Changes in / [56af73f:90132e0] in git
- Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
DelphesEnv.sh
r56af73f r90132e0 1 export PYTHONPATH=`pwd`/python:$PYTHONPATH 2 export LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH 1 DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )" 3 2 3 export DELPHES_HOME="$DIR" 4 export PYTHONPATH="$DIR/python:${PYTHONPATH}" 5 export LD_LIBRARY_PATH="$DIR:${LD_LIBRARY_PATH}" 6 export LIBRARY_PATH="$DIR:${LIBRARY_PATH}" -
Makefile
r56af73f r90132e0 232 232 classes/DelphesClasses.h \ 233 233 classes/DelphesFactory.h \ 234 classes/DelphesHepMC3Reader.h \235 234 modules/Delphes.h \ 236 235 external/ExRootAnalysis/ExRootProgressBar.h \ -
README
r56af73f r90132e0 16 16 Finally, we can run Delphes: 17 17 18 ./DelphesHepMC 18 ./DelphesHepMC3 19 19 20 20 Command line parameters: 21 21 22 ./DelphesHepMC config_file output_file [input_file(s)]22 ./DelphesHepMC3 config_file output_file [input_file(s)] 23 23 config_file - configuration file in Tcl format 24 24 output_file - output file in ROOT format, -
README.md
r56af73f r90132e0 30 30 31 31 ``` 32 ./DelphesHepMC 32 ./DelphesHepMC3 33 33 ``` 34 34 … … 36 36 37 37 ``` 38 ./DelphesHepMC config_file output_file [input_file(s)]38 ./DelphesHepMC3 config_file output_file [input_file(s)] 39 39 config_file - configuration file in Tcl format 40 40 output_file - output file in ROOT format, -
classes/DelphesHepMC3Reader.cc
r56af73f r90132e0 56 56 DelphesHepMC3Reader::DelphesHepMC3Reader() : 57 57 fInputFile(0), fBuffer(0), fPDG(0), 58 fVertexCounter(- 1), fParticleCounter(-1)58 fVertexCounter(-2), fParticleCounter(-1) 59 59 { 60 60 fBuffer = new char[kBufferSize]; … … 81 81 void DelphesHepMC3Reader::Clear() 82 82 { 83 fWeight .clear();83 fWeights.clear(); 84 84 fMomentumCoefficient = 1.0; 85 85 fPositionCoefficient = 1.0; 86 fVertexCounter = - 1;86 fVertexCounter = -2; 87 87 fParticleCounter = -1; 88 fVertexMap.clear(); 88 fVertices.clear(); 89 fParticles.clear(); 90 fInVertexMap.clear(); 91 fOutVertexMap.clear(); 92 fMotherMap.clear(); 89 93 fDaughterMap.clear(); 90 94 } … … 94 98 bool DelphesHepMC3Reader::EventReady() 95 99 { 96 return (f ParticleCounter == 0);100 return (fVertexCounter == -1) && (fParticleCounter == 0); 97 101 } 98 102 … … 119 123 Clear(); 120 124 121 fX = 0.0;122 fY = 0.0;123 fZ = 0.0;124 fT = 0.0;125 126 125 rc = bufferStream.ReadInt(fEventNumber) 127 126 && bufferStream.ReadInt(fVertexCounter) … … 168 167 while(bufferStream.ReadDbl(weight)) 169 168 { 170 fWeight .push_back(weight);169 fWeights.push_back(weight); 171 170 } 172 171 } … … 257 256 else if(key == 'V') 258 257 { 258 fParticles.clear(); 259 259 260 fX = 0.0; 260 261 fY = 0.0; … … 262 263 fT = 0.0; 263 264 264 fM1 = 0;265 fM2 = 0;266 267 265 rc = bufferStream.ReadInt(fVertexCode) 268 266 && bufferStream.ReadInt(fVertexStatus); … … 286 284 while(bufferStream.ReadInt(code)) 287 285 { 288 if(code < fM1 || fM1 == 0) fM1 = code; 289 if(code > fM2) fM2 = code; 290 fVertexMap[code] = fVertexCode; 291 } 292 293 if(fM1 == fM2) fM2 = 0; 286 fParticles.push_back(code); 287 bufferStream.FindChr(','); 288 } 294 289 295 290 if(bufferStream.FindChr('@')) … … 307 302 } 308 303 } 304 305 AnalyzeVertex(factory, fVertexCode); 309 306 } 310 307 else if(key == 'P' && fParticleCounter > 0) … … 329 326 } 330 327 331 itDaughterMap = fDaughterMap.find(fOutVertexCode); 332 if(itDaughterMap == fDaughterMap.end()) 333 { 334 fDaughterMap[fOutVertexCode] = make_pair(fParticleCode, fParticleCode); 335 } 336 else 337 { 338 itDaughterMap->second.second = fParticleCode; 339 } 340 341 AnalyzeParticle(factory, allParticleOutputArray, 342 stableParticleOutputArray, partonOutputArray); 328 AnalyzeParticle(factory); 343 329 } 344 330 345 331 if(EventReady()) 346 332 { 347 FinalizeParticles(allParticleOutputArray );333 FinalizeParticles(allParticleOutputArray, stableParticleOutputArray, partonOutputArray); 348 334 } 349 335 … … 363 349 element->ProcessID = fProcessID; 364 350 element->MPI = fMPI; 365 element->Weight = fWeight .size() > 0 ? fWeight[0] : 1.0;351 element->Weight = fWeights.size() > 0 ? fWeights[0] : 1.0; 366 352 element->CrossSection = fCrossSection; 367 353 element->CrossSectionError = fCrossSectionError; … … 387 373 { 388 374 Weight *element; 389 vector<double>::const_iterator itWeight ;390 391 for(itWeight = fWeight.begin(); itWeight != fWeight.end(); ++itWeight)375 vector<double>::const_iterator itWeights; 376 377 for(itWeights = fWeights.begin(); itWeights != fWeights.end(); ++itWeights) 392 378 { 393 379 element = static_cast<Weight *>(branch->NewEntry()); 394 380 395 element->Weight = *itWeight; 396 } 397 } 398 399 //--------------------------------------------------------------------------- 400 401 void DelphesHepMC3Reader::AnalyzeParticle(DelphesFactory *factory, 402 TObjArray *allParticleOutputArray, 381 element->Weight = *itWeights; 382 } 383 } 384 385 //--------------------------------------------------------------------------- 386 387 void DelphesHepMC3Reader::AnalyzeVertex(DelphesFactory *factory, int code, Candidate *candidate) 388 { 389 int index; 390 TLorentzVector *position; 391 TObjArray *array; 392 vector<int>::iterator itParticle; 393 map<int, int>::iterator itVertexMap; 394 395 itVertexMap = fOutVertexMap.find(code); 396 if(itVertexMap == fOutVertexMap.end()) 397 { 398 --fVertexCounter; 399 400 index = fVertices.size(); 401 fOutVertexMap[code] = index; 402 if(candidate && code > 0) fInVertexMap[code] = index; 403 404 position = factory->New<TLorentzVector>(); 405 array = factory->NewArray(); 406 position->SetXYZT(0.0, 0.0, 0.0, 0.0); 407 fVertices.push_back(make_pair(position, array)); 408 } 409 else 410 { 411 index = itVertexMap->second; 412 position = fVertices[index].first; 413 array = fVertices[index].second; 414 } 415 416 if(candidate) 417 { 418 array->Add(candidate); 419 } 420 else 421 { 422 position->SetXYZT(fX, fY, fZ, fT); 423 for(itParticle = fParticles.begin(); itParticle != fParticles.end(); ++itParticle) 424 { 425 fInVertexMap[*itParticle] = index; 426 } 427 } 428 } 429 430 //--------------------------------------------------------------------------- 431 432 void DelphesHepMC3Reader::AnalyzeParticle(DelphesFactory *factory) 433 { 434 Candidate *candidate; 435 436 candidate = factory->NewCandidate(); 437 438 candidate->PID = fPID; 439 440 candidate->Status = fParticleStatus; 441 442 candidate->Mass = fMass; 443 444 candidate->Momentum.SetPxPyPzE(fPx, fPy, fPz, fE); 445 446 candidate->D1 = fParticleCode; 447 448 AnalyzeVertex(factory, fOutVertexCode, candidate); 449 } 450 451 //--------------------------------------------------------------------------- 452 453 void DelphesHepMC3Reader::FinalizeParticles(TObjArray *allParticleOutputArray, 403 454 TObjArray *stableParticleOutputArray, 404 455 TObjArray *partonOutputArray) 405 456 { 457 TLorentzVector *position; 458 TObjArray *array; 406 459 Candidate *candidate; 407 460 TParticlePDG *pdgParticle; 408 461 int pdgCode; 409 410 candidate = factory->NewCandidate();411 412 candidate->PID = fPID;413 pdgCode = TMath::Abs(candidate->PID);414 415 candidate->Status = fParticleStatus;416 417 pdgParticle = fPDG->GetParticle(fPID);418 candidate->Charge = pdgParticle ? int(pdgParticle->Charge() / 3.0) : -999;419 candidate->Mass = fMass;420 421 candidate->Momentum.SetPxPyPzE(fPx, fPy, fPz, fE);422 if(fMomentumCoefficient != 1.0)423 {424 candidate->Momentum *= fMomentumCoefficient;425 }426 427 candidate->Position.SetXYZT(fX, fY, fZ, fT);428 if(fPositionCoefficient != 1.0)429 {430 candidate->Position *= fPositionCoefficient;431 }432 433 candidate->D1 = -1;434 candidate->D2 = -1;435 436 if(fOutVertexCode < 0)437 {438 candidate->M1 = fM1 - 1;439 candidate->M2 = fM2 - 1;440 }441 else442 {443 candidate->M1 = fOutVertexCode - 1;444 candidate->M2 = -1;445 }446 447 allParticleOutputArray->Add(candidate);448 449 if(!pdgParticle) return;450 451 if(fParticleStatus == 1)452 {453 stableParticleOutputArray->Add(candidate);454 }455 else if(pdgCode <= 5 || pdgCode == 21 || pdgCode == 15)456 {457 partonOutputArray->Add(candidate);458 }459 }460 461 //---------------------------------------------------------------------------462 463 void DelphesHepMC3Reader::FinalizeParticles(TObjArray *allParticleOutputArray)464 {465 Candidate *candidate;466 462 map<int, int >::iterator itVertexMap; 463 map<int, pair<int, int> >::iterator itMotherMap; 467 464 map<int, pair<int, int> >::iterator itDaughterMap; 468 int i, index; 465 int i, j, code, counter; 466 467 counter = 0; 468 for(i = 0; i < fVertices.size(); ++i) 469 { 470 position = fVertices[i].first; 471 array = fVertices[i].second; 472 473 for(j = 0; j < array->GetEntriesFast(); ++j) 474 { 475 candidate = static_cast<Candidate *>(array->At(j)); 476 477 candidate->Position = *position; 478 if(fPositionCoefficient != 1.0) 479 { 480 candidate->Position *= fPositionCoefficient; 481 } 482 483 if(fMomentumCoefficient != 1.0) 484 { 485 candidate->Momentum *= fMomentumCoefficient; 486 } 487 488 candidate->M1 = i; 489 490 itDaughterMap = fDaughterMap.find(i); 491 if(itDaughterMap == fDaughterMap.end()) 492 { 493 fDaughterMap[i] = make_pair(counter, counter); 494 } 495 else 496 { 497 itDaughterMap->second.second = counter; 498 } 499 500 code = candidate->D1; 501 502 itVertexMap = fInVertexMap.find(code); 503 if(itVertexMap == fInVertexMap.end()) 504 { 505 candidate->D1 = -1; 506 } 507 else 508 { 509 code = itVertexMap->second; 510 511 candidate->D1 = code; 512 513 itMotherMap = fMotherMap.find(code); 514 if(itMotherMap == fMotherMap.end()) 515 { 516 fMotherMap[code] = make_pair(counter, -1); 517 } 518 else 519 { 520 itMotherMap->second.second = counter; 521 } 522 } 523 524 allParticleOutputArray->Add(candidate); 525 526 ++counter; 527 528 pdgParticle = fPDG->GetParticle(candidate->PID); 529 530 candidate->Charge = pdgParticle ? int(pdgParticle->Charge() / 3.0) : -999; 531 532 if(!pdgParticle) continue; 533 534 pdgCode = TMath::Abs(candidate->PID); 535 536 if(candidate->Status == 1) 537 { 538 stableParticleOutputArray->Add(candidate); 539 } 540 else if(pdgCode <= 5 || pdgCode == 21 || pdgCode == 15) 541 { 542 partonOutputArray->Add(candidate); 543 } 544 } 545 } 469 546 470 547 for(i = 0; i < allParticleOutputArray->GetEntriesFast(); ++i) … … 472 549 candidate = static_cast<Candidate *>(allParticleOutputArray->At(i)); 473 550 474 index = i + 1; 475 476 itVertexMap = fVertexMap.find(index); 477 if(itVertexMap != fVertexMap.end()) 478 { 479 index = itVertexMap->second; 480 } 481 482 itDaughterMap = fDaughterMap.find(index); 483 if(itDaughterMap == fDaughterMap.end()) 551 itMotherMap = fMotherMap.find(candidate->M1); 552 if(itMotherMap == fMotherMap.end()) 553 { 554 candidate->M1 = -1; 555 candidate->M2 = -1; 556 } 557 else 558 { 559 candidate->M1 = itMotherMap->second.first; 560 candidate->M2 = itMotherMap->second.second; 561 } 562 563 if(candidate->D1 < 0) 484 564 { 485 565 candidate->D1 = -1; … … 488 568 else 489 569 { 490 candidate->D1 = itDaughterMap->second.first - 1; 491 candidate->D2 = itDaughterMap->second.second - 1; 492 } 493 } 494 } 495 496 //--------------------------------------------------------------------------- 570 itDaughterMap = fDaughterMap.find(candidate->D1); 571 if(itDaughterMap == fDaughterMap.end()) 572 { 573 candidate->D1 = -1; 574 candidate->D2 = -1; 575 } 576 else 577 { 578 candidate->D1 = itDaughterMap->second.first; 579 candidate->D2 = itDaughterMap->second.second; 580 } 581 } 582 } 583 } 584 585 //--------------------------------------------------------------------------- -
classes/DelphesHepMC3Reader.h
r56af73f r90132e0 36 36 class TStopwatch; 37 37 class TDatabasePDG; 38 class TLorentzVector; 38 39 class ExRootTreeBranch; 39 40 class DelphesFactory; 41 class Candidate; 40 42 41 43 class DelphesHepMC3Reader … … 61 63 62 64 private: 63 void AnalyzeParticle(DelphesFactory *factory, 64 TObjArray *allParticleOutputArray, 65 void AnalyzeVertex(DelphesFactory *factory, int code, Candidate *candidate = 0); 66 67 void AnalyzeParticle(DelphesFactory *factory); 68 69 void FinalizeParticles(TObjArray *allParticleOutputArray, 65 70 TObjArray *stableParticleOutputArray, 66 71 TObjArray *partonOutputArray); 67 68 void FinalizeParticles(TObjArray *allParticleOutputArray);69 72 70 73 FILE *fInputFile; … … 79 82 double fMomentumCoefficient, fPositionCoefficient; 80 83 81 std::vector<double> fWeight ;84 std::vector<double> fWeights; 82 85 83 86 double fCrossSection, fCrossSectionError; … … 92 95 double fPx, fPy, fPz, fE, fMass; 93 96 94 int fM1, fM2; 97 std::vector<std::pair<TLorentzVector *, TObjArray *> > fVertices; 98 std::vector<int> fParticles; 95 99 96 std::map<int, int> fVertexMap; 100 std::map<int, int> fInVertexMap; 101 std::map<int, int> fOutVertexMap; 102 103 std::map<int, std::pair<int, int> > fMotherMap; 97 104 std::map<int, std::pair<int, int> > fDaughterMap; 98 105 }; -
modules/Delphes.cc
r56af73f r90132e0 61 61 fFactory(0) 62 62 { 63 TFolder *folder = new TFolder(name, ""); 63 TFolder *folder; 64 64 65 fFactory = new DelphesFactory("ObjectFactory"); 66 67 folder = new TFolder(name, ""); 65 68 66 69 SetName(name); … … 80 83 if(folder) 81 84 { 85 gROOT->GetListOfBrowsables()->Remove(folder); 82 86 folder->Clear(); 83 87 delete folder; -
modules/ParticlePropagator.cc
r56af73f r90132e0 126 126 Double_t px, py, pz, pt, pt2, e, q; 127 127 Double_t x, y, z, t, r; 128 Double_t x_c, y_c, r_c, phi_ c, phi_0;129 Double_t x_t, y_t, z_t, r_t ;130 Double_t t_ z, t_r;131 Double_t discr;128 Double_t x_c, y_c, r_c, phi_0; 129 Double_t x_t, y_t, z_t, r_t, phi_t; 130 Double_t t_r, t_z; 131 Double_t tmp; 132 132 Double_t gammam, omega; 133 133 Double_t xd, yd, zd; 134 134 Double_t l, d0, dz, ctgTheta, alpha; 135 135 Double_t bsx, bsy, bsz; 136 Double_t rxp, rdp, t_R; 137 Double_t td, pio, phid, sign_pz, vz; 136 Double_t td, pio, phid, vz; 138 137 139 138 const Double_t c_light = 2.99792458E8; 140 139 141 140 if(!fBeamSpotInputArray || fBeamSpotInputArray->GetSize() == 0) 141 { 142 142 beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0); 143 } 143 144 else 144 145 { … … 161 162 particlePosition = particle->Position; 162 163 particleMomentum = particle->Momentum; 163 164 // Constants165 164 166 165 x = particlePosition.X() * 1.0E-3; … … 208 207 else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9) 209 208 { 210 211 rxp = x*py - y*px; 212 rdp = x*px + y*py; 213 214 discr = fRadius*fRadius*pt*pt - rxp*rxp; 215 216 t_R = e * (sqrt(discr) - rdp) / (c_light * pt * pt); 217 t_z = e * (TMath::Sign(fHalfLengthMax, pz) - z) / ( c_light * pz); 218 219 t = TMath::Min(t_R, t_z); 220 221 x_t = x + px*t*c_light/e; 222 y_t = y + py*t*c_light/e; 223 z_t = z + pz*t*c_light/e; 224 r_t = TMath::Hypot(x_t, y_t); 225 226 l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z)); 209 // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0 210 tmp = px * y - py * x; 211 t_r = (TMath::Sqrt(pt2 * fRadius2 - tmp * tmp) - px * x - py * y) / pt2; 212 213 t_z = (TMath::Sign(fHalfLength, pz) - z) / pz; 214 215 t = TMath::Min(t_r, t_z); 216 217 x_t = x + px * t; 218 y_t = y + py * t; 219 z_t = z + pz * t; 220 221 l = TMath::Sqrt((x_t - x) * (x_t - x) + (y_t - y) * (y_t - y) + (z_t - z) * (z_t - z)); 227 222 228 223 mother = candidate; 229 candidate = static_cast<Candidate *>(candidate->Clone());224 candidate = static_cast<Candidate *>(candidate->Clone()); 230 225 231 226 candidate->InitialPosition = particlePosition; 232 candidate->Position.SetXYZT(x_t *1.0E3, y_t*1.0E3, z_t*1.0E3, particlePosition.T() + t*c_light*1.0E3);233 candidate->L = l *1.0E3;227 candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * e * 1.0E3); 228 candidate->L = l * 1.0E3; 234 229 235 230 candidate->Momentum = particleMomentum; … … 260 255 { 261 256 262 // 1. 263 // initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)264 // relativistic gamma: gamma = E/mc^2; gammam = gamma * m265 // gyration frequency omega = q/(gamma m) fBz266 // helix radius r = p_{T0} / (omega gammam)267 268 gammam = e *1.0E9 / (c_light*c_light);// gammam in [eV/c^2]269 omega = q * fBz / (gammam);// omega is here in [89875518/s]270 r = pt / (q * fBz) * 1.0E9 /c_light;// in [m]257 // 1. initial transverse momentum p_{T0}: Part->pt 258 // initial transverse momentum direction phi_0 = -atan(p_{X0} / p_{Y0}) 259 // relativistic gamma: gamma = E / mc^2; gammam = gamma * m 260 // gyration frequency omega = q * Bz / (gammam) 261 // helix radius r = p_{T0} / (omega * gammam) 262 263 gammam = e * 1.0E9 / (c_light * c_light); // gammam in [eV/c^2] 264 omega = q * fBz / gammam; // omega is here in [89875518/s] 265 r = pt / (q * fBz) * 1.0E9 / c_light; // in [m] 271 266 272 267 phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi] 273 268 274 269 // 2. helix axis coordinates 275 x_c = x + r *TMath::Sin(phi_0);276 y_c = y - r *TMath::Cos(phi_0);270 x_c = x + r * TMath::Sin(phi_0); 271 y_c = y - r * TMath::Cos(phi_0); 277 272 r_c = TMath::Hypot(x_c, y_c); 278 phi_c = TMath::ATan(y_c/x_c); 279 if(x_c < 0.0) phi_c -= TMath::Sign(1., phi_c)*TMath::Pi(); 280 281 //Find the time of closest approach 282 td = (phi_0 - TMath::ATan(-x_c/y_c))/omega; 283 284 //Remove all the modulo pi that might have come from the atan 285 pio = fabs(TMath::Pi()/omega); 286 while(fabs(td) > 0.5*pio) 287 { 288 td -= TMath::Sign(1., td)*pio; 289 } 290 291 //Compute the coordinate of closed approach to z axis 292 //if wants wtr beamline need to be changedto re-center with a traslation of the z axis 293 phid = phi_0 - omega*td; 294 xd = x_c - r*TMath::Sin(phid); 295 yd = y_c + r*TMath::Cos(phid); 296 zd = z + c_light*(pz/e)*td; 297 298 //Compute momentum at closest approach (perigee??) 299 px = pt*TMath::Cos(phid); 300 py = pt*TMath::Sin(phid); 273 274 // time of closest approach 275 td = (phi_0 + TMath::ATan2(x_c, y_c)) / omega; 276 277 // remove all the modulo pi that might have come from the atan 278 pio = TMath::Abs(TMath::Pi() / omega); 279 while(TMath::Abs(td) > 0.5 * pio) 280 { 281 td -= TMath::Sign(1.0, td) * pio; 282 } 283 284 vz = pz * c_light / e; 285 286 // calculate coordinates of closest approach to z axis 287 phid = phi_0 - omega * td; 288 xd = x_c - r * TMath::Sin(phid); 289 yd = y_c + r * TMath::Cos(phid); 290 zd = z + vz * td; 291 292 // momentum at closest approach 293 px = pt * TMath::Cos(phid); 294 py = pt * TMath::Sin(phid); 301 295 302 296 particleMomentum.SetPtEtaPhiE(pt, particleMomentum.Eta(), phid, particleMomentum.E()); … … 305 299 d0 = ((xd - bsx) * py - (yd - bsy) * px) / pt; 306 300 dz = zd - bsz; 307 ctgTheta = 1.0 / TMath::Tan(particleMomentum.Theta());301 ctgTheta = 1.0 / TMath::Tan(particleMomentum.Theta()); 308 302 309 303 // 3. time evaluation t = TMath::Min(t_r, t_z) 310 304 // t_r : time to exit from the sides 311 305 // t_z : time to exit from the front or the back 312 t = 0; 313 t_z = 0; 314 sign_pz = (pz > 0.0) ? 1 : -1; 315 if(pz == 0.0) t_z = 1.0E99; 316 else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz); 317 318 if(r_c + TMath::Abs(r) < fRadius) // helix does not cross the cylinder sides 319 { 306 t_z = (vz == 0.0) ? 1.0E99 : (TMath::Sign(fHalfLength, pz) - z) / vz; 307 308 if(r_c + TMath::Abs(r) < fRadius) 309 { 310 // helix does not cross the cylinder sides 320 311 t = t_z; 321 312 } 322 313 else 323 314 { 324 alpha = -(fRadius*fRadius - r*r - r_c*r_c)/(2*fabs(r)*r_c); 325 alpha = fabs(TMath::ACos(alpha)); 326 t_r = td + alpha/fabs(omega); 315 alpha = TMath::ACos((r * r + r_c * r_c - fRadius * fRadius) / (2 * TMath::Abs(r) * r_c)); 316 t_r = td + TMath::Abs(alpha / omega); 327 317 328 318 t = TMath::Min(t_r, t_z); 329 319 } 330 320 331 x_t = x_c - r*TMath::Sin(phi_0 - omega*t);332 y_t = y_c + r*TMath::Cos(phi_0 - omega*t);333 z_t = z + c_light*t*pz/e;334 r_t = TMath::Hypot(x_t, y_t);335 336 // compute path length for an helix337 vz = pz*1.0E9 / c_light / gammam; 338 // lenght of the path from production to tracker339 l = t * TMath:: Sqrt(vz*vz + r*r*omega*omega);321 // 4. position in terms of x(t), y(t), z(t) 322 phi_t = phi_0 - omega * t; 323 x_t = x_c - r * TMath::Sin(phi_t); 324 y_t = y_c + r * TMath::Cos(phi_t); 325 z_t = z + vz * t; 326 r_t = TMath::Hypot(x_t, y_t); 327 328 // lenght of the path from production to tracker 329 l = t * TMath::Hypot(vz, r * omega); 340 330 341 331 if(r_t > 0.0)
Note:
See TracChangeset
for help on using the changeset viewer.