Changeset dd263e4 in git
- Timestamp:
- Jan 19, 2022, 12:08:01 PM (3 years ago)
- Branches:
- master
- Children:
- 2c8865f, 56fb0be, 5c03893
- Parents:
- 0c0c9af (diff), 78ce8d1 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - git-author:
- Michele Selvaggi <michele.selvaggi@…> (01/19/22 12:08:01)
- git-committer:
- GitHub <noreply@…> (01/19/22 12:08:01)
- Files:
-
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
examples/ExamplePVtxFind.C
r0c0c9af rdd263e4 1 1 /* 2 2 Example of using vertex fitter class to fit primary vertex 3 assumed to be generated in (0,0,0)3 assumed to be generated with Pythia8/ee_zh_smr-shf.cmn 4 4 */ 5 5 … … 44 44 TH1D* hTrFoundG = new TH1D("hTrFoundG", "Found GOOD primary tracks", 41, -0.5, 40.5); 45 45 TH1D* hTrFoundB = new TH1D("hTrFoundB", "Found BAD primary tracks", 41, -0.5, 40.5); 46 TH1D* hTrDiff = new TH1D("hTrDiff", "Found - available tracks", 21, -10.5, 10.5); 46 47 // 47 48 // Loop over all events … … 87 88 pr[it] = new TVectorD(obsPar); 88 89 cv[it] = new TMatrixDSym(trk->CovarianceMatrix()); 90 // Check covariance 91 /* 92 TMatrixDSymEigen Eign(*cv[it]); 93 TVectorD lambda = Eign.GetEigenValues(); 94 Bool_t good = kTRUE; 95 for(Int_t i=0; i<5; i++) if(lambda(i)<0.0) good = kFALSE; 96 if(!good){ 97 std::cout<<"Cov["<<it<<"]"<<" eigenvalues: " 98 <<lambda(0)<<", "<<lambda(1)<<", "<<lambda(2)<<", " 99 <<lambda(3)<<", "<<lambda(4)<<std::endl; 100 TMatrixDSym Ctmp = *cv[it]; 101 std::cout<<"Error D (dir - cov) "<<trk->ErrorD0 102 <<" - "<<TMath::Sqrt(Ctmp(0,0))<<std::endl; 103 } 104 */ 89 105 //std::cout << "Track loaded it= " << it << std::endl; 90 106 // … … 120 136 } // End loop on tracks 121 137 } 138 std::cout<<"PVtxFind true vertex: Nprim= "<<Nprim<<", x,y,z= "<<xpv<<", "<<ypv<<", "<<zpv<<std::endl; 122 139 // 123 140 // Find primary vertex … … 132 149 covpvc(1, 1) = 2.55e-05 * 2.55e-05; 133 150 covpvc(2, 2) = 0.64 * 0.64; 151 if(Nprim == 0){ 152 xpv = xpvc(0); 153 ypv = xpvc(1); 154 zpv = xpvc(2); 155 } 134 156 // 135 157 // … … 137 159 Int_t nSkim = 0; 138 160 Int_t* nSkimmed = new Int_t[NtrG]; 139 VertexFit* Vskim = new VertexFit();140 Vskim->AddVtxConstraint(xpvc, covpvc);141 Double_t MaxChi2 = 2.0+3* sqrt(2.);161 TVectorD** PrSk = new TVectorD * [1]; 162 TMatrixDSym** CvSk = new TMatrixDSym * [1]; 163 Double_t MaxChi2 = 2.0+3*2.; 142 164 for (Int_t n = 0; n < NtrG; n++) { 143 Vskim->AddTrk(pr[n], cv[n]); 165 PrSk[0] = new TVectorD(*pr[n]); 166 CvSk[0] = new TMatrixDSym(*cv[n]); 167 VertexFit* Vskim = new VertexFit(1,PrSk, CvSk); 168 Vskim->AddVtxConstraint(xpvc, covpvc); 144 169 Double_t Chi2One = Vskim->GetVtxChi2(); 145 170 //std::cout<<"Track "<<n<<", Chi2 = "<<Chi2One<<std::endl; … … 149 174 nSkim++; 150 175 } 151 Vskim->RemoveTrk(0); 152 } 176 // Cleanup 177 delete Vskim; 178 } 179 delete PrSk[0]; 180 delete CvSk[0]; 181 delete[] PrSk; 182 delete[] CvSk; 183 // 153 184 // Load tracks for primary fit 154 185 Int_t MinTrk = 1; // Minumum # tracks for vertex fit 155 TVectorD** PrFit = new TVectorD * [nSkim];156 TMatrixDSym** CvFit = new TMatrixDSym * [nSkim];157 186 if (nSkim >= MinTrk) { 187 TVectorD** PrFit = new TVectorD * [nSkim]; 188 TMatrixDSym** CvFit = new TMatrixDSym * [nSkim]; 158 189 for (Int_t n = 0; n < nSkim; n++) { 159 190 PrFit[n] = new TVectorD(*pr[nSkimmed[n]]); 160 191 CvFit[n] = new TMatrixDSym(*cv[nSkimmed[n]]); 161 TVectorD test = *PrFit[n]; 162 //std::cout << "Test *PrFit[" << n << "](0) = " << test(0) << std::endl; 163 } 164 } 165 delete[] nSkimmed; 166 delete Vskim; 167 Int_t Nfound = nSkim; 168 if(entry%500 ==0)std::cout << "Found tracks "<<Nfound << std::endl; 169 if (nSkim >= MinTrk) { 192 } 193 delete[] nSkimmed; 194 Int_t Nfound = nSkim; 195 if(entry%500 ==0)std::cout << "Found tracks "<<Nfound << std::endl; 196 const Int_t MaxFound = 100; Double_t Chi2LL[MaxFound]; Double_t *Chi2L = Chi2LL; 170 197 VertexFit* Vtx = new VertexFit(nSkim, PrFit, CvFit); 171 198 //std::cout << "Vertex fit created " << std::endl; … … 173 200 // 174 201 // Remove tracks with large chi2 175 Double_t MaxChi2Fit = 9.;202 Double_t MaxChi2Fit = 4.5; 176 203 Bool_t Done = kFALSE; 177 204 while (!Done) { … … 180 207 TVectorD Chi2List = Vtx->GetVtxChi2List(); // Get contributions to Chi2 181 208 //std::cout << "After Chi2List. " << std::endl; Chi2List.Print(); 182 Double_t* Chi2L = new Double_t[Nfound];209 //Double_t* Chi2L = new Double_t[Nfound]; 183 210 Chi2L = Chi2List.GetMatrixArray(); 184 211 Int_t iMax = TMath::LocMax(Nfound, Chi2L); … … 186 213 Double_t Chi2Mx = Chi2L[iMax]; 187 214 //std::cout << "Chi2Mx "<<Chi2Mx << std::endl; 188 if (Chi2Mx > MaxChi2Fit && Nfound > 2) {215 if (Chi2Mx > MaxChi2Fit && Nfound > 1) { 189 216 //std::cout << "Before remove. Nfound = "<<Nfound << std::endl; 190 217 Vtx->RemoveTrk(iMax); … … 195 222 Done = kTRUE; 196 223 } 197 //std::cout << "Done = " << Done << std::endl;198 //delete[] Chi2L;199 //std::cout << "Array Chi2L removed " << std::endl;200 224 } 201 225 // … … 203 227 // 204 228 // Require minimum number of tracks in vertex 205 Int_t Nmin = 2;229 Int_t Nmin = 1; 206 230 if (Nfound >= Nmin) { 207 231 TVectorD xvtx = Vtx->GetVtx(); 208 //std::cout << "Found vertex " << xvtx(0)<<", "<<xvtx(1)<<", "<<xvtx(2) << std::endl;232 std::cout << "Found vertex " << xvtx(0)<<", "<<xvtx(1)<<", "<<xvtx(2) << std::endl; 209 233 TMatrixDSym covX = Vtx->GetVtxCov(); 210 234 Double_t Chi2 = Vtx->GetVtxChi2(); … … 222 246 hTrPrim->Fill(Nprim); 223 247 hTrFound->Fill((Double_t)Nfound); 248 hTrDiff->Fill((Double_t)Nfound-Nprim); 224 249 //std::cout << "Histograms filled " << std::endl; 225 250 } 226 251 // 252 // Clean 227 253 delete Vtx; 254 for (Int_t i = 0; i < nSkim; i++) delete PrFit[i]; 255 for (Int_t i = 0; i < nSkim; i++) delete CvFit[i]; 256 delete[] PrFit; 257 delete[] CvFit; 228 258 } 229 259 … … 233 263 for (Int_t i = 0; i < NtrG; i++) delete pr[i]; 234 264 for (Int_t i = 0; i < NtrG; i++) delete cv[i]; 235 for (Int_t i = 0; i < nSkim; i++) delete PrFit[i];236 for (Int_t i = 0; i < nSkim; i++) delete CvFit[i];237 265 delete[] pr; 238 266 delete[] cv; 239 delete[] PrFit;240 delete[] CvFit;241 267 } 242 268 // … … 254 280 // 255 281 TCanvas* CnvN = new TCanvas("CnvN", "Primary tracks found", 100, 100, 900, 500); 256 CnvN->Divide(2, 1);282 CnvN->Divide(2, 2); 257 283 CnvN->cd(1); 258 284 hTrPrim->Draw(); … … 260 286 hTrFound->SetLineColor(kRed); 261 287 hTrFound->Draw(); 288 CnvN->cd(3); 289 hTrDiff->Draw(); 262 290 } -
examples/ExamplePVtxFitEC.C
r0c0c9af rdd263e4 1 1 /* 2 2 Example of using vertex fitter class to fit primary vertex 3 assumed to be generated in (0,0,0)3 assumed to be generated with Pythia8/ee_zh_smr-shf.cmn 4 4 */ 5 5 … … 21 21 void ExamplePVtxFitEC(const char* inputFile, Int_t Nevent = 5) 22 22 { 23 // 24 // Beam constraint 25 // (consistent with generation with ee_zh_smr-shf.cmnd) 26 // 27 // Mean beam position 28 TVectorD xpvc(3); 29 xpvc(0) = 1.0; 30 xpvc(1) = -2.0; 31 xpvc(2) = 10.0; 32 // Interaction region covariance 33 TMatrixDSym covpvc(3); covpvc.Zero(); 34 covpvc(0, 0) = 0.0097 * 0.0097; 35 covpvc(1, 1) = 2.55e-05 * 2.55e-05; 36 covpvc(2, 2) = 0.64 * 0.64; 37 38 // 23 39 // Create chain of root trees 24 40 TChain chain("Delphes"); … … 35 51 // Book histograms 36 52 Int_t Nbin = 100; 53 // Vertex fit pulls 37 54 TH1D* hXpull = new TH1D("hXpull", "Pull X vertex component", Nbin, -10., 10.); 38 55 TH1D* hYpull = new TH1D("hYpull", "Pull Y vertex component", Nbin, -10., 10.); 39 56 TH1D* hZpull = new TH1D("hZpull", "Pull Z vertex component", Nbin, -10., 10.); 40 57 TH1D* hChi2 = new TH1D("hChi2", "Vertex #chi^{2}/N_{dof}", Nbin, 0., 10.); 58 // Generation check 59 TH1D* hXvpull = new TH1D("hXvpull", "Pull X generated vertex", Nbin, -10., 10.); 60 TH1D* hYvpull = new TH1D("hYvpull", "Pull Y generated vertex", Nbin, -10., 10.); 61 TH1D* hZvpull = new TH1D("hZvpull", "Pull Z generated vertex", Nbin, -10., 10.); 62 41 63 // 42 64 // Loop over all events … … 65 87 // Get associated generated particle 66 88 GenParticle* gp = (GenParticle*)trk->Particle.GetObject(); 67 TVector3 xg(1.e-3*gp->X,1.e-3*gp->Y,1.e-3*gp->Z); 89 TVector3 xg(1.e-3*gp->X,1.e-3*gp->Y,1.e-3*gp->Z); // mm -> meters 68 90 TVector3 pg(gp->Px,gp->Py,gp->Pz); 69 91 Double_t Q = (Double_t)gp->Charge; 70 92 Double_t Bz = 2.0; 71 93 TVectorD genParM =TrkUtil:: XPtoPar(xg, pg, Q, Bz); 72 TVectorD genPar = TrkUtil::ParToMm(genParM); 94 TVectorD genPar = TrkUtil::ParToMm(genParM); // -> back to mm 95 96 // 97 // Check if original track is from primary vertex 73 98 // 74 99 // Position of origin in mm … … 79 104 Int_t mp = gp->M1; // Mother 80 105 while(mp>0){ 81 GenParticle* gm = 82 (GenParticle*)branchGenPart->At(mp); 106 GenParticle* gm = (GenParticle*)branchGenPart->At(mp); 83 107 Double_t xm = gm->X; 84 108 Double_t ym = gm->Y; 85 109 Double_t zm = gm->Z; 86 110 if(x!=xm || y!=ym || z!=zm){ 87 prim = kFALSE; 111 prim = kFALSE; // Not primary 88 112 break; 89 113 }else mp = gm->M1; 90 114 } 115 91 116 // 92 117 // group tracks originating from the primary vertex 93 118 if (prim) 94 119 { 95 // std::cout<<"Event: "<<entry<<", track: "<<it;96 // std::cout<<", x = "<<x<<", y = "<<y<<", z = "<<z<<std::endl;120 // 121 // Store true primary vertex for this event 97 122 xpv = x; 98 123 ypv = y; … … 104 129 Double_t obsC = trk->C; 105 130 Double_t obsZ0 = trk->DZ; 106 //std::cout<<"Z0 track = "<< obsZ0107 //<<", gen Z0 = "<<genPar(3)108 //<<", gen cot = "<<genPar(4)<<std::endl;109 131 Double_t obsCtg = trk->CtgTheta; 110 132 Double_t oPar[5] = { obsD0, obsPhi, obsC, obsZ0, obsCtg }; … … 112 134 // 113 135 pr[Ntr] = new TVectorD(obsPar); 114 //std::cout<<"Cov Matrix:"<<std::endl;115 //trk->CovarianceMatrix().Print();116 136 cv[Ntr] = new TMatrixDSym(trk->CovarianceMatrix()); 117 137 Ntr++; … … 122 142 // Fit primary vertex with beam constraint 123 143 // 124 //Beam constraint 125 TVectorD xpvc(3); 126 xpvc(0) = 1.0; 127 xpvc(1) = -2.0; 128 xpvc(2) = 10.0; 129 TMatrixDSym covpvc(3); covpvc.Zero(); 130 covpvc(0, 0) = 0.0097 * 0.0097; 131 covpvc(1, 1) = 2.55e-05 * 2.55e-05; 132 covpvc(2, 2) = 0.64 * 0.64; 133 Int_t MinTrk = 2; // Minumum # tracks for vertex fit 144 Int_t MinTrk = 3; // Minumum # tracks for vertex fit 134 145 if (Ntr >= MinTrk) { 135 146 VertexFit* Vtx = new VertexFit(Ntr, pr, cv); … … 139 150 Double_t Chi2 = Vtx->GetVtxChi2(); 140 151 Double_t Ndof = 2 * (Double_t)Ntr; 152 delete Vtx; 153 // 141 154 Double_t PullX = (xvtx(0)-xpv) / TMath::Sqrt(covX(0, 0)); 142 155 Double_t PullY = (xvtx(1)-ypv) / TMath::Sqrt(covX(1, 1)); 143 156 Double_t PullZ = (xvtx(2)-zpv) / TMath::Sqrt(covX(2, 2)); 144 //std::cout<<"**** True vertex (x, y, z) "<<xpv<<", " 145 //<<ypv<<", "<<zpv<<std::endl; 146 //std::cout<<"**** Found vertex (x, y, z) "<<xvtx(0)<<", " 147 //<<xvtx(1)<<", "<<xvtx(2)<<std::endl; 157 // 158 Double_t PullXv = (xpvc(0)-xpv) / TMath::Sqrt(covpvc(0, 0)); 159 Double_t PullYv = (xpvc(1)-ypv) / TMath::Sqrt(covpvc(1, 1)); 160 Double_t PullZv = (xpvc(2)-zpv) / TMath::Sqrt(covpvc(2, 2)); 161 // 148 162 // 149 163 // Fill histograms … … 152 166 hZpull->Fill(PullZ); 153 167 hChi2->Fill(Chi2 / Ndof); 168 // 169 hXvpull->Fill(PullXv); 170 hYvpull->Fill(PullYv); 171 hZvpull->Fill(PullZv); 154 172 } 155 173 156 //std::cout << "Vertex chi2/Ndof = " << Chi2 / Ndof << std::endl;157 174 // 158 175 // Cleanup … … 162 179 delete[] cv; 163 180 } 181 164 182 // 165 183 // Show resulting histograms … … 174 192 hZpull->Fit("gaus"); hZpull->Draw(); 175 193 Cnv->cd(4); hChi2->Draw(); 194 // 195 TCanvas* Cnv1 = new TCanvas("Cnv1", "Generated primary vertex pulls", 100, 100, 900, 500); 196 Cnv1->Divide(3, 1); 197 Cnv1->cd(1); gPad->SetLogy(1); gStyle->SetOptFit(1111); 198 hXvpull->Fit("gaus"); hXvpull->Draw(); 199 Cnv1->cd(2); gPad->SetLogy(1); gStyle->SetOptFit(1111); 200 hYvpull->Fit("gaus"); hYvpull->Draw(); 201 Cnv1->cd(3); gPad->SetLogy(1); gStyle->SetOptFit(1111); 202 hZvpull->Fit("gaus"); hZvpull->Draw(); 176 203 } -
external/TrackCovariance/TrkUtil.h
r0c0c9af rdd263e4 68 68 // 69 69 static TVectorD XPtoPar(TVector3 x, TVector3 p, Double_t Q, Double_t Bz); 70 static TVector3 ParToX(TVectorD Par); 70 static TVector3 ParToX(TVectorD Par); // position of minimum distance from z axis 71 71 static TVector3 ParToP(TVectorD Par, Double_t Bz); // Get Momentum from track parameters 72 static Double_t ParToQ(TVectorD Par); 72 static Double_t ParToQ(TVectorD Par); // Get track charge 73 73 static void LineDistance(TVector3 x0, TVector3 y0, TVector3 dirx, TVector3 diry, Double_t &sx, Double_t &sy, Double_t &distance); 74 74 // 75 75 // Track trajectory 76 76 // 77 static TVector3 Xtrack(TVectorD par, Double_t s); 78 TVectorD derRphi_R(TVectorD par, Double_t R); // Derivatives of R-phi at constant R77 static TVector3 Xtrack(TVectorD par, Double_t s); // Parametric track trajectory 78 TVectorD derRphi_R(TVectorD par, Double_t R); // Derivatives of R-phi at constant R 79 79 TVectorD derZ_R(TVectorD par, Double_t R); // Derivatives of z at constant R 80 TVectorD derRphi_Z(TVectorD par, Double_t z); // Derivatives of R-phi at constant z80 TVectorD derRphi_Z(TVectorD par, Double_t z); // Derivatives of R-phi at constant z 81 81 TVectorD derR_Z(TVectorD par, Double_t z); // Derivatives of R at constant z 82 82 // … … 88 88 // 89 89 static TVectorD ParToMm(TVectorD Par); // Parameter conversion 90 static TMatrixDSym CovToMm(TMatrixDSym Cov); // Covariance conversion90 static TMatrixDSym CovToMm(TMatrixDSym Cov); // Covariance conversion 91 91 // 92 92 // Inside cylindrical volume -
external/TrackCovariance/VertexFit.cc
r0c0c9af rdd263e4 1 #include <TMath.h> 1 /* 2 Vertex fitting code 3 */ 4 #include <TMath.h> 2 5 #include <TVectorD.h> 3 6 #include <TVector3.h> 4 7 #include <TMatrixD.h> 5 8 #include <TMatrixDSym.h> 9 #include <TMatrixDSymEigen.h> 6 10 #include "VertexFit.h" 7 11 // … … 38 42 for (Int_t i = 0; i < fNtr; i++) 39 43 { 40 TVectorD pr = *trkPar[i]; 41 fPar.push_back(new TVectorD(pr)); 42 fParNew.push_back(new TVectorD(pr)); 43 TMatrixDSym cv = *trkCov[i]; 44 fCov.push_back(new TMatrixDSym(cv)); 45 fCovNew.push_back(new TMatrixDSym(cv)); 44 fPar.push_back(new TVectorD(*trkPar[i])); 45 fParNew.push_back(new TVectorD(*trkPar[i])); 46 fCov.push_back(new TMatrixDSym(*trkCov[i])); 47 fCovNew.push_back(new TMatrixDSym(*trkCov[i])); 46 48 } 47 49 fChi2List.ResizeTo(fNtr); … … 76 78 void VertexFit::ResetWrkArrays() 77 79 { 78 Int_t N = (Int_t)ffi.size(); 79 for (Int_t i = 0; i < N; i++) 80 { 81 if (fx0i[i]) { fx0i[i]->Clear(); delete fx0i[i]; } 82 if (fai[i]) { fai[i]->Clear(); delete fai[i]; } 83 if (fdi[i]) { fdi[i]->Clear(); delete fdi[i]; } 84 if (fAti[i]) { fAti[i]->Clear(); delete fAti[i]; } 85 if (fDi[i]) { fDi[i]->Clear(); delete fDi[i]; } 86 if (fWi[i]) { fWi[i]->Clear(); delete fWi[i]; } 87 if (fWinvi[i]){ fWinvi[i]->Clear(); delete fWinvi[i]; } 88 } 89 fa2i.clear(); 90 fx0i.clear(); 91 fai.clear(); 92 fdi.clear(); 93 fAti.clear(); 94 fDi.clear(); 95 fWi.clear(); 96 fWinvi.clear(); 80 Int_t N = (Int_t)fdi.size(); 81 if(N > 0){ 82 for (Int_t i = 0; i < N; i++) 83 { 84 if (fx0i[i]) { fx0i[i]->Clear(); delete fx0i[i]; } 85 if (fai[i]) { fai[i]->Clear(); delete fai[i]; } 86 if (fdi[i]) { fdi[i]->Clear(); delete fdi[i]; } 87 if (fAti[i]) { fAti[i]->Clear(); delete fAti[i]; } 88 if (fDi[i]) { fDi[i]->Clear(); delete fDi[i]; } 89 if (fWi[i]) { fWi[i]->Clear(); delete fWi[i]; } 90 if (fWinvi[i]){ fWinvi[i]->Clear(); delete fWinvi[i]; } 91 } 92 fa2i.clear(); 93 fx0i.clear(); 94 fai.clear(); 95 fdi.clear(); 96 fAti.clear(); 97 fDi.clear(); 98 fWi.clear(); 99 fWinvi.clear(); 100 } 97 101 } 98 102 VertexFit::~VertexFit() 99 { 103 { 100 104 fxCst.Clear(); 101 105 fCovCst.Clear(); … … 103 107 fXv.Clear(); 104 108 fcovXv.Clear(); 105 fChi2List.Clear(); 109 fChi2List.Clear(); 106 110 // 107 111 for (Int_t i = 0; i < fNtr; i++) … … 111 115 fCov[i]->Clear(); delete fCov[i]; 112 116 fCovNew[i]->Clear(); delete fCovNew[i]; 113 } 117 } 114 118 fPar.clear(); 115 119 fParNew.clear(); … … 118 122 // 119 123 ResetWrkArrays(); 120 ffi.clear(); 124 ffi.clear(); 121 125 fNtr = 0; 122 126 } 123 127 // 124 Double_t VertexFit::FastRv(TVectorD p1, TVectorD p2) 125 { 126 // 127 // Find radius of minimum distance between two tracks 128 // 129 // p = (D,phi, C, z0, ct) 130 // 131 // Define arrays 132 // 133 Double_t C1 = p1(2); 134 Double_t C2 = p2(2); 135 Double_t ph1 = p1(1); 136 Double_t ph2 = p2(1); 137 TVectorD x0 = Fill_x0(p1); 138 TVectorD y0 = Fill_x0(p2); 139 TVectorD n = Fill_a(p1, 0.0); 140 n *= (2*C1); 141 TVectorD k = Fill_a(p2, 0.0); 142 k *= (2*C2); 143 // 144 // Setup and solve linear system 145 // 146 Double_t nn = 0; for (Int_t i = 0; i < 3; i++)nn += n(i) * n(i); 147 Double_t nk = 0; for (Int_t i = 0; i < 3; i++)nk += n(i) * k(i); 148 Double_t kk = 0; for (Int_t i = 0; i < 3; i++)kk += k(i) * k(i); 149 Double_t discr = nn * kk - nk * nk; 150 TMatrixDSym H(2); 151 H(0, 0) = kk; 152 H(0, 1) = nk; 153 H(1, 0) = H(0, 1); 154 H(1, 1) = nn; 155 TVectorD c(2); 156 c(0) = 0; for (Int_t i = 0; i < 3; i++)c(0) += n(i) * (y0(i) - x0(i)); 157 c(1) = 0; for (Int_t i = 0; i < 3; i++)c(1) += -k(i) * (y0(i) - x0(i)); 158 TVectorD smin = (H * c); 159 smin *= 1.0 / discr; 160 // 161 TVectorD X = x0 + smin(0) * n; 162 TVectorD Y = y0 + smin(1) * k; 163 // 164 // Higher order corrections 165 X(0) += -C1 * smin(0) * smin(0) * TMath::Sin(ph1); 166 X(1) += C1 * smin(0) * smin(0) * TMath::Cos(ph1); 167 Y(0) += -C2 * smin(1) * smin(1) * TMath::Sin(ph2); 168 Y(1) += C2 * smin(1) * smin(1) * TMath::Cos(ph2); 169 // 170 TVectorD Xavg = 0.5 * (X + Y); 171 // 172 // 173 return TMath::Sqrt(Xavg(0)*Xavg(0)+Xavg(1)*Xavg(1)); 174 } 175 // 176 // Starting radius determination 177 Double_t VertexFit::StartRadius() 178 { 179 // 180 // Maximum impact parameter 181 Double_t Rd = 0; 182 for (Int_t i = 0; i < fNtr; i++) 183 { 184 TVectorD par = *fPar[i]; 185 Double_t Dabs = TMath::Abs(par(0)); 186 if (Dabs > Rd)Rd = Dabs; 187 } 188 //----------------------------- 189 // 190 // Find track pair with phi difference closest to pi/2 191 Int_t isel = 0; Int_t jsel = 0; // selected track indices 192 Double_t dSinMax = 0.0; // Max phi difference 193 for (Int_t i = 0; i < fNtr - 1; i++) 194 { 195 TVectorD pari = *fPar[i]; 196 Double_t phi1 = pari(1); 197 198 for (Int_t j = i + 1; j < fNtr; j++) 199 { 200 TVectorD parj = *fPar[j]; 201 Double_t phi2 = parj(1); 202 Double_t Sindphi = TMath::Abs(TMath::Sin(phi2 - phi1)); 203 if (Sindphi > dSinMax) 204 { 205 isel = i; jsel = j; 206 dSinMax = Sindphi; 207 } 208 } 209 } 210 // 211 //------------------------------------------ 212 // 213 // Find radius of minimum distrance between tracks 214 TVectorD p1 = *fPar[isel]; 215 TVectorD p2 = *fPar[jsel]; 216 Double_t R = FastRv(p1, p2); 217 // 218 R = 0.9 * R + 0.1 * Rd; // Protect for overshoot 219 // 220 return R; 221 } 222 // 223 // Regularized symmetric matrix inversion 224 // 225 TMatrixDSym VertexFit::RegInv(TMatrixDSym& Min) 226 { 227 TMatrixDSym M = Min; // Decouple from input 228 Int_t N = M.GetNrows(); // Matrix size 229 TMatrixDSym D(N); D.Zero(); // Normaliztion matrix 230 TMatrixDSym R(N); // Normarized matrix 231 TMatrixDSym Rinv(N); // Inverse of R 232 TMatrixDSym Minv(N); // Inverse of M 233 // 234 // Check for 0's and normalize 235 for (Int_t i = 0; i < N; i++) 236 { 237 if (M(i, i) != 0.0) D(i, i) = 1. / TMath::Sqrt(TMath::Abs(M(i, i))); 238 else D(i, i) = 1.0; 239 } 240 R = M.Similarity(D); 241 // 242 // Recursive algorithms stops when N = 2 243 // 244 //**************** 245 // case N = 2 *** 246 //**************** 247 if (N == 2) 248 { 249 Double_t det = R(0, 0) * R(1, 1) - R(0, 1) * R(1, 0); 250 if (det == 0) 251 { 252 std::cout << "VertexFit::RegInv: null determinant for N = 2" << std::endl; 253 Rinv.Zero(); // Return null matrix 254 } 255 else 256 { 257 // invert matrix 258 Rinv(0, 0) = R(1, 1); 259 Rinv(0, 1) = -R(0, 1); 260 Rinv(1, 0) = Rinv(0, 1); 261 Rinv(1, 1) = R(0, 0); 262 Rinv *= 1. / det; 263 } 264 } 265 //**************** 266 // case N > 2 *** 267 //**************** 268 else 269 { 270 // Break up matrix 271 TMatrixDSym Q = R.GetSub(0, N - 2, 0, N - 2); // Upper left 272 TVectorD p(N - 1); 273 for (Int_t i = 0; i < N - 1; i++)p(i) = R(N - 1, i); 274 Double_t q = R(N - 1, N - 1); 275 //Invert pieces and re-assemble 276 TMatrixDSym Ainv(N - 1); 277 TMatrixDSym A(N - 1); 278 if (TMath::Abs(q) > 1.0e-15) 279 { 280 // Case |q| > 0 281 Ainv.Rank1Update(p, -1.0 / q); 282 Ainv += Q; 283 A = RegInv(Ainv); // Recursive call 284 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 285 // 286 TVectorD b = (-1.0 / q) * (A * p); 287 for (Int_t i = 0; i < N - 1; i++) 288 { 289 Rinv(N - 1, i) = b(i); 290 Rinv(i, N - 1) = b(i); 291 } 292 // 293 Double_t pdotb = 0.; 294 for (Int_t i = 0; i < N - 1; i++)pdotb += p(i) * b(i); 295 Double_t c = (1.0 - pdotb) / q; 296 Rinv(N - 1, N - 1) = c; 297 } 298 else 299 { 300 // case q = 0 301 TMatrixDSym Qinv = RegInv(Q); // Recursive call 302 Double_t a = Qinv.Similarity(p); 303 Double_t c = -1.0 / a; 304 Rinv(N - 1, N - 1) = c; 305 // 306 TVectorD b = (1.0 / a) * (Qinv * p); 307 for (Int_t i = 0; i < N - 1; i++) 308 { 309 Rinv(N - 1, i) = b(i); 310 Rinv(i, N - 1) = b(i); 311 } 312 // 313 A.Rank1Update(p, -1 / a); 314 A += Q; 315 A.Similarity(Qinv); 316 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 317 } 318 } 319 Minv = Rinv.Similarity(D); 320 return Minv; 321 } 322 // 323 // 324 // 325 TMatrixD VertexFit::Fill_A(TVectorD par, Double_t phi) 326 { 327 // 328 // Derivative of track 3D position vector with respect to track parameters at constant phase 329 // 330 // par = vector of track parameters 331 // phi = phase 332 // 333 TMatrixD A(3, 5); 128 // 129 // 130 TVectorD VertexFit::Fill_x0(TVectorD par) 131 { 132 // 133 // Calculate track 3D position at R = |D| (minimum approach to z-axis) 134 // 135 TVectorD x0(3); 334 136 // 335 137 // Decode input arrays … … 341 143 Double_t ct = par(4); 342 144 // 343 // Fill derivative matrix dx/d alpha 344 // D 345 A(0, 0) = -TMath::Sin(p0); 346 A(1, 0) = TMath::Cos(p0); 347 A(2, 0) = 0.0; 348 // phi0 349 A(0, 1) = -D * TMath::Cos(p0) + (TMath::Cos(phi + p0) - TMath::Cos(p0)) / (2 * C); 350 A(1, 1) = -D * TMath::Sin(p0) + (TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C); 351 A(2, 1) = 0.0; 352 // C 353 A(0, 2) = -(TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C * C); 354 A(1, 2) = (TMath::Cos(phi + p0) - TMath::Cos(p0)) / (2 * C * C); 355 A(2, 2) = -ct * phi / (2 * C * C); 356 // z0 357 A(0, 3) = 0.0; 358 A(1, 3) = 0.0; 359 A(2, 3) = 1.0; 360 // ct = lambda 361 A(0, 4) = 0.0; 362 A(1, 4) = 0.0; 363 A(2, 4) = phi / (2 * C); 364 // 365 return A; 366 } 367 // 368 TVectorD VertexFit::Fill_a(TVectorD par, Double_t phi) 369 { 370 // 371 // Derivative of track 3D position vector with respect to phase at constant track parameters 372 // 373 // par = vector of track parameters 374 // phi = phase 375 // 376 TVectorD a(3); 145 x0(0) = -D * TMath::Sin(p0); 146 x0(1) = D * TMath::Cos(p0); 147 x0(2) = z0; 148 // 149 return x0; 150 } 151 // 152 TVectorD VertexFit::Fill_x(TVectorD par, Double_t phi) 153 { 154 // 155 // Calculate track 3D position for a given phase, phi 156 // 157 TVectorD x(3); 377 158 // 378 159 // Decode input arrays … … 384 165 Double_t ct = par(4); 385 166 // 386 a(0) = TMath::Cos(phi + p0) / (2 * C);387 a(1) = TMath::Sin(phi + p0) / (2 * C);388 a(2) = ct / (2 * C);389 //390 return a;391 }392 //393 TVectorD VertexFit::Fill_x0(TVectorD par)394 {395 //396 // Calculate track 3D position at R = |D| (minimum approach to z-axis)397 //398 TVectorD x0(3);399 //400 // Decode input arrays401 //402 Double_t D = par(0);403 Double_t p0 = par(1);404 Double_t C = par(2);405 Double_t z0 = par(3);406 Double_t ct = par(4);407 //408 x0(0) = -D * TMath::Sin(p0);409 x0(1) = D * TMath::Cos(p0);410 x0(2) = z0;411 //412 return x0;413 }414 //415 TVectorD VertexFit::Fill_x(TVectorD par, Double_t phi)416 {417 //418 // Calculate track 3D position for a given phase, phi419 //420 TVectorD x(3);421 //422 // Decode input arrays423 //424 Double_t D = par(0);425 Double_t p0 = par(1);426 Double_t C = par(2);427 Double_t z0 = par(3);428 Double_t ct = par(4);429 //430 167 TVectorD x0 = Fill_x0(par); 431 168 x(0) = x0(0) + (TMath::Sin(phi + p0) - TMath::Sin(p0)) / (2 * C); … … 439 176 { 440 177 // 441 // Get track parameters and their covariance 178 // Get track parameters, covariance and phase 179 Double_t fs = ffi[i]; // Get phase 442 180 TVectorD par = *fParNew[i]; 443 181 TMatrixDSym Cov = *fCov[i]; 444 182 // 445 183 // Fill all track related work arrays arrays 446 Double_t fs = ffi[i]; // Get phase 184 TMatrixD A = derXdPar(par, fs); // A = dx/da = derivatives wrt track parameters 185 TMatrixDSym Winv = Cov; 186 Winv.Similarity(A); // W^-1 = A*C*A' 187 188 TMatrixD At(TMatrixD::kTransposed, A); // A transposed 189 fAti.push_back(new TMatrixD(At)); // Store A' 190 fWinvi.push_back(new TMatrixDSym(Winv)); // Store W^-1 matrix 191 // 447 192 TVectorD xs = Fill_x(par, fs); 448 193 fx0i.push_back(new TVectorD(xs)); // Start helix position 449 // 450 TMatrixD A = Fill_A(par, fs); // A = dx/da = derivatives wrt track parameters 451 TMatrixD At(TMatrixD::kTransposed, A); // A transposed 452 fAti.push_back(new TMatrixD(At)); // Store A' 453 TVectorD di = A * (par - *fPar[i]); // x-shift 454 fdi.push_back(new TVectorD(di)); // Store x-shift 455 TMatrixDSym Winv = Cov.Similarity(A); // W^-1 = A*C*A' 456 fWinvi.push_back(new TMatrixDSym(Winv)); // Store W^-1 matrix 194 // 195 TVectorD di = A * (par - *fPar[i]); // x-shift 196 fdi.push_back(new TVectorD(di)); // Store x-shift 457 197 // 458 198 TMatrixDSym W = RegInv(Winv); // W = (A*C*A')^-1 459 199 fWi.push_back(new TMatrixDSym(W)); // Store W matrix 460 200 // 461 TVectorD a = Fill_a(par, fs); // a = dx/ds = derivatives wrt phase201 TVectorD a = derXds(par, fs); // a = dx/ds = derivatives wrt phase 462 202 fai.push_back(new TVectorD(a)); // Store a 463 203 // … … 473 213 } 474 214 // 215 void VertexFit::VtxFitNoSteer() 216 { 217 // 218 // Initialize 219 // 220 std::vector<TVectorD*> x0i; // Tracks at ma 221 std::vector<TVectorD*> ni; // Track derivative wrt phase 222 std::vector<TMatrixDSym*> Ci; // Position error matrix at fixed phase 223 std::vector<TVectorD*> wi; // Ci*ni 224 // 225 // Track loop 226 for (Int_t i = 0; i < fNtr; i++) 227 { 228 Double_t s = 0.; 229 TVectorD par = *fPar[i]; 230 TMatrixDSym Cov = *fCov[i]; 231 x0i.push_back(new TVectorD(Fill_x0(par))); 232 ni.push_back(new TVectorD(derXds(par, s))); 233 TMatrixD A = derXdPar(par, s); 234 Ci.push_back(new TMatrixDSym(Cov.Similarity(A))); 235 TMatrixDSym Cinv = RegInv(*Ci[i]); 236 wi.push_back(new TVectorD(Cinv * (*ni[i]))); 237 } 238 //std::cout << "Vtx init completed. fNtr = "<<fNtr << std::endl; 239 // 240 // Get fit vertex 241 // 242 TMatrixDSym D(3); D.Zero(); 243 TVectorD Dx(3); Dx.Zero(); 244 for (Int_t i = 0; i < fNtr; i++) 245 { 246 TMatrixDSym Cinv = RegInv(*Ci[i]); 247 TMatrixDSym W(3); 248 W.Rank1Update(*wi[i], 1. / Ci[i]->Similarity(*wi[i])); 249 TMatrixDSym Dd = Cinv - W; 250 D += Dd; 251 Dx += Dd * (*x0i[i]); 252 } 253 if(fVtxCst){ 254 D += fCovCstInv; 255 Dx += fCovCstInv*fxCst; 256 } 257 fXv = RegInv(D) * Dx; 258 //std::cout << "Fast vertex (x, y, z) = "<<fXv(0)<<", "<<fXv(1)<<", "<<fXv(2) << std::endl; 259 // 260 // Get fit phases 261 // 262 for (Int_t i = 0; i < fNtr; i++){ 263 Double_t si = Dot(*wi[i], fXv - (*x0i[i])) / Ci[i]->Similarity(*wi[i]); 264 ffi.push_back(si); 265 //TVectorD xvi = Fill_x(*fPar[i],si); 266 //std::cout << "Fast vertex "<<i<<": xvi = "<<xvi(0)<<", "<<xvi(1)<<", "<<xvi(2) 267 // <<", si = "<<si<< std::endl; 268 } 269 // 270 // Cleanup 271 for (Int_t i = 0; i < fNtr; i++) 272 { 273 x0i[i]->Clear(); delete x0i[i]; 274 ni[i]->Clear(); delete ni[i]; 275 Ci[i]->Clear(); delete Ci[i]; 276 wi[i]->Clear(); delete wi[i]; 277 } 278 x0i.clear();; 279 ni.clear(); 280 Ci.clear(); 281 wi.clear(); 282 } 283 // 475 284 void VertexFit::VertexFitter() 476 285 { … … 487 296 TMatrixDSym covX(3); 488 297 Double_t Chi2 = 0; 489 TVectorD x0 = fXv; // If previous fit done 490 if (fRold < 0.0) { 491 // External constraint 492 if (fVtxCst) fRold = TMath::Sqrt(fxCst(0) * fxCst(0) + fxCst(1) * fxCst(1)); 493 // No constraint 494 else for (Int_t i = 0; i < 3; i++)x0(i) = 1000.; // Set to arbitrary large value 495 } 496 // 497 // Starting vertex radius approximation 498 // 499 Double_t R = fRold; // Use previous fit if available 500 if (R < 0.0) R = StartRadius(); // Rough vertex estimate 501 //std::cout << "Start radius: " << R << std::endl; 298 // 299 VtxFitNoSteer(); // Fast vertex finder on first pass (set ffi and fXv) 300 TVectorD x0 = fXv; 502 301 // 503 302 // Iteration properties … … 515 314 TVectorD cterm(3); TMatrixDSym H(3); TMatrixDSym DW1D(3); 516 315 covX.Zero(); // Reset vertex covariance 517 cterm.Zero(); // Reset constant term316 cterm.Zero(); // Reset constant term 518 317 H.Zero(); // Reset H matrix 519 318 DW1D.Zero(); … … 530 329 TVectorD par = *fPar[i]; 531 330 TMatrixDSym Cov = *fCov[i]; 532 //533 // For first iteration only534 Double_t fs;535 if (Ntry <= 0) // Initialize all phases on first pass536 {537 Double_t D = par(0);538 Double_t C = par(2);539 Double_t arg = TMath::Max(1.0e-6, (R * R - D * D) / (1 + 2 * C * D));540 fs = 2 * TMath::ASin(C * TMath::Sqrt(arg));541 ffi.push_back(fs);542 }543 331 // 544 332 // Update track related arrays … … 555 343 // update constant term 556 344 TVectorD xs = *fx0i[i] - *fdi[i]; 557 TVectorD xx0 = *fx0i[i];558 /*559 std::cout << "Iter. " << Ntry << ", trk " << i << ", x= "560 << xx0(0) << ", " << xx0(1) << ", " << xx0(2)<<561 ", ph0= "<<par(1)<< std::endl;562 */345 //TVectorD xx0 = *fx0i[i]; 346 347 //std::cout << "Iter. " << Ntry << ", trk " << i << ", xs= " 348 // << xs(0) << ", " << xs(1) << ", " << xs(2)<< 349 // ", ph0= "<<par(1)<< std::endl; 350 563 351 cterm += Ds * xs; 564 352 } // End loop on tracks … … 584 372 TMatrixDSym Wm1 = *fWinvi[i]; 585 373 fChi2List(i) = Wm1.Similarity(lambda); 374 if(fChi2List(i) < 0.0){ 375 //std::cout<<"# "<<i<<", Chi2= "<<fChi2List(i)<<", Wm1:"<<std::endl; Wm1.Print(); 376 //std::cout<<"Lambda= "<<std::endl; lambda.Print(); 377 } 586 378 Chi2 += fChi2List(i); 587 379 TVectorD a = *fai[i]; 588 TVectorD b = (*fWi[i]) * (x - (*fx0i[i]));589 f or (Int_t j = 0; j < 3; j++)ffi[i] += a(j) * b(j) / fa2i[i];380 TVectorD b = (*fWi[i]) * (x - *fx0i[i] + *fdi[i]); 381 ffi[i] += Dot(a, b) / fa2i[i]; 590 382 TVectorD newPar = *fPar[i] - ((*fCov[i]) * (*fAti[i])) * lambda; 591 383 fParNew[i] = new TVectorD(newPar); … … 610 402 // 611 403 fVtxDone = kTRUE; // Set fit completion flag 612 fRold = TMath::Sqrt(fXv(0)*fXv(0) + fXv(1)*fXv(1)); // Store fit radius 404 fRold = TMath::Sqrt(fXv(0)*fXv(0) + fXv(1)*fXv(1)); // Store fit 405 //std::cout << "Found vertex " << fXv(0) << ", " << fXv(1) << ", " << fXv(2) 406 // << ", after "<<Ntry<<" iterations"<<std::endl; 613 407 // 614 408 } -
external/TrackCovariance/VertexFit.h
r0c0c9af rdd263e4 6 6 #include <TVectorD.h> 7 7 #include <TMatrixDSym.h> 8 #include "TrkUtil.h" 8 9 #include "ObsTrk.h" 9 10 #include <vector> … … 12 13 // Class for vertex fitting 13 14 14 class VertexFit { 15 class VertexFit: public TrkUtil 16 { 15 17 // 16 18 // Vertex fitting with track parameters steering … … 21 23 // 22 24 // Inputs 23 Int_t fNtr; // Number of tracks25 Int_t fNtr; // Number of tracks 24 26 std::vector<TVectorD*> fPar; // Input parameter array 25 27 std::vector<TVectorD*> fParNew; // Updated parameter array … … 27 29 std::vector<TMatrixDSym*> fCovNew; // Updated parameter covariances 28 30 // Constraints 29 Bool_t fVtxCst; // Vertex constraint flag30 TVectorD fxCst; // Constraint value31 Bool_t fVtxCst; // Vertex constraint flag 32 TVectorD fxCst; // Constraint value 31 33 TMatrixDSym fCovCst; // Constraint 32 34 TMatrixDSym fCovCstInv; // Inverse of constraint covariance 33 35 // 34 36 // Results 35 Bool_t fVtxDone; 37 Bool_t fVtxDone; // Flag vertex fit completed 36 38 Double_t fRold; // Current value of vertex radius 37 39 TVectorD fXv; // Found vertex … … 52 54 // 53 55 // Service routines 54 //void InitWrkArrays(); // Initializations55 56 void ResetWrkArrays(); // Clear work arrays 56 Double_t StartRadius(); // Starting vertex radius determination57 Double_t FastRv(TVectorD p1, TVectorD p2); // Fast vertex radius determination58 TMatrixDSym RegInv(TMatrixDSym& Smat0);// Regularized 3D matrix inversion59 TMatrixD Fill_A(TVectorD par, Double_t phi);// Derivative of track position wrt track parameters60 TVectorD Fill_a(TVectorD par, Double_t phi);// Derivative of track position wrt track phase57 //Double_t StartRadius(); // Starting vertex radius determination 58 //Double_t FastRv(TVectorD p1, TVectorD p2); // Fast vertex radius determination 59 //TMatrixDSym RegInv(TMatrixDSym& Smat0); // Regularized 3D matrix inversion 60 //TMatrixD Fill_A(TVectorD par, Double_t phi); // Derivative of track position wrt track parameters 61 //TVectorD Fill_a(TVectorD par, Double_t phi); // Derivative of track position wrt track phase 61 62 TVectorD Fill_x0(TVectorD par); // Track position at dma to z-axis 62 TVectorD Fill_x(TVectorD par, Double_t phi); 63 TVectorD Fill_x(TVectorD par, Double_t phi); // Track position at given phase 63 64 void UpdateTrkArrays(Int_t i); // Fill track realted arrays 64 void VertexFitter(); // Vertex finder routine 65 void VtxFitNoSteer(); // Vertex fitter routine w/o parameter steering 66 void VertexFitter(); // Vertex fitter routine w/ parameter steering 65 67 public: 66 68 // -
modules/TreeWriter.cc
r0c0c9af rdd263e4 369 369 370 370 // add some offdiagonal covariance matrix elements 371 entry->ErrorD0Phi = candidate->TrackCovariance(0,1) ;371 entry->ErrorD0Phi = candidate->TrackCovariance(0,1)*1.e3; 372 372 entry->ErrorD0C = candidate->TrackCovariance(0,2); 373 entry->ErrorD0DZ = candidate->TrackCovariance(0,3) ;374 entry->ErrorD0CtgTheta = candidate->TrackCovariance(0,4) ;375 entry->ErrorPhiC = candidate->TrackCovariance(1,2) ;376 entry->ErrorPhiDZ = candidate->TrackCovariance(1,3) ;373 entry->ErrorD0DZ = candidate->TrackCovariance(0,3)*1.e6; 374 entry->ErrorD0CtgTheta = candidate->TrackCovariance(0,4)*1.e3; 375 entry->ErrorPhiC = candidate->TrackCovariance(1,2)*1.e-3; 376 entry->ErrorPhiDZ = candidate->TrackCovariance(1,3)*1.e3; 377 377 entry->ErrorPhiCtgTheta = candidate->TrackCovariance(1,4); 378 378 entry->ErrorCDZ = candidate->TrackCovariance(2,3); 379 entry->ErrorCCtgTheta = candidate->TrackCovariance(2,4) ;380 entry->ErrorDZCtgTheta = candidate->TrackCovariance(3,4) ;379 entry->ErrorCCtgTheta = candidate->TrackCovariance(2,4)*1.e-3; 380 entry->ErrorDZCtgTheta = candidate->TrackCovariance(3,4)*1.e3; 381 381 382 382 entry->Xd = candidate->Xd;
Note:
See TracChangeset
for help on using the changeset viewer.