency_+calo_endcap_thickness_)*calorimeters_.size(); // Z of the muons system = height of the pyramid 359 nEtaBins = caloBinning.size(); 360 // translation to bring the origin of the tower to (0,0,0) (well, not really as the endcap is not yet in place) 361 TGeoTranslation* towerdz = new TGeoTranslation(Form("%s_towerdz",name),0.,0.,R/2.-(innerBarrelLength+calo_endcap_coneThickness/2.)); 362 towerdz->RegisterYourself(); 363 // eta bins... we build one pyramid per eta slice and then translate it nphi times. 364 Double_t *r = new Double_t[nEtaBins]; 365 nphi = new Int_t[nEtaBins]; 366 etaslice = 0; 367 phirotations.clear(); 368 for(set< pair<Double_t, Int_t> >::const_iterator bin=caloBinning.begin(); bin!=caloBinning.end();++bin) { 369 if(bin->first<calo_endcap_etamin) continue; // only in the + endcap 370 r[etaslice] = R*2*exp(-bin->first)/(1-exp(-2*bin->first)); 371 nphi[etaslice] = bin->second; 372 Double_t phiRotationAngle = 360./nphi[etaslice]; 373 for(int phislice=0;phislice<nphi[etaslice];++phislice) { 374 phirotations[make_pair(etaslice,phislice)] = new TGeoRotation(Form("%s_forward_phi%d_%d",name,etaslice,phislice),phiRotationAngle*phislice,0.,0.); 375 phirotations[make_pair(etaslice,phislice)]->RegisterYourself(); 376 } 377 ++etaslice; 378 } 379 nEtaBins = etaslice; 380 for(int i=0;i<nEtaBins-1;++i) { // loop on the eta slices 381 vertices[8] = -r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[9] = r[i+1]*cos(TMath::Pi()/nphi[i]); 382 vertices[10] = -r[i]*sin(TMath::Pi()/nphi[i]); vertices[11] = r[i]*cos(TMath::Pi()/nphi[i]); 383 vertices[12] = r[i]*sin(TMath::Pi()/nphi[i]); vertices[13] = r[i]*cos(TMath::Pi()/nphi[i]); 384 vertices[14] = r[i+1]*sin(TMath::Pi()/nphi[i]); vertices[15] = r[i+1]*cos(TMath::Pi()/nphi[i]); 385 new TGeoArb8(Form("%sfwdtower%d",name,i),R/2., vertices); // tower in the proper eta slice, at phi=0 386 // intersection between the tower and the calo_endcap 387 TGeoCompositeShape *finalfwdtower_cs = new TGeoCompositeShape(Form("%sffwdtower%d_cs",name,i),Form("%sfwdtower%d:%s_towerdz*%s_endcap_cs",name,i,name,name)); 388 TGeoVolume *finalfwdtower = new TGeoVolume(Form("%sffwdtower%d",name,i),finalfwdtower_cs,calomed_); 389 finalfwdtower->SetLineColor(kViolet); 390 for(int j=0;j<nphi[i];++j) { // loop on the phi slices 391 calo_endcap->AddNode(finalfwdtower,j,phirotations[make_pair(i,j)]); 392 } 393 } 394 delete[] r; 395 delete[] nphi; 396 } 397
Note:
See TracChangeset
for help on using the changeset viewer.