- Timestamp:
- Apr 17, 2021, 10:26:04 AM (4 years ago)
- Branches:
- master
- Children:
- 3b3071a
- Parents:
- 3cfe61d (diff), 4df491e (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - git-author:
- Michele Selvaggi <michele.selvaggi@…> (04/17/21 10:26:04)
- git-committer:
- GitHub <noreply@…> (04/17/21 10:26:04)
- Location:
- external/TrackCovariance
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
external/TrackCovariance/TrkUtil.cc
r3cfe61d r64294db 1 1 #include "TrkUtil.h" 2 #include <TMath.h>3 2 #include <iostream> 3 #include <algorithm> 4 4 5 5 // Constructor … … 7 7 { 8 8 fBz = Bz; 9 fGasSel = 0; // Default is He-Isobuthane (90-10) 10 fRmin = 0.0; // Lower DCH radius 11 fRmax = 0.0; // Higher DCH radius 12 fZmin = 0.0; // Lower DCH z 13 fZmax = 0.0; // Higher DCH z 9 14 } 10 15 TrkUtil::TrkUtil() 11 16 { 12 17 fBz = 0.0; 18 fGasSel = 0; // Default is He-Isobuthane (90-10) 19 fRmin = 0.0; // Lower DCH radius 20 fRmax = 0.0; // Higher DCH radius 21 fZmin = 0.0; // Lower DCH z 22 fZmax = 0.0; // Higher DCH z 13 23 } 14 24 // … … 17 27 { 18 28 fBz = 0.0; 29 fGasSel = 0; // Default is He-Isobuthane (90-10) 30 fRmin = 0.0; // Lower DCH radius 31 fRmax = 0.0; // Higher DCH radius 32 fZmin = 0.0; // Lower DCH z 33 fZmax = 0.0; // Higher DCH z 19 34 } 20 35 // … … 29 44 Double_t pt = p.Pt(); 30 45 Double_t C = a / (2 * pt); // Half curvature 31 // cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C <<endl;46 //std::cout << "ObsTrk::XPtoPar: fB = " << fB << ", a = " << a << ", pt = " << pt << ", C = " << C << std::endl; 32 47 Double_t r2 = x.Perp2(); 33 48 Double_t cross = x(0) * p(1) - x(1) * p(0); 34 Double_t T = TMath::Sqrt(pt * pt - 2 * a * cross + a * a * r2);35 Double_t phi0 = TMath::ATan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi049 Double_t T = sqrt(pt * pt - 2 * a * cross + a * a * r2); 50 Double_t phi0 = atan2((p(1) - a * x(0)) / T, (p(0) + a * x(1)) / T); // Phi0 36 51 Double_t D; // Impact parameter D 37 52 if (pt < 10.0) D = (T - pt) / a; … … 42 57 Par(2) = C; // Store C 43 58 //Longitudinal parameters 44 Double_t B = C * TMath::Sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D));45 Double_t st = TMath::ASin(B) / C;59 Double_t B = C * sqrt(TMath::Max(r2 - D * D, 0.0) / (1 + 2 * C * D)); 60 Double_t st = asin(B) / C; 46 61 Double_t ct = p(2) / pt; 47 62 Double_t z0 = x(2) - ct * st; … … 70 85 // 71 86 TVector3 Xval; 72 Xval(0) = -D * TMath::Sin(phi0);73 Xval(1) = D * TMath::Cos(phi0);87 Xval(0) = -D * sin(phi0); 88 Xval(1) = D * cos(phi0); 74 89 Xval(2) = z0; 75 90 // … … 79 94 TVector3 TrkUtil::ParToP(TVectorD Par) 80 95 { 81 if (fBz == 0.0) 82 std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl; 96 if (fBz == 0.0)std::cout << "TrkUtil::ParToP: Warning Bz not set" << std::endl; 83 97 // 84 98 return ParToP(Par,fBz); … … 93 107 TVector3 Pval; 94 108 Double_t pt = Bz * cSpeed() / TMath::Abs(2 * C); 95 Pval(0) = pt * TMath::Cos(phi0);96 Pval(1) = pt * TMath::Sin(phi0);109 Pval(0) = pt * cos(phi0); 110 Pval(1) = pt * sin(phi0); 97 111 Pval(2) = pt * ct; 98 112 // … … 113 127 Double_t b = -cSpeed() * fBz / 2.; 114 128 pACTS(0) = 1000 * Par(0); // D from m to mm 115 pACTS(1) = 1000 * Par(3); 129 pACTS(1) = 1000 * Par(3); // z0 from m to mm 116 130 pACTS(2) = Par(1); // Phi0 is unchanged 117 pACTS(3) = TMath::ATan2(1.0, Par(4)); // Theta in [0, pi] range118 pACTS(4) = Par(2) / (b * TMath::Sqrt(1 + Par(4) * Par(4))); // q/p in GeV131 pACTS(3) = atan2(1.0, Par(4)); // Theta in [0, pi] range 132 pACTS(4) = Par(2) / (b * sqrt(1 + Par(4) * Par(4))); // q/p in GeV 119 133 pACTS(5) = 0.0; // Time: currently undefined 120 134 // … … 133 147 A(0, 0) = 1000.; // D-D conversion to mm 134 148 A(1, 2) = 1.0; // phi0-phi0 135 A(2, 4) = 1.0 / ( TMath::Sqrt(1.0 + ct * ct) * b); // q/p-C149 A(2, 4) = 1.0 / (sqrt(1.0 + ct * ct) * b); // q/p-C 136 150 A(3, 1) = 1000.; // z0-z0 conversion to mm 137 151 A(4, 3) = -1.0 / (1.0 + ct * ct); // theta - cot(theta) 138 A(4, 4) = -C * ct / (b * TMath::Power(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta)152 A(4, 4) = -C * ct / (b * pow(1.0 + ct * ct, 3.0 / 2.0)); // q/p-cot(theta) 139 153 // 140 154 TMatrixDSym Cv = Cov; … … 218 232 return Cmm; 219 233 } 234 // 235 // Setup chamber volume 236 void TrkUtil::SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax) 237 { 238 fRmin = Rmin; // Lower DCH radius 239 fRmax = Rmax; // Higher DCH radius 240 fZmin = Zmin; // Lower DCH z 241 fZmax = Zmax; // Higher DCH z 242 } 243 // 244 // Get Trakck length inside DCH volume 245 Double_t TrkUtil::TrkLen(TVectorD Par) 246 { 247 Double_t tLength = 0.0; 248 // Check if geometry is initialized 249 if (fZmin == 0.0 && fZmax == 0.0) 250 { 251 // No geometry set so send a warning and return 0 252 std::cout << "TrkUtil::TrkLen() called without a DCH volume defined" << std::endl; 253 } 254 else 255 { 256 //****************************************************************** 257 // Determine the track length inside the chamber **** 258 //****************************************************************** 259 // 260 // Track pararameters 261 Double_t D = Par(0); // Transverse impact parameter 262 Double_t phi0 = Par(1); // Transverse direction at minimum approach 263 Double_t C = Par(2); // Half curvature 264 Double_t z0 = Par(3); // Z at minimum approach 265 Double_t ct = Par(4); // cot(theta) 266 //std::cout << "TrkUtil:: parameters: D= " << D << ", phi0= " << phi0 267 // << ", C= " << C << ", z0= " << z0 << ", ct= " << ct << std::endl; 268 // 269 // Track length per unit phase change 270 Double_t Scale = sqrt(1.0 + ct*ct) / (2.0*TMath::Abs(C)); 271 // 272 // Find intersections with chamber boundaries 273 // 274 Double_t phRin = 0.0; // phase of inner cylinder 275 Double_t phRin2= 0.0; // phase of inner cylinder intersection (2nd branch) 276 Double_t phRhi = 0.0; // phase of outer cylinder intersection 277 Double_t phZmn = 0.0; // phase of left wall intersection 278 Double_t phZmx = 0.0; // phase of right wall intersection 279 // ... with inner cylinder 280 Double_t Rtop = TMath::Abs((1.0 + C*D) / C); 281 282 if (Rtop > fRmin && TMath::Abs(D) < fRmin) // *** don't treat large D tracks for the moment *** 283 { 284 Double_t ph = 2 * asin(C*sqrt((fRmin*fRmin - D*D) / (1.0 + 2.0*C*D))); 285 Double_t z = z0 + ct*ph / (2.0*C); 286 287 //std::cout << "Rin intersection: ph = " << ph<<", z= "<<z << std::endl; 288 289 if (z < fZmax && z > fZmin) phRin = TMath::Abs(ph); // Intersection inside chamber volume 290 // 291 // Include second branch of loopers 292 Double_t Pi = 3.14159265358979323846; 293 Double_t ph2 = 2*Pi - TMath::Abs(ph); 294 if (ph < 0)ph2 = -ph2; 295 z = z0 + ct * ph2 / (2.0 * C); 296 if (z < fZmax && z > fZmin) phRin2 = TMath::Abs(ph2); // Intersection inside chamber volume 297 } 298 // ... with outer cylinder 299 if (Rtop > fRmax && TMath::Abs(D) < fRmax) // *** don't treat large D tracks for the moment *** 300 { 301 Double_t ph = 2 * asin(C*sqrt((fRmax*fRmax - D*D) / (1.0 + 2.0*C*D))); 302 Double_t z = z0 + ct*ph / (2.0*C); 303 if (z < fZmax && z > fZmin) phRhi = TMath::Abs(ph); // Intersection inside chamber volume 304 } 305 // ... with left wall 306 Double_t Zdir = (fZmin - z0) / ct; 307 if (Zdir > 0.0) 308 { 309 Double_t ph = 2.0*C*Zdir; 310 Double_t Rint = sqrt(D*D + (1.0 + 2.0*C*D)*pow(sin(ph / 2), 2) / (C*C)); 311 if (Rint < fRmax && Rint > fRmin) phZmn = TMath::Abs(ph); // Intersection inside chamber volume 312 } 313 // ... with right wall 314 Zdir = (fZmax - z0) / ct; 315 if (Zdir > 0.0) 316 { 317 Double_t ph = 2.0*C*Zdir; 318 Double_t Rint = sqrt(D*D + (1.0 + 2.0*C*D)*pow(sin(ph / 2), 2) / (C*C)); 319 if (Rint < fRmax && Rint > fRmin) phZmx = TMath::Abs(ph); // Intersection inside chamber volume 320 } 321 // 322 // Order phases and keep the lowest two non-zero ones 323 // 324 const Int_t Nint = 5; 325 Double_t dPhase = 0.0; // Phase difference between two close intersections 326 Double_t ph_arr[Nint] = { phRin, phRin2, phRhi, phZmn, phZmx }; 327 std::sort(ph_arr, ph_arr + Nint); 328 Int_t iPos = -1; // First element > 0 329 for (Int_t i = 0; i < Nint; i++) 330 { 331 if (ph_arr[i] <= 0.0) iPos = i; 332 } 333 334 if (iPos < Nint - 2) 335 { 336 dPhase = ph_arr[iPos + 2] - ph_arr[iPos + 1]; 337 tLength = dPhase*Scale; 338 } 339 } 340 return tLength; 341 } 342 // 343 // Return number of ionization clusters 344 Bool_t TrkUtil::IonClusters(Double_t &Ncl, Double_t mass, TVectorD Par) 345 { 346 // 347 // Units are meters/Tesla/GeV 348 // 349 Ncl = 0.0; 350 Bool_t Signal = kFALSE; 351 Double_t tLen = 0; 352 // Check if geometry is initialized 353 if (fZmin == 0.0 && fZmax == 0.0) 354 { 355 // No geometry set so send a warning and return 0 356 std::cout << "TrkUtil::IonClusters() called without a volume defined" << std::endl; 357 } 358 else tLen = TrkLen(Par); 359 360 //****************************************************************** 361 // Now get the number of clusters **** 362 //****************************************************************** 363 // 364 Double_t muClu = 0.0; // mean number of clusters 365 Double_t bg = 0.0; // beta*gamma 366 Ncl = 0.0; 367 if (tLen > 0.0) 368 { 369 Signal = kTRUE; 370 // 371 // Find beta*gamma 372 if (fBz == 0.0) 373 { 374 Signal = kFALSE; 375 std::cout << "TrkUtil::IonClusters: Please set Bz!!!" << std::endl; 376 } 377 else 378 { 379 TVector3 p = ParToP(Par); 380 bg = p.Mag() / mass; 381 muClu = Nclusters(bg)*tLen; // Avg. number of clusters 382 383 Ncl = gRandom->PoissonD(muClu); // Actual number of clusters 384 } 385 386 } 387 // 388 return Signal; 389 } 390 // 391 // 392 Double_t TrkUtil::Nclusters(Double_t begam) 393 { 394 Int_t Opt = fGasSel; 395 Double_t Nclu = Nclusters(begam, Opt); 396 // 397 return Nclu; 398 } 399 // 400 Double_t TrkUtil::Nclusters(Double_t begam, Int_t Opt) { 401 // 402 // Opt = 0: He 90 - Isobutane 10 403 // = 1: pure He 404 // = 2: Argon 50 - Ethane 50 405 // = 3: pure Argon 406 // 407 // 408 /* 409 std::vector<double> bg{ 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10., 410 12., 15., 20., 50., 100., 200., 500., 1000. }; 411 // He 90 - Isobutane 10 412 std::vector<double> ncl_He_Iso{ 42.94, 23.6,18.97,12.98,12.2,12.13, 413 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98 }; 414 // 415 // pure He 416 std::vector<double> ncl_He{ 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63, 417 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89 }; 418 // 419 // Argon 50 - Ethane 50 420 std::vector<double> ncl_Ar_Eth{ 130.04,71.55,57.56,39.44,37.08,36.9, 421 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93 }; 422 // 423 // pure Argon 424 std::vector<double> ncl_Ar{ 88.69,48.93,39.41,27.09,25.51,25.43,25.69, 425 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68 }; 426 // 427 Int_t nPoints = (Int_t)bg.size(); 428 bg.push_back(10000.); 429 std::vector<double> ncl; 430 switch (Opt) 431 { 432 case 0: ncl = ncl_He_Iso; // He-Isobutane 433 break; 434 case 1: ncl = ncl_He; // pure He 435 break; 436 case 2: ncl = ncl_Ar_Eth; // Argon - Ethane 437 break; 438 case 3: ncl = ncl_Ar; // pure Argon 439 break; 440 } 441 ncl.push_back(ncl[nPoints - 1]); 442 */ 443 const Int_t Npt = 18; 444 Double_t bg[Npt] = { 0.5, 0.8, 1., 2., 3., 4., 5., 8., 10., 445 12., 15., 20., 50., 100., 200., 500., 1000., 10000. }; 446 // 447 // He 90 - Isobutane 10 448 Double_t ncl_He_Iso[Npt] = { 42.94, 23.6,18.97,12.98,12.2,12.13, 449 12.24,12.73,13.03,13.29,13.63,14.08,15.56,16.43,16.8,16.95,16.98, 16.98 }; 450 // 451 // pure He 452 Double_t ncl_He[Npt] = { 11.79,6.5,5.23,3.59,3.38,3.37,3.4,3.54,3.63, 453 3.7,3.8,3.92,4.33,4.61,4.78,4.87,4.89, 4.89 }; 454 // 455 // Argon 50 - Ethane 50 456 Double_t ncl_Ar_Eth[Npt] = { 130.04,71.55,57.56,39.44,37.08,36.9, 457 37.25,38.76,39.68,40.49,41.53,42.91,46.8,48.09,48.59,48.85,48.93,48.93 }; 458 // 459 // pure Argon 460 Double_t ncl_Ar[Npt] = { 88.69,48.93,39.41,27.09,25.51,25.43,25.69, 461 26.78,27.44,28.02,28.77,29.78,32.67,33.75,34.24,34.57,34.68, 34.68 }; 462 // 463 Double_t ncl[Npt]; 464 switch (Opt) 465 { 466 case 0: std::copy(ncl_He_Iso, ncl_He_Iso + Npt, ncl); // He-Isobutane 467 break; 468 case 1: std::copy(ncl_He, ncl_He + Npt, ncl); // pure He 469 break; 470 case 2: std::copy(ncl_Ar_Eth, ncl_Ar_Eth + Npt, ncl); // Argon - Ethane 471 break; 472 case 3: std::copy(ncl_Ar, ncl_Ar + Npt, ncl); // pure Argon 473 break; 474 } 475 // 476 Int_t ilow = 0; 477 while (begam > bg[ilow])ilow++; 478 ilow--; 479 //std::cout << "ilow= " << ilow << ", low = " << bg[ilow] << ", val = " << begam 480 // << ", high = " << bg[ilow + 1] << std::endl; 481 // 482 Int_t ind[3] = { ilow, ilow + 1, ilow + 2 }; 483 TVectorD y(3); 484 for (Int_t i = 0; i < 3; i++)y(i) = ncl[ind[i]]; 485 TVectorD x(3); 486 for (Int_t i = 0; i < 3; i++)x(i) = bg[ind[i]]; 487 TMatrixD Xval(3, 3); 488 for (Int_t i = 0; i < 3; i++)Xval(i, 0) = 1.0; 489 for (Int_t i = 0; i < 3; i++)Xval(i, 1) = x(i); 490 for (Int_t i = 0; i < 3; i++)Xval(i, 2) = x(i) * x(i); 491 //std::cout << "Xval:" << std::endl; Xval.Print(); 492 Xval.Invert(); 493 TVectorD coeff = Xval * y; 494 Double_t interp = coeff[0] + coeff[1] * begam + coeff[2] * begam * begam; 495 //std::cout << "val1= (" <<x(0)<<", "<< y(0) << "), val2= (" 496 // <<x(1)<<", "<< y(1) << "), val3= (" 497 // <<x(2)<<", "<< y(2) 498 // << "), result= (" <<begam<<", "<< interp<<")" << std::endl; 499 // 500 //if (TMath::IsNaN(interp))std::cout << "NaN found: bg= " << begam << ", Opt= " << Opt << std::endl; 501 if (begam < bg[0]) interp = 0.0; 502 //std::cout << "bg= " << begam << ", Opt= " << Opt <<", interp = "<<interp<< std::endl; 503 return 100*interp; 504 } 505 // 506 Double_t TrkUtil::funcNcl(Double_t *xp, Double_t *par){ 507 Double_t bg = xp[0]; 508 return Nclusters(bg); 509 } 510 // 511 void TrkUtil::SetGasMix(Int_t Opt) 512 { 513 if (Opt < 0 || Opt > 3) 514 { 515 std::cout << "TrkUtil::SetGasMix Gas option not allowed. No action." 516 << std::endl; 517 } 518 else fGasSel = Opt; 519 } -
external/TrackCovariance/TrkUtil.h
r3cfe61d r64294db 6 6 #include <TVectorD.h> 7 7 #include <TMatrixDSym.h> 8 #include <TRandom.h> 8 9 // 9 10 // … … 15 16 protected: 16 17 Double_t fBz; // Solenoid magnetic field 18 // 19 Int_t fGasSel; // Gas selection: 0: He-Iso, 1: He, 2:Ar-Eth, 3: Ar 20 Double_t fRmin; // Lower DCH radius 21 Double_t fRmax; // Higher DCH radius 22 Double_t fZmin; // Lower DCH z 23 Double_t fZmax; // Higher DCH z 17 24 // 18 25 // Service routines … … 31 38 TVectorD ParToILC(TVectorD Par); // Parameter conversion 32 39 TMatrixDSym CovToILC(TMatrixDSym Cov); // Covariance conversion 40 // 33 41 34 42 public: … … 60 68 static TVectorD ParToMm(TVectorD Par); // Parameter conversion 61 69 static TMatrixDSym CovToMm(TMatrixDSym Cov); // Covariance conversion 62 70 // 71 // Cluster counting in gas 72 // 73 // Define gas volume (units = meters) 74 void SetDchBoundaries(Double_t Rmin, Double_t Rmax, Double_t Zmin, Double_t Zmax); 75 // Gas mixture selection 76 void SetGasMix(Int_t Opt); 77 // Get number of ionization clusters 78 Bool_t IonClusters(Double_t &Ncl, Double_t mass, TVectorD Par); 79 Double_t Nclusters(Double_t bgam); // mean clusters/meter vs beta*gamma 80 static Double_t Nclusters(Double_t bgam, Int_t Opt); // mean clusters/meter vs beta*gamma 81 Double_t funcNcl(Double_t *xp, Double_t *par); 82 Double_t TrkLen(TVectorD Par); // Track length inside chamber 63 83 }; 64 84 -
external/TrackCovariance/VertexFit.cc
r3cfe61d r64294db 8 8 // Constructors 9 9 // 10 // Empty 10 // 11 // Empty construction (to be used when adding tracks later with AddTrk() ) 11 12 VertexFit::VertexFit() 12 13 { 13 14 fNtr = 0; 15 fRold = -1.0; 14 16 fVtxDone = kFALSE; 15 17 fVtxCst = kFALSE; … … 19 21 fcovXv.ResizeTo(3, 3); 20 22 } 21 // Parameters and covariances 23 // 24 // Build from list of parameters and covariances 22 25 VertexFit::VertexFit(Int_t Ntr, TVectorD** trkPar, TMatrixDSym** trkCov) 23 26 { 24 27 fNtr = Ntr; 28 fRold = -1.0; 25 29 fVtxDone = kFALSE; 26 30 fVtxCst = kFALSE; … … 30 34 fcovXv.ResizeTo(3, 3); 31 35 // 32 fPar = trkPar; 33 fCov = trkCov; 34 fChi2List.ResizeTo(Ntr); 35 // 36 ffi = new Double_t[Ntr]; // Fit phases 37 fx0i = new TVectorD * [Ntr]; // Track expansion points 38 for (Int_t i = 0; i < Ntr; i++) fx0i[i] = new TVectorD(3); 39 fai = new TVectorD * [Ntr]; // dx/dphi 40 for (Int_t i = 0; i < Ntr; i++) fai[i] = new TVectorD(3); 41 fa2i = new Double_t[Ntr]; // a'Wa 42 fDi = new TMatrixDSym * [Ntr]; // W-WBW 43 for (Int_t i = 0; i < Ntr; i++) fDi[i] = new TMatrixDSym(3); 44 fWi = new TMatrixDSym * [Ntr]; // (ACA')^-1 45 for (Int_t i = 0; i < Ntr; i++) fWi[i] = new TMatrixDSym(3); 46 fWinvi = new TMatrixDSym * [Ntr]; // ACA' 47 for (Int_t i = 0; i < Ntr; i++) fWinvi[i] = new TMatrixDSym(3); 48 } 49 // ObsTrk list 36 for (Int_t i = 0; i < fNtr; i++) 37 { 38 TVectorD pr = *trkPar[i]; 39 fPar.push_back(new TVectorD(pr)); 40 TMatrixDSym cv = *trkCov[i]; 41 fCov.push_back(new TMatrixDSym(cv)); 42 } 43 fChi2List.ResizeTo(fNtr); 44 // 45 } 46 // 47 // Build from ObsTrk list of tracks 50 48 VertexFit::VertexFit(Int_t Ntr, ObsTrk** track) 51 49 { 52 50 fNtr = Ntr; 51 fRold = -1.0; 53 52 fVtxDone = kFALSE; 54 53 fVtxCst = kFALSE; … … 58 57 fcovXv.ResizeTo(3, 3); 59 58 // 60 fPar = new TVectorD * [Ntr]; 61 fCov = new TMatrixDSym * [Ntr]; 62 fChi2List.ResizeTo(Ntr); 63 for (Int_t i = 0; i < Ntr; i++) 64 { 65 fPar[i] = new TVectorD(track[i]->GetObsPar()); 66 fCov[i] = new TMatrixDSym(track[i]->GetCov()); 67 } 68 // 69 ffi = new Double_t[Ntr]; // Fit phases 70 fx0i = new TVectorD * [Ntr]; // Track expansion points 71 for (Int_t i = 0; i < Ntr; i++) fx0i[i] = new TVectorD(3); 72 fai = new TVectorD * [Ntr]; // dx/dphi 73 for (Int_t i = 0; i < Ntr; i++) fai[i] = new TVectorD(3); 74 fa2i = new Double_t[Ntr]; // a'Wa 75 fDi = new TMatrixDSym * [Ntr]; // W-WBW 76 for (Int_t i = 0; i < Ntr; i++) fDi[i] = new TMatrixDSym(3); 77 fWi = new TMatrixDSym * [Ntr]; // (ACA')^-1 78 for (Int_t i = 0; i < Ntr; i++) fWi[i] = new TMatrixDSym(3); 79 fWinvi = new TMatrixDSym * [Ntr]; // ACA' 80 for (Int_t i = 0; i < Ntr; i++) fWinvi[i] = new TMatrixDSym(3); 59 fChi2List.ResizeTo(fNtr); 60 for (Int_t i = 0; i < fNtr; i++) 61 { 62 fPar.push_back(new TVectorD(track[i]->GetObsPar())); 63 fCov.push_back(new TMatrixDSym(track[i]->GetCov())); 64 } 81 65 } 82 66 // 83 67 // Destructor 68 // 69 void VertexFit::ResetWrkArrays() 70 { 71 Int_t N = (Int_t)ffi.size(); 72 for (Int_t i = 0; i < N; i++) 73 { 74 if (fx0i[i]) { fx0i[i]->Clear(); delete fx0i[i]; } 75 if (fai[i]) { fai[i]->Clear(); delete fai[i]; } 76 if (fDi[i]) { fDi[i]->Clear(); delete fDi[i]; } 77 if (fWi[i]) { fWi[i]->Clear(); delete fWi[i]; } 78 if (fWinvi[i]){ fWinvi[i]->Clear(); delete fWinvi[i]; } 79 } 80 fa2i.clear(); 81 fx0i.clear(); 82 fai.clear(); 83 fDi.clear(); 84 fWi.clear(); 85 fWinvi.clear(); 86 } 84 87 VertexFit::~VertexFit() 85 88 { 86 fxCst.Clear(); 87 fCovCst.Clear(); 88 fXv.Clear(); 89 fcovXv.Clear(); 90 fChi2List.Clear(); 89 fxCst.Clear(); 90 fCovCst.Clear(); 91 fXv.Clear(); 92 fcovXv.Clear(); 93 fChi2List.Clear(); 91 94 // 92 95 for (Int_t i = 0; i < fNtr; i++) 93 96 { 94 fPar[i]->Clear(); 95 fCov[i]->Clear(); 96 // 97 fx0i[i]->Clear(); delete fx0i[i]; 98 fai[i]->Clear(); delete fai[i]; 99 fDi[i]->Clear(); delete fDi[i]; 100 fWi[i]->Clear(); delete fWi[i]; 101 fWinvi[i]->Clear(); delete fWinvi[i]; 102 } 97 fPar[i]->Clear(); delete fPar[i]; 98 fCov[i]->Clear(); delete fCov[i]; 99 } 100 fPar.clear(); 101 fCov.clear(); 102 // 103 ResetWrkArrays(); 104 ffi.clear(); 103 105 fNtr = 0; 104 delete[] fPar; 105 delete[] fCov; 106 delete[] ffi; 107 delete[] fa2i; 108 delete[] fx0i; 109 delete[] fai; 110 delete[] fDi; 111 delete[] fWi; 112 delete[] fWinvi; 113 } 114 // 115 Double_t VertexFit::FastRv1(TVectorD p1, TVectorD p2) 116 { 117 // 118 // Find radius of intersection between two tracks in the transverse plane 106 } 107 // 108 Double_t VertexFit::FastRv(TVectorD p1, TVectorD p2) 109 { 110 // 111 // Find radius of minimum distance between two tracks 119 112 // 120 113 // p = (D,phi, C, z0, ct) … … 122 115 // Define arrays 123 116 // 124 Double_t r1 = 1.0 / p1(2); 125 Double_t r2 = 1.0 / p2(2); 117 Double_t C1 = p1(2); 118 Double_t C2 = p2(2); 119 Double_t ph1 = p1(1); 120 Double_t ph2 = p2(1); 126 121 TVectorD x0 = Fill_x0(p1); 127 122 TVectorD y0 = Fill_x0(p2); 128 123 TVectorD n = Fill_a(p1, 0.0); 129 n *= r1;124 n *= (2*C1); 130 125 TVectorD k = Fill_a(p2, 0.0); 131 k *= r2;126 k *= (2*C2); 132 127 // 133 128 // Setup and solve linear system … … 150 145 TVectorD X = x0 + smin(0) * n; 151 146 TVectorD Y = y0 + smin(1) * k; 152 Double_t R1 = TMath::Sqrt(X(0) * X(0) + X(1) * X(1)); 153 Double_t R2 = TMath::Sqrt(Y(0) * Y(0) + Y(1) * Y(1)); 154 // 155 return 0.5 * (R1 + R2); 156 } 157 Double_t VertexFit::FastRv(TVectorD p1, TVectorD p2) 158 { 159 // 160 // Find radius of minimum distance 161 // 162 // p = (D,phi, C) 163 // 164 // Solving matrix 165 TMatrixDSym H(2); 166 H(0, 0) = -TMath::Cos(p2(1)); 167 H(0, 1) = TMath::Cos(p1(1)); 168 H(1, 0) = -TMath::Sin(p2(1)); 169 H(1, 1) = TMath::Sin(p1(1)); 170 Double_t Det = TMath::Sin(p2(1) - p1(1)); 171 H *= 1.0 / Det; 172 // 173 // Convergence parameters 174 Int_t Ntry = 0; 175 Int_t NtryMax = 100; 176 Double_t eps = 1000.; 177 Double_t epsMin = 1.0e-6; 178 // 179 // Vertex finding loop 180 // 181 TVectorD cterm(2); 182 cterm(0) = p1(0); 183 cterm(1) = p2(0); 184 TVectorD xv(2); 185 Double_t R = 1000.; 186 while (eps > epsMin) 187 { 188 xv = H * cterm; 189 Ntry++; 190 if (Ntry > NtryMax) 147 // 148 // Higher order corrections 149 X(0) += -C1 * smin(0) * smin(0) * TMath::Sin(ph1); 150 X(1) += C1 * smin(0) * smin(0) * TMath::Cos(ph1); 151 Y(0) += -C2 * smin(1) * smin(1) * TMath::Sin(ph2); 152 Y(1) += C2 * smin(1) * smin(1) * TMath::Cos(ph2); 153 // 154 TVectorD Xavg = 0.5 * (X + Y); 155 // 156 // 157 return TMath::Sqrt(Xavg(0)*Xavg(0)+Xavg(1)*Xavg(1)); 158 } 159 // 160 // Starting radius determination 161 Double_t VertexFit::StartRadius() 162 { 163 // 164 // Maximum impact parameter 165 Double_t Rd = 0; 166 for (Int_t i = 0; i < fNtr; i++) 167 { 168 TVectorD par = *fPar[i]; 169 Double_t Dabs = TMath::Abs(par(0)); 170 if (Dabs > Rd)Rd = Dabs; 171 } 172 //----------------------------- 173 // 174 // Find track pair with phi difference closest to pi/2 175 Int_t isel = 0; Int_t jsel = 0; // selected track indices 176 Double_t dSinMax = 0.0; // Max phi difference 177 for (Int_t i = 0; i < fNtr - 1; i++) 178 { 179 TVectorD pari = *fPar[i]; 180 Double_t phi1 = pari(1); 181 182 for (Int_t j = i + 1; j < fNtr; j++) 191 183 { 192 std::cout << "FastRv: maximum number of iteration reached" << std::endl; 193 break; 184 TVectorD parj = *fPar[j]; 185 Double_t phi2 = parj(1); 186 Double_t Sindphi = TMath::Abs(TMath::Sin(phi2 - phi1)); 187 if (Sindphi > dSinMax) 188 { 189 isel = i; jsel = j; 190 dSinMax = Sindphi; 191 } 194 192 } 195 Double_t Rnew = TMath::Sqrt(xv(0) * xv(0) + xv(1) * xv(1)); 196 eps = Rnew - R; 197 R = Rnew; 198 cterm(0) = p1(2) * R * R; 199 cterm(1) = p2(2) * R * R; 200 } 193 } 194 // 195 //------------------------------------------ 196 // 197 // Find radius of minimum distrance between tracks 198 TVectorD p1 = *fPar[isel]; 199 TVectorD p2 = *fPar[jsel]; 200 Double_t R = FastRv(p1, p2); 201 // 202 R = 0.9 * R + 0.1 * Rd; // Protect for overshoot 201 203 // 202 204 return R; 203 205 } 204 205 TMatrixDSym VertexFit::RegInv3(TMatrixDSym& Smat0) 206 { 207 // 208 // Regularized inversion of symmetric 3x3 matrix with positive diagonal elements 209 // 210 TMatrixDSym Smat = Smat0; 211 Int_t N = Smat.GetNrows(); 212 if (N != 3) 213 { 214 std::cout << "RegInv3 called with matrix size != 3. Abort & return standard inversion." << std::endl; 215 return Smat.Invert(); 216 } 217 TMatrixDSym D(N); D.Zero(); 218 Bool_t dZero = kTRUE; // No elements less or equal 0 on the diagonal 219 for (Int_t i = 0; i < N; i++) if (Smat(i, i) <= 0.0)dZero = kFALSE; 220 if (dZero) 221 { 222 for (Int_t i = 0; i < N; i++) D(i, i) = 1.0 / TMath::Sqrt(Smat(i, i)); 223 TMatrixDSym RegMat = Smat.Similarity(D); 224 TMatrixDSym Q(2); 225 for (Int_t i = 0; i < 2; i++) 206 // 207 // Regularized symmetric matrix inversion 208 // 209 TMatrixDSym VertexFit::RegInv(TMatrixDSym& Min) 210 { 211 TMatrixDSym M = Min; // Decouple from input 212 Int_t N = M.GetNrows(); // Matrix size 213 TMatrixDSym D(N); D.Zero(); // Normaliztion matrix 214 TMatrixDSym R(N); // Normarized matrix 215 TMatrixDSym Rinv(N); // Inverse of R 216 TMatrixDSym Minv(N); // Inverse of M 217 // 218 // Check for 0's and normalize 219 for (Int_t i = 0; i < N; i++) 220 { 221 if (M(i, i) != 0.0) D(i, i) = 1. / TMath::Sqrt(TMath::Abs(M(i, i))); 222 else D(i, i) = 1.0; 223 } 224 R = M.Similarity(D); 225 // 226 // Recursive algorithms stops when N = 2 227 // 228 //**************** 229 // case N = 2 *** 230 //**************** 231 if (N == 2) 232 { 233 Double_t det = R(0, 0) * R(1, 1) - R(0, 1) * R(1, 0); 234 if (det == 0) 226 235 { 227 for (Int_t j = 0; j < 2; j++)Q(i, j) = RegMat(i, j); 236 std::cout << "VertexFit::RegInv: null determinant for N = 2" << std::endl; 237 Rinv.Zero(); // Return null matrix 228 238 } 229 Double_t Det = 1 - Q(0, 1) * Q(1, 0); 230 TMatrixDSym H(2); 231 H = Q; 232 H(0, 1) = -Q(0, 1); 233 H(1, 0) = -Q(1, 0); 234 TVectorD p(2); 235 p(0) = RegMat(0, 2); 236 p(1) = RegMat(1, 2); 237 Double_t pHp = H.Similarity(p); 238 Double_t h = pHp - Det; 239 // 240 TMatrixDSym pp(2); pp.Rank1Update(p); 241 TMatrixDSym F = (h * H) - pp.Similarity(H); 242 F *= 1.0 / Det; 243 TVectorD b = H * p; 244 TMatrixDSym InvReg(3); 245 for (Int_t i = 0; i < 2; i++) 239 else 246 240 { 247 InvReg(i, 2) = b(i); 248 InvReg(2, i) = b(i); 249 for (Int_t j = 0; j < 2; j++) InvReg(i, j) = F(i, j); 241 // invert matrix 242 Rinv(0, 0) = R(1, 1); 243 Rinv(0, 1) = -R(0, 1); 244 Rinv(1, 0) = Rinv(0, 1); 245 Rinv(1, 1) = R(0, 0); 246 Rinv *= 1. / det; 250 247 } 251 InvReg(2, 2) = -Det; 252 // 253 InvReg *= 1.0 / h; 254 // 255 // 256 return InvReg.Similarity(D); 257 } 248 } 249 //**************** 250 // case N > 2 *** 251 //**************** 258 252 else 259 253 { 260 D.Zero(); 261 for (Int_t i = 0; i < N; i++) D(i, i) = 1.0 / TMath::Sqrt(TMath::Abs(Smat(i, i))); 262 TMatrixDSym RegMat = Smat.Similarity(D); 263 RegMat.Invert(); 264 return RegMat.Similarity(D); 265 } 254 // Break up matrix 255 TMatrixDSym Q = R.GetSub(0, N - 2, 0, N - 2); // Upper left 256 TVectorD p(N - 1); 257 for (Int_t i = 0; i < N - 1; i++)p(i) = R(N - 1, i); 258 Double_t q = R(N - 1, N - 1); 259 //Invert pieces and re-assemble 260 TMatrixDSym Ainv(N - 1); 261 TMatrixDSym A(N - 1); 262 if (TMath::Abs(q) > 1.0e-15) 263 { 264 // Case |q| > 0 265 Ainv.Rank1Update(p, -1.0 / q); 266 Ainv += Q; 267 A = RegInv(Ainv); // Recursive call 268 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 269 // 270 TVectorD b = (-1.0 / q) * (A * p); 271 for (Int_t i = 0; i < N - 1; i++) 272 { 273 Rinv(N - 1, i) = b(i); 274 Rinv(i, N - 1) = b(i); 275 } 276 // 277 Double_t pdotb = 0.; 278 for (Int_t i = 0; i < N - 1; i++)pdotb += p(i) * b(i); 279 Double_t c = (1.0 - pdotb) / q; 280 Rinv(N - 1, N - 1) = c; 281 } 282 else 283 { 284 // case q = 0 285 TMatrixDSym Qinv = RegInv(Q); // Recursive call 286 Double_t a = Qinv.Similarity(p); 287 Double_t c = -1.0 / a; 288 Rinv(N - 1, N - 1) = c; 289 // 290 TVectorD b = (1.0 / a) * (Qinv * p); 291 for (Int_t i = 0; i < N - 1; i++) 292 { 293 Rinv(N - 1, i) = b(i); 294 Rinv(i, N - 1) = b(i); 295 } 296 // 297 A.Rank1Update(p, -1 / a); 298 A += Q; 299 A.Similarity(Qinv); 300 TMatrixDSub(Rinv, 0, N - 2, 0, N - 2) = A; 301 } 302 } 303 Minv = Rinv.Similarity(D); 304 return Minv; 266 305 } 267 306 // … … 381 420 } 382 421 // 383 void VertexFit::VertexFinder() 384 { 385 // 386 // Vertex fit (units are meters) 422 void VertexFit::UpdateTrkArrays(Int_t i) 423 { 424 // 425 // Get track parameters and their covariance 426 TVectorD par = *fPar[i]; 427 TMatrixDSym Cov = *fCov[i]; 428 // 429 // Fill all track related work arrays arrays 430 Double_t fs = ffi[i]; // Get phase 431 TVectorD xs = Fill_x(par, fs); 432 fx0i.push_back(new TVectorD(xs)); // Start helix position 433 // 434 TMatrixD A = Fill_A(par, fs); // A = dx/da = derivatives wrt track parameters 435 TMatrixDSym Winv = Cov.Similarity(A); // W^-1 = A*C*A' 436 fWinvi.push_back(new TMatrixDSym(Winv)); // Store W^-1 matrix 437 // 438 TMatrixDSym W = RegInv(Winv); // W = (A*C*A')^-1 439 fWi.push_back(new TMatrixDSym(W)); // Store W matrix 440 // 441 TVectorD a = Fill_a(par, fs); // a = dx/ds = derivatives wrt phase 442 fai.push_back(new TVectorD(a)); // Store a 443 // 444 Double_t a2 = W.Similarity(a); 445 fa2i.push_back(a2); // Store a2 446 // 447 // Build D matrix 448 TMatrixDSym B(3); 449 B.Rank1Update(a, -1. / a2); 450 B.Similarity(W); 451 TMatrixDSym Ds = W + B; // D matrix 452 fDi.push_back(new TMatrixDSym(Ds)); // Store D matrix 453 } 454 // 455 void VertexFit::VertexFitter() 456 { 457 //std::cout << "VertexFitter: just in" << std::endl; 458 if (fNtr < 2) 459 { 460 std::cout << "VertexFit::VertexFitter - Method called with less than 2 tracks - Aborting " << std::endl; 461 std::exit(1); 462 } 463 // 464 // Vertex fit 387 465 // 388 466 // Initial variable definitions 389 467 TVectorD x(3); 390 468 TMatrixDSym covX(3); 391 TVectorD x0(3); for (Int_t v = 0; v < 3; v++)x0(v) = 100.; // set to large value392 469 Double_t Chi2 = 0; 393 // 394 // Stored quantities 395 Double_t* fi = new Double_t[fNtr]; // Phases 396 TVectorD** x0i = new TVectorD * [fNtr]; // Track expansion point 397 TVectorD** ai = new TVectorD * [fNtr]; // dx/dphi 398 Double_t* a2i = new Double_t[fNtr]; // a'Wa 399 TMatrixDSym** Di = new TMatrixDSym * [fNtr]; // W-WBW 400 TMatrixDSym** Wi = new TMatrixDSym * [fNtr]; // (ACA')^-1 401 TMatrixDSym** Winvi = new TMatrixDSym * [fNtr]; // ACA' 402 // 403 // vertex radius approximation 404 // Maximum impact parameter 405 Double_t Rd = 0; 406 for (Int_t i = 0; i < fNtr; i++) 407 { 408 //ObsTrk* t = tracks[i]; 409 TVectorD par = *fPar[i]; 410 Double_t Dabs = TMath::Abs(par(0)); 411 if (Dabs > Rd)Rd = Dabs; 412 } 413 // 414 // Find track pair with largest phi difference 415 Int_t isel = 0; Int_t jsel = 0; // selected track indices 416 Double_t dphiMax = 0.0; // Max phi difference 417 418 for (Int_t i = 0; i < fNtr - 1; i++) 419 { 420 //ObsTrk* ti = tracks[i]; 421 TVectorD pari = *fPar[i]; 422 Double_t phi1 = pari(1); 423 424 for (Int_t j = i + 1; j < fNtr; j++) 425 { 426 //ObsTrk* tj = tracks[j]; 427 TVectorD parj = *fPar[j]; 428 Double_t phi2 = parj(1); 429 Double_t dphi = TMath::Abs(phi2 - phi1); 430 if (dphi > TMath::Pi())dphi = TMath::TwoPi() - dphi; 431 if (dphi > dphiMax) 432 { 433 isel = i; jsel = j; 434 dphiMax = dphi; 435 } 436 } 437 } 438 // 439 TVectorD p1 = *fPar[isel]; 440 TVectorD p2 = *fPar[jsel]; 441 Double_t R = FastRv1(p1, p2); 442 if (R > 1000.0) R = Rd; 443 R = 0.9 * R + 0.1 * Rd; 470 TVectorD x0 = fXv; // If previous fit done 471 if (fRold < 0.0)for (Int_t i = 0; i < 3; i++)x0(i) = 1000.; // Set to arbitrary large value if not 472 // 473 // Starting vertex radius approximation 474 // 475 Double_t R = fRold; // Use previous fit if available 476 if (R < 0.0) R = StartRadius(); // Rough vertex estimate 444 477 // 445 478 // Iteration properties … … 450 483 Double_t epsi = 1000.; 451 484 // 485 // Iteration loop 452 486 while (epsi > eps && Ntry < TryMax) // Iterate until found vertex is stable 453 487 { 488 // Initialize arrays 454 489 x.Zero(); 455 490 TVectorD cterm(3); TMatrixDSym H(3); TMatrixDSym DW1D(3); 456 covX.Zero(); // Reset vertex covariance491 covX.Zero(); // Reset vertex covariance 457 492 cterm.Zero(); // Reset constant term 458 493 H.Zero(); // Reset H matrix 459 494 DW1D.Zero(); 460 495 // 461 //std::cout << "VertexFinder: start loop on tracks" << std::endl; 496 // Reset work arrays 497 // 498 ResetWrkArrays(); 499 // 500 // Start loop on tracks 501 // 462 502 for (Int_t i = 0; i < fNtr; i++) 463 503 { … … 465 505 TVectorD par = *fPar[i]; 466 506 TMatrixDSym Cov = *fCov[i]; 467 507 // 508 // For first iteration only 468 509 Double_t fs; 469 510 if (Ntry <= 0) // Initialize all phases on first pass … … 473 514 Double_t arg = TMath::Max(1.0e-6, (R * R - D * D) / (1 + 2 * C * D)); 474 515 fs = 2 * TMath::ASin(C * TMath::Sqrt(arg)); 475 f i[i] = fs;516 ffi.push_back(fs); 476 517 } 477 518 // 478 // Starting values 479 // 480 fs = fi[i]; // Get phase 481 //std::cout << "VertexFinder: phase fs set" << std::endl; 482 TVectorD xs = Fill_x(par, fs); 483 //std::cout << "VertexFinder: position xs set" << std::endl; 484 x0i[i] = new TVectorD(xs); // Start helix position 485 //std::cout << "VertexFinder: position x0i stored" << std::endl; 486 // W matrix = (A*C*A')^-1; W^-1 = A*C*A' 487 TMatrixD A = Fill_A(par, fs); // A = dx/da = derivatives wrt track parameters 488 //std::cout << "VertexFinder: derivatives A set" << std::endl; 489 TMatrixDSym Winv = Cov.Similarity(A); // W^-1 = A*C*A' 490 Winvi[i] = new TMatrixDSym(Winv); // Store W^-1 matrix 491 //std::cout << "VertexFinder: Winvi stored" << std::endl; 492 TMatrixDSym W = RegInv3(Winv); // W = (A*C*A')^-1 493 Wi[i] = new TMatrixDSym(W); // Store W matrix 494 //std::cout << "VertexFinder: Wi stored" << std::endl; 495 TVectorD a = Fill_a(par, fs); // a = dx/ds = derivatives wrt phase 496 //std::cout << "VertexFinder: derivatives a set" << std::endl; 497 ai[i] = new TVectorD(a); // Store a 498 //std::cout << "VertexFinder: derivatives a stored" << std::endl; 499 Double_t a2 = W.Similarity(a); 500 a2i[i] = a2; // Store a2 501 // Build D matrix 502 TMatrixDSym B(3); 503 504 B.Rank1Update(a, 1.0); 505 B *= -1. / a2; 506 B.Similarity(W); 507 TMatrixDSym Ds = W + B; // D matrix 508 Di[i] = new TMatrixDSym(Ds); // Store D matrix 509 //std::cout << "VertexFinder: matrix Di stored" << std::endl; 519 // Update track related arrays 520 // 521 UpdateTrkArrays(i); 522 TMatrixDSym Ds = *fDi[i]; 523 TMatrixDSym Winv = *fWinvi[i]; 510 524 TMatrixDSym DsW1Ds = Winv.Similarity(Ds); // Service matrix to calculate covX 525 // 526 // Update global arrays 511 527 DW1D += DsW1Ds; 512 528 // Update hessian 513 529 H += Ds; 514 530 // update constant term 531 TVectorD xs = *fx0i[i]; 515 532 cterm += Ds * xs; 516 533 } // End loop on tracks 517 534 // 518 535 // update vertex position 519 TMatrixDSym H1 = RegInv 3(H);536 TMatrixDSym H1 = RegInv(H); 520 537 x = H1 * cterm; 521 // std::cout << "VertexFinder: x vertex set" << std::endl;538 // 522 539 // Update vertex covariance 523 540 covX = DW1D.Similarity(H1); 524 // std::cout << "VertexFinder: cov vertex set" << std::endl;541 // 525 542 // Update phases and chi^2 526 543 Chi2 = 0.0; 527 544 for (Int_t i = 0; i < fNtr; i++) 528 545 { 529 TVectorD lambda = (* Di[i]) * (*x0i[i] - x);530 TMatrixDSym Wm1 = * Winvi[i];546 TVectorD lambda = (*fDi[i]) * (*fx0i[i] - x); 547 TMatrixDSym Wm1 = *fWinvi[i]; 531 548 fChi2List(i) = Wm1.Similarity(lambda); 532 549 Chi2 += fChi2List(i); 533 TVectorD a = * ai[i];534 TVectorD b = (* Wi[i]) * (x - *x0i[i]);535 for (Int_t j = 0; j < 3; j++)f i[i] += a(j) * b(j) /a2i[i];550 TVectorD a = *fai[i]; 551 TVectorD b = (*fWi[i]) * (x - (*fx0i[i])); 552 for (Int_t j = 0; j < 3; j++)ffi[i] += a(j) * b(j) / fa2i[i]; 536 553 } 537 538 554 // 539 555 TVectorD dx = x - x0; 540 556 x0 = x; 541 557 // update vertex stability 542 TMatrixDSym Hess = RegInv 3(covX);558 TMatrixDSym Hess = RegInv(covX); 543 559 epsi = Hess.Similarity(dx); 544 560 Ntry++; … … 546 562 // Store result 547 563 // 548 fXv = x; // Vertex position564 fXv = x; // Vertex position 549 565 fcovXv = covX; // Vertex covariance 550 566 fChi2 = Chi2; // Vertex fit Chi2 551 // 552 // Store intermediate data 553 // 554 555 //std::cout << "VertexFinder: before store intermediate data" << std::endl; 556 for (Int_t i = 0; i < fNtr; i++) 557 { 558 //std::cout << "VertexFinder: inside store intermediate data" << std::endl; 559 //std::cout << "i = " << i << ", fi[i] = " << fi[i] << std::endl; 560 //std::cout << "i = " << i << ", ffi[i] = " << ffi[i] << std::endl; 561 ffi[i] = fi[i]; // Fit phases 562 //std::cout << "VertexFinder: fi stored" << std::endl; 563 fx0i[i] = x0i[i]; // Track expansion points 564 //std::cout << "VertexFinder: x0i stored" << std::endl; 565 fai[i] = ai[i]; // dx/dphi 566 //std::cout << "VertexFinder: ai stored" << std::endl; 567 fa2i[i] = a2i[i]; // a'Wa 568 //std::cout << "VertexFinder: a2i stored" << std::endl; 569 fDi[i] = Di[i]; // W-WBW 570 //std::cout << "VertexFinder: Di stored" << std::endl; 571 fWi[i] = Wi[i]; // (ACA')^-1 572 //std::cout << "VertexFinder: Wi stored" << std::endl; 573 fWinvi[i] = Winvi[i]; // ACA' 574 //std::cout << "VertexFinder: Winvi stored" << std::endl; 575 } 576 //std::cout << "Iteration " << Ntry << " completed - Before cleanup" << std::endl; 577 // 578 // Cleanup 579 // 580 for (Int_t i = 0; i < fNtr; i++) 581 { 582 x0i[i]->Clear(); 583 Winvi[i]->Clear(); 584 Wi[i]->Clear(); 585 ai[i]->Clear(); 586 Di[i]->Clear(); 587 588 delete x0i[i]; 589 delete Winvi[i]; 590 delete Wi[i]; 591 delete ai[i]; 592 delete Di[i]; 593 } 594 595 //std::cout << "Iteration " << Ntry << " completed - After cleanup" << std::endl; 596 } 597 // 598 fVtxDone = kTRUE; // Set fitting completion flag 599 // 600 delete[] fi; // Phases 601 delete[] x0i; // Track expansion point 602 delete[] ai; // dx/dphi 603 delete[] a2i; // a'Wa 604 delete[] Di; // W-WBW 605 delete[] Wi; // (ACA')^-1 606 delete[] Winvi; // ACA' 607 } 608 // 567 } // end of iteration loop 568 // 569 fVtxDone = kTRUE; // Set fit completion flag 570 fRold = TMath::Sqrt(fXv(0)*fXv(0) + fXv(1)*fXv(1)); // Store fit radius 571 // 572 } 573 // 574 // Return fit vertex 609 575 TVectorD VertexFit::GetVtx() 610 576 { 611 //std::cout << "GetVtx: flag set to " << fVtxDone << std::endl; 612 if (!fVtxDone)VertexFinder(); 577 if (!fVtxDone) VertexFitter(); 613 578 return fXv; 614 579 } 615 580 // 581 // Return fit vertex covariance 616 582 TMatrixDSym VertexFit::GetVtxCov() 617 583 { 618 if (!fVtxDone) VertexFinder();584 if (!fVtxDone) VertexFitter(); 619 585 return fcovXv; 620 586 } 621 587 // 588 // Return fit vertex chi2 622 589 Double_t VertexFit::GetVtxChi2() 623 590 { 624 if (!fVtxDone) VertexFinder();591 if (!fVtxDone) VertexFitter(); 625 592 return fChi2; 626 593 } 627 594 // 595 // Return array of chi2 contributions from each track 628 596 TVectorD VertexFit::GetVtxChi2List() 629 597 { 630 if (!fVtxDone) VertexFinder();598 if (!fVtxDone) VertexFitter(); 631 599 return fChi2List; 632 600 } … … 638 606 } 639 607 // 640 void VertexFit::AddTrk(TVectorD par, TMatrixDSym Cov) // Add track to input list 641 { 642 std::cout << "VertexFit::AddTrk: Not implemented yet" << std::endl; 643 } 644 void VertexFit::RemoveTrk(Int_t iTrk) // Remove iTrk track 645 { 646 std::cout << "VertexFit::RemoveTrk: Not implemented yet" << std::endl; 647 } 608 // Adding tracks one by one 609 void VertexFit::AddTrk(TVectorD *par, TMatrixDSym *Cov) // Add track to input list 610 { 611 fNtr++; 612 fChi2List.ResizeTo(fNtr); // Resize chi2 array 613 fPar.push_back(par); // add new track 614 fCov.push_back(Cov); 615 // 616 // Reset previous vertex temp arrays 617 ResetWrkArrays(); 618 ffi.clear(); 619 fVtxDone = kFALSE; // Reset vertex done flag 620 } 621 // 622 // Removing tracks one by one 623 void VertexFit::RemoveTrk(Int_t iTrk) // Remove iTrk track 624 { 625 fNtr--; 626 fChi2List.Clear(); 627 fChi2List.ResizeTo(fNtr); // Resize chi2 array 628 fPar.erase(fPar.begin() + iTrk); // Remove track 629 fCov.erase(fCov.begin() + iTrk); 630 // 631 // Reset previous vertex temp arrays 632 ResetWrkArrays(); 633 ffi.clear(); 634 fVtxDone = kFALSE; // Reset vertex done flag 635 } -
external/TrackCovariance/VertexFit.h
r3cfe61d r64294db 7 7 #include <TMatrixDSym.h> 8 8 #include "ObsTrk.h" 9 #include <vector> 9 10 #include <iostream> 10 11 // … … 21 22 // Inputs 22 23 Int_t fNtr; // Number of tracks 23 TVectorD** fPar;// Input parameter array24 TMatrixDSym** fCov;// Input parameter covariances24 std::vector<TVectorD*> fPar; // Input parameter array 25 std::vector<TMatrixDSym*> fCov;// Input parameter covariances 25 26 // Constraints 26 27 Bool_t fVtxCst; // Vertex constraint flag 27 28 TVectorD fxCst; // Constraint value 28 TMatrixDSym fCovCst; // Constraint covariance29 TMatrixDSym fCovCst; // Constraint covariance 29 30 // 30 31 // Results 31 Bool_t fVtxDone; // Flag vertex fit completed 32 Bool_t fVtxDone; // Flag vertex fit completed 33 Double_t fRold; // Current value of vertex radius 32 34 TVectorD fXv; // Found vertex 33 35 TMatrixDSym fcovXv; // Vertex covariance … … 35 37 TVectorD fChi2List; // List of Chi2 contributions 36 38 // 37 // Transientarrays38 Double_t*ffi; // Fit phases39 TVectorD** fx0i;// Track expansion points40 TVectorD**fai; // dx/dphi41 Double_t*fa2i; // a'Wa42 TMatrixDSym**fDi; // W-WBW43 TMatrixDSym**fWi; // (ACA')^-144 TMatrixDSym**fWinvi; // ACA'39 // Work arrays 40 std::vector<Double_t> ffi; // Fit phases 41 std::vector<TVectorD*> fx0i; // Track expansion points 42 std::vector<TVectorD*> fai; // dx/dphi 43 std::vector<Double_t> fa2i; // a'Wa 44 std::vector<TMatrixDSym*> fDi; // W-WBW 45 std::vector<TMatrixDSym*> fWi; // (ACA')^-1 46 std::vector<TMatrixDSym*> fWinvi; // ACA' 45 47 // 46 48 // Service routines 47 Double_t FastRv1(TVectorD p1, TVectorD p2); // Fast vertex radius determination 49 //void InitWrkArrays(); // Initializations 50 void ResetWrkArrays(); // Clear work arrays 51 Double_t StartRadius(); // Starting vertex radius determination 48 52 Double_t FastRv(TVectorD p1, TVectorD p2); // Fast vertex radius determination 49 TMatrixDSym RegInv 3(TMatrixDSym& Smat0);// Regularized 3D matrix inversion50 TMatrixD Fill_A(TVectorD par, Double_t phi); // Derivative of track position wrt track parameters51 TVectorD Fill_a(TVectorD par, Double_t phi); // Derivative of track position wrt track phase53 TMatrixDSym RegInv(TMatrixDSym& Smat0); // Regularized 3D matrix inversion 54 TMatrixD Fill_A(TVectorD par, Double_t phi); // Derivative of track position wrt track parameters 55 TVectorD Fill_a(TVectorD par, Double_t phi); // Derivative of track position wrt track phase 52 56 TVectorD Fill_x0(TVectorD par); // Track position at dma to z-axis 53 TVectorD Fill_x(TVectorD par, Double_t phi); // Track position at given phase 54 void VertexFinder(); // Vertex finder routine 57 TVectorD Fill_x(TVectorD par, Double_t phi); // Track position at given phase 58 void UpdateTrkArrays(Int_t i); // Fill track realted arrays 59 void VertexFitter(); // Vertex finder routine 55 60 public: 56 61 // 57 62 // Constructors 58 63 VertexFit(); // Initialize waiting for tracks 59 VertexFit(Int_t Ntr, ObsTrk** tracks); 64 VertexFit(Int_t Ntr, ObsTrk** tracks); // Initialize with ObsTrk tracks 60 65 VertexFit(Int_t Ntr, TVectorD** trkPar, TMatrixDSym** trkCov); // Initialize with parameters and covariances 61 66 // Destructor … … 71 76 // Handle tracks/constraints 72 77 void AddVtxConstraint(TVectorD xv, TMatrixDSym cov); // Add gaussian vertex constraint 73 void AddTrk(TVectorD par, TMatrixDSym Cov);// Add track to input list74 void RemoveTrk(Int_t iTrk); // Remove iTrk track78 void AddTrk(TVectorD *par, TMatrixDSym *Cov); // Add track to input list 79 void RemoveTrk(Int_t iTrk); // Remove iTrk track 75 80 // 76 81 };
Note:
See TracChangeset
for help on using the changeset viewer.