Changeset 555 in svn
- Timestamp:
- Feb 24, 2010, 4:36:36 PM (15 years ago)
- Author:
- severine ovyn
- Message:
-
/*
/----------------------------------------------\
| Delphes, a framework for the fast simulation |
| of a generic collider experiment |
\------------- arXiv:0903.2225v1 ------------/
This package uses:
------------------
ROOT: Nucl. Inst. & Meth. in Phys. Res. A389 (1997) 81-86
FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210]
Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2]
FROG: [hep-ex/0901.2718v1]
HepMC: Comput. Phys. Commun.134 (2001) 41
------------------------------------------------------------------
Main authors:
-------------
Severine Ovyn Xavier Rouby
severine.ovyn@… xavier.rouby@cern
Center for Particle Physics and Phenomenology (CP3)
Universite catholique de Louvain (UCL)
Louvain-la-Neuve, Belgium
Copyright (C) 2008-2009,
All rights reserved.
*/
/ \file SmearUtil.cc
/ \brief RESOLution class, and some generic definitions
#include "SmearUtil.h"
#include "TStopwatch.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <map>
#include <vector>
#include <cmath>
#include <cstdlib> for exit()
using namespace std;
------------------------------------------------------------------------------
RESOLution::RESOLution() {
Detector characteristics
CEN_max_tracker = 2.5; Maximum tracker coverage
CEN_max_calo_cen = 1.7; central calorimeter coverage
CEN_max_calo_ec = 3.0; calorimeter endcap coverage
CEN_max_calo_fwd = 5.0; forward calorimeter pseudorapidity coverage
CEN_max_mu = 2.4; muon chambers pseudorapidity coverage
Energy resolution for electron/photon
\sigma/E = C + N/E + S/\sqrt{E}
ELG_Scen = 0.05; S term for central ECAL
ELG_Ncen = 0.25; N term
ELG_Ccen = 0.005; C term
ELG_Sec = 0.05; S term for central ECAL endcap
ELG_Nec = 0.25; S term
ELG_Cec = 0.005; S term
ELG_Sfwd = 2.084; S term for FCAL
ELG_Nfwd = 0.0; N term
ELG_Cfwd = 0.107; C term
ELG_Szdc = 0.70; S term for ZDC
ELG_Nzdc = 0.0; N term
ELG_Czdc = 0.08; C term
Energy resolution for hadrons in ecal/hcal/fwd
\sigma/E = C + N/E + S/\sqrt{E}
HAD_Scen = 1.5; S term for central HCAL
HAD_Ncen = 0.; N term
HAD_Ccen = 0.05; C term
HAD_Sec = 1.5; S term for HCAL endcap
HAD_Nec = 0.; N term
HAD_Cec = 0.05; C term
HAD_Sfwd = 2.7; S term for FCAL
HAD_Nfwd = 0.; N term
HAD_Cfwd = 0.13; C term
HAD_Szdc = 1.38; S term for ZDC
HAD_Nzdc = 0.; N term
HAD_Czdc = 0.13; C term
Muon smearing
MU_SmearPt = 0.01;
time resolution
ZDC_T_resolution = 0; resolution for time measurement [s]
RP220_T_resolution = 0;
RP420_T_resolution = 0;
Tracking efficiencies
TRACK_ptmin = 0.9; minimal pt needed to reach the calorimeter in GeV
TRACK_eff = 100; efficiency associated to the tracking
Calorimetric towers
TOWER_number = 40;
const float tower_eta_edges[41] = {
0., 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566,
1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.868, 2.950, 3.125, 3.300, 3.475, 3.650, 3.825, 4.000, 4.175,
4.350, 4.525, 4.700, 5.000}; temporary object
TOWER_eta_edges = new float[TOWER_number+1];
for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = tower_eta_edges[i];
const float tower_dphi[40] = {
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
10,10,10,10,10, 10,10,10,10,10, 10,10,10,10,10, 10,10,10,20, 20 }; temporary object
TOWER_dphi = new float[TOWER_number];
for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = tower_dphi[i];
Thresholds for reconstructed objetcs (GeV)
PTCUT_elec = 10.0;
PTCUT_muon = 10.0;
PTCUT_jet = 20.0;
PTCUT_gamma = 10.0;
PTCUT_taujet = 10.0;
ZDC_gamma_E = 20; GeV
ZDC_n_E = 50; GeV
Isolation
ISOL_PT = 2.0; minimal pt of tracks for isolation criteria
ISOL_Cone = 0.5; Cone for isolation criteria
ISOL_Calo_ET = 1E99; minimal tower energy for isolation criteria. Default off = 1E99
ISOL_Calo_Grid = 3; Grid size (N x N) for calorimetric isolation -- should be odd
General jet variable
JET_coneradius = 0.7; generic jet radius ; not for tau's !!!
JET_jetalgo = 1; 1 for Cone algorithm, 2 for MidPoint algorithm, 3 for SIScone algorithm, 4 for kt algorithm
JET_seed = 1.0; minimum seed to start jet reconstruction
JET_Eflow = 1; 1 for Energy flow in jets reco ; 0 if not
Tagging definition
BTAG_b = 40.;
BTAG_mistag_c = 10.;
BTAG_mistag_l = 1.;
FLAGS
FLAG_bfield = 1; 1 to run the bfield propagation else 0
FLAG_vfd = 1; 1 to run the very forward detectors else 0
FLAG_RP = 1; 1 to run the zero degree calorimeter else 0
FLAG_trigger = 1; 1 to run the trigger selection else 0
FLAG_frog = 1; 1 to run the FROG event display
FLAG_lhco = 1;
In case BField propagation allowed
TRACK_radius = 129; radius of the BField coverage
TRACK_length = 300; length of the BField coverage
TRACK_bfield_x = 0; X composant of the BField
TRACK_bfield_y = 0; Y composant of the BField
TRACK_bfield_z = 3.8; Z composant of the BField
In case Very forward detectors allowed
VFD_min_calo_vfd = 5.2; very forward calorimeter (if any) like CASTOR
VFD_max_calo_vfd = 6.6;
VFD_min_zdc = 8.3;
VFD_s_zdc = 140; distance of the Zero Degree Calorimeter, from the Interaction poin, in [m]
RP_220_s = 220; distance of the RP to the IP, in meters
RP_220_x = 0.002; distance of the RP to the beam, in meters
RP_420_s = 420; distance of the RP to the IP, in meters
RP_420_x = 0.004; distance of the RP to the beam, in meters
RP_IP_name = "IP5";
RP_beam1Card = "data/LHCB1IR5_v6.500.tfs";
RP_beam2Card = "data/LHCB1IR5_v6.500.tfs";
In case FROG event display allowed
NEvents_Frog = 10;
Number of events to be processed
NEvents = -1;
jet stuffs not defined in the input datacard
JET_overlap = 0.75;
MidPoint algorithm definition
JET_M_coneareafraction = 0.25;
JET_M_maxpairsize = 2;
JET_M_maxiterations = 100;
Define Cone algorithm.
JET_C_adjacencycut = 2;
JET_C_maxiterations = 100;
JET_C_iratch = 1;
Define SISCone algorithm.
JET_S_npass = 0;
JET_S_protojet_ptmin= 0.0;
For Tau-jet definition
TAU_energy_scone = 0.15; radius R of the cone for tau definition, based on energy threshold
TAU_track_scone = 0.4; radius R of the cone for tau definition, based on track number
TAU_track_pt = 2; minimal pt [GeV] for tracks to be considered in tau definition
TAU_energy_frac = 0.95; fraction of energy required in the central part of the cone, for tau jets
PT_QUARKS_MIN = 2.0 ; minimal pt needed by quarks to do b-tag
for very forward detectors
RP_offsetEl_s = 120; distance of beam separation point, from IP
RP_offsetEl_x = -0.097; half distance of separation of beams in horizontal plan, in m
RP_offsetEl_y = 0; half distance of separation of beams in vertical plan, in m
RP_cross_x = -500; IP offset in horizontal plane, in micrometers
RP_cross_y = 0.0; IP offset in vertical plane, in micrometers
RP_cross_ang_x = 142.5; half-crossing angle in horizontal plane, in microrad
RP_cross_ang_y = 0.0; half-crossing angle in vertical plane, in microrad
PdgTableFilename = "data/particle.tbl";
inputfilelist = "";
detectorcard = "";
triggercard = "";
grandom = new TRandom3(0); a new seed is set everytime Delphes is run
}
RESOLution::RESOLution(const RESOLution & DET) {
Detector characteristics
CEN_max_tracker = DET.CEN_max_tracker;
CEN_max_calo_cen = DET.CEN_max_calo_cen;
CEN_max_calo_ec = DET.CEN_max_calo_ec;
CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
CEN_max_mu = DET.CEN_max_mu;
Energy resolution for electron/photon
ELG_Scen = DET.ELG_Scen;
ELG_Ncen = DET.ELG_Ncen;
ELG_Ccen = DET.ELG_Ccen;
ELG_Sec = DET.ELG_Sec;
ELG_Nec = DET.ELG_Nec;
ELG_Cec = DET.ELG_Cec;
ELG_Cfwd = DET.ELG_Cfwd;
ELG_Sfwd = DET.ELG_Sfwd;
ELG_Nfwd = DET.ELG_Nfwd;
ELG_Czdc = DET.ELG_Czdc;
ELG_Szdc = DET.ELG_Szdc;
ELG_Nzdc = DET.ELG_Nzdc;
Energy resolution for hadrons in ecal/hcal/fwd/zdc
HAD_Scen = DET.HAD_Scen;
HAD_Ncen = DET.HAD_Ncen;
HAD_Ccen = DET.HAD_Ccen;
HAD_Sec = DET.HAD_Sec;
HAD_Nec = DET.HAD_Nec;
HAD_Cec = DET.HAD_Cec;
HAD_Sfwd = DET.HAD_Sfwd;
HAD_Nfwd = DET.HAD_Nfwd;
HAD_Cfwd = DET.HAD_Cfwd;
HAD_Szdc = DET.HAD_Szdc;
HAD_Nzdc = DET.HAD_Nzdc;
HAD_Czdc = DET.HAD_Czdc;
time resolution
ZDC_T_resolution = DET.ZDC_T_resolution; resolution for time measurement [s]
RP220_T_resolution = DET.RP220_T_resolution;
RP420_T_resolution = DET.RP420_T_resolution;
Muon smearing
MU_SmearPt = DET.MU_SmearPt;
Tracking efficiencies
TRACK_ptmin = DET.TRACK_ptmin;
TRACK_eff = DET.TRACK_eff;
Calorimetric towers
TOWER_number = DET.TOWER_number;
TOWER_eta_edges = new float[TOWER_number+1];
for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
TOWER_dphi = new float[TOWER_number];
for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
Thresholds for reconstructed objetcs
PTCUT_elec = DET.PTCUT_elec;
PTCUT_muon = DET.PTCUT_muon;
PTCUT_jet = DET.PTCUT_jet;
PTCUT_gamma = DET.PTCUT_gamma;
PTCUT_taujet = DET.PTCUT_taujet;
ZDC_gamma_E = DET.ZDC_gamma_E;
ZDC_n_E = DET.ZDC_n_E;
Isolation
ISOL_PT = DET.ISOL_PT; tracking isolation
ISOL_Cone = DET.ISOL_Cone;
ISOL_Calo_ET = DET.ISOL_Calo_ET; calorimeter isolation, defaut off
ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
General jet variable
JET_coneradius = DET.JET_coneradius;
JET_jetalgo = DET.JET_jetalgo;
JET_seed = DET.JET_seed;
JET_Eflow = DET.JET_Eflow;
Tagging definition
BTAG_b = DET.BTAG_b;
BTAG_mistag_c = DET.BTAG_mistag_c;
BTAG_mistag_l = DET.BTAG_mistag_l;
FLAGS
FLAG_bfield = DET.FLAG_bfield;
FLAG_vfd = DET.FLAG_vfd;
FLAG_RP = DET.FLAG_RP;
FLAG_trigger = DET.FLAG_trigger;
FLAG_frog = DET.FLAG_frog;
FLAG_lhco = DET.FLAG_lhco;
In case BField propagation allowed
TRACK_radius = DET.TRACK_radius;
TRACK_length = DET.TRACK_length;
TRACK_bfield_x = DET.TRACK_bfield_x;
TRACK_bfield_y = DET.TRACK_bfield_y;
TRACK_bfield_z = DET.TRACK_bfield_z;
In case Very forward detectors allowed
VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
VFD_min_zdc = DET.VFD_min_zdc;
VFD_s_zdc = DET.VFD_s_zdc;
RP_220_s = DET.RP_220_s;
RP_220_x = DET.RP_220_x;
RP_420_s = DET.RP_420_s;
RP_420_x = DET.RP_420_x;
RP_beam1Card = DET.RP_beam1Card;
RP_beam2Card = DET.RP_beam2Card;
RP_offsetEl_s = DET.RP_offsetEl_s;
RP_offsetEl_x = DET.RP_offsetEl_x;
RP_offsetEl_y = DET.RP_offsetEl_y;
RP_cross_x = DET.RP_cross_x;
RP_cross_y = DET.RP_cross_y;
RP_cross_ang_x = DET.RP_cross_ang_x;
RP_cross_ang_y = DET.RP_cross_ang_y;
RP_IP_name = DET.RP_IP_name;
In case FROG event display allowed
NEvents_Frog = DET.NEvents_Frog;
Number of events to be processed
NEvents = DET.NEvents;
JET_overlap = DET.JET_overlap;
MidPoint algorithm definition
JET_M_coneareafraction = DET.JET_M_coneareafraction;
JET_M_maxpairsize = DET.JET_M_maxpairsize;
JET_M_maxiterations = DET.JET_M_maxiterations;
Define Cone algorithm.
JET_C_adjacencycut = DET.JET_C_adjacencycut;
JET_C_maxiterations = DET.JET_C_maxiterations;
JET_C_iratch = DET.JET_C_iratch;
Define SISCone algorithm.
JET_S_npass = DET.JET_S_npass;
JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
For Tau-jet definition
TAU_energy_scone = DET.TAU_energy_scone;
TAU_track_scone = DET.TAU_track_scone;
TAU_track_pt = DET.TAU_track_pt;
TAU_energy_frac = DET.TAU_energy_frac;
PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
PdgTableFilename = DET.PdgTableFilename;
PDGtable = DET.PDGtable;
inputfilelist = DET.inputfilelist;
detectorcard = DET.detectorcard;
triggercard = DET.triggercard;
grandom = new TRandom3(*(DET.grandom));
}
RESOLution& RESOLution::operator=(const RESOLution& DET) {
if(this==&DET) return *this;
Detector characteristics
CEN_max_tracker = DET.CEN_max_tracker;
CEN_max_calo_cen = DET.CEN_max_calo_cen;
CEN_max_calo_ec = DET.CEN_max_calo_ec;
CEN_max_calo_fwd = DET.CEN_max_calo_fwd;
CEN_max_mu = DET.CEN_max_mu;
Energy resolution for electron/photon
ELG_Scen = DET.ELG_Scen;
ELG_Ncen = DET.ELG_Ncen;
ELG_Ccen = DET.ELG_Ccen;
ELG_Sec = DET.ELG_Sec;
ELG_Nec = DET.ELG_Nec;
ELG_Cec = DET.ELG_Cec;
ELG_Cfwd = DET.ELG_Cfwd;
ELG_Sfwd = DET.ELG_Sfwd;
ELG_Nfwd = DET.ELG_Nfwd;
ELG_Czdc = DET.ELG_Czdc;
ELG_Szdc = DET.ELG_Szdc;
ELG_Nzdc = DET.ELG_Nzdc;
Energy resolution for hadrons in ecal/hcal/fwd/zdc
HAD_Scen = DET.HAD_Scen ;
HAD_Ncen = DET.HAD_Ncen;
HAD_Ccen = DET.HAD_Ccen;
HAD_Sec = DET.HAD_Sec;
HAD_Nec = DET.HAD_Nec;
HAD_Cec = DET.HAD_Cec;
HAD_Sfwd = DET.HAD_Sfwd;
HAD_Nfwd = DET.HAD_Nfwd;
HAD_Cfwd = DET.HAD_Cfwd;
HAD_Szdc = DET.HAD_Szdc;
HAD_Nzdc = DET.HAD_Nzdc;
HAD_Czdc = DET.HAD_Czdc;
time resolution
ZDC_T_resolution = DET.ZDC_T_resolution; resolution for time measurement [s]
RP220_T_resolution = DET.RP220_T_resolution;
RP420_T_resolution = DET.RP420_T_resolution;
Muon smearing
MU_SmearPt = DET.MU_SmearPt;
Tracking efficiencies
TRACK_ptmin = DET.TRACK_ptmin;
TRACK_eff = DET.TRACK_eff;
Calorimetric towers
TOWER_number = DET.TOWER_number;
TOWER_eta_edges = new float[TOWER_number+1];
for(unsigned int i=0; i<TOWER_number +1; i++) TOWER_eta_edges[i] = DET.TOWER_eta_edges[i];
TOWER_dphi = new float[TOWER_number];
for(unsigned int i=0; i<TOWER_number; i++) TOWER_dphi[i] = DET.TOWER_dphi[i];
Thresholds for reconstructed objetcs
PTCUT_elec = DET.PTCUT_elec;
PTCUT_muon = DET.PTCUT_muon;
PTCUT_jet = DET.PTCUT_jet;
PTCUT_gamma = DET.PTCUT_gamma;
PTCUT_taujet = DET.PTCUT_taujet;
ZDC_gamma_E = DET.ZDC_gamma_E;
ZDC_n_E = DET.ZDC_n_E;
Isolation
ISOL_PT = DET.ISOL_PT; tracking isolation
ISOL_Cone = DET.ISOL_Cone;
ISOL_Calo_ET = DET.ISOL_Calo_ET; calorimeter isolation, defaut off
ISOL_Calo_Grid = DET.ISOL_Calo_Grid;
General jet variable
JET_coneradius = DET.JET_coneradius;
JET_jetalgo = DET.JET_jetalgo;
JET_seed = DET.JET_seed;
JET_Eflow = DET.JET_Eflow;
Tagging definition
BTAG_b = DET.BTAG_b;
BTAG_mistag_c = DET.BTAG_mistag_c;
BTAG_mistag_l = DET.BTAG_mistag_l;
FLAGS
FLAG_bfield = DET.FLAG_bfield;
FLAG_vfd = DET.FLAG_vfd;
FLAG_RP = DET.FLAG_RP;
FLAG_trigger = DET.FLAG_trigger;
FLAG_frog = DET.FLAG_frog;
FLAG_lhco = DET.FLAG_lhco;
In case BField propagation allowed
TRACK_radius = DET.TRACK_radius;
TRACK_length = DET.TRACK_length;
TRACK_bfield_x = DET.TRACK_bfield_x;
TRACK_bfield_y = DET.TRACK_bfield_y;
TRACK_bfield_z = DET.TRACK_bfield_z;
In case Very forward detectors allowed
VFD_min_calo_vfd = DET.VFD_min_calo_vfd;
VFD_max_calo_vfd = DET.VFD_max_calo_vfd;
VFD_min_zdc = DET.VFD_min_zdc;
VFD_s_zdc = DET.VFD_s_zdc;
RP_220_s = DET.RP_220_s;
RP_220_x = DET.RP_220_x;
RP_420_s = DET.RP_420_s;
RP_420_x = DET.RP_420_x;
RP_offsetEl_s = DET.RP_offsetEl_s;
RP_offsetEl_x = DET.RP_offsetEl_x;
RP_offsetEl_y = DET.RP_offsetEl_y;
RP_beam1Card = DET.RP_beam1Card;
RP_beam2Card = DET.RP_beam2Card;
RP_cross_x = DET.RP_cross_x;
RP_cross_y = DET.RP_cross_y;
RP_cross_ang_x = DET.RP_cross_ang_x;
RP_cross_ang_y = DET.RP_cross_ang_y;
RP_IP_name = DET.RP_IP_name;
In case FROG event display allowed
NEvents_Frog = DET.NEvents_Frog;
Number of events to be processed
NEvents = DET.NEvents;
JET_overlap = DET.JET_overlap;
MidPoint algorithm definition
JET_M_coneareafraction = DET.JET_M_coneareafraction;
JET_M_maxpairsize = DET.JET_M_maxpairsize;
JET_M_maxiterations = DET.JET_M_maxiterations;
Define Cone algorithm.
JET_C_adjacencycut = DET.JET_C_adjacencycut;
JET_C_maxiterations = DET.JET_C_maxiterations;
JET_C_iratch = DET.JET_C_iratch;
Define SISCone algorithm.
JET_S_npass = DET.JET_S_npass;
JET_S_protojet_ptmin = DET.JET_S_protojet_ptmin;
For Tau-jet definition
TAU_energy_scone = DET.TAU_energy_scone;
TAU_track_scone = DET.TAU_track_scone;
TAU_track_pt = DET.TAU_track_pt;
TAU_energy_frac = DET.TAU_energy_frac;
PT_QUARKS_MIN = DET.PT_QUARKS_MIN;
PdgTableFilename = DET.PdgTableFilename;
PDGtable = DET.PDGtable;
inputfilelist = DET.inputfilelist;
detectorcard = DET.detectorcard;
triggercard = DET.triggercard;
grandom = new TRandom3(*(DET.grandom));
return *this;
}
void RESOLution::setNames(const string& list, const string& det, const string& trig) {
inputfilelist = list;
detectorcard = det;
triggercard = trig;
}
------------------------------------------------------------------------------
void RESOLution::ReadDataCard(const string datacard) {
string temp_string;
istringstream curstring;
ifstream fichier_a_lire(datacard.c_str());
if(!fichier_a_lire.good()) {
cout <<" WARNING: Datadard not found, use default values " << endl;
return;
}
bool CEN_max_calo_ec_flag = false;
while (getline(fichier_a_lire,temp_string)) {
curstring.clear(); needed when using several times istringstream::str(string)
curstring.str(temp_string);
string varname;
float value; int ivalue; string svalue;
if(strstr(temp_string.c_str(),"#")) { }
else if(strstr(temp_string.c_str(),"CEN_max_tracker")) {curstring >> varname >> value; CEN_max_tracker = value;}
else if(strstr(temp_string.c_str(),"CEN_max_calo_cen")) {curstring >> varname >> value; CEN_max_calo_cen = value;}
else if(strstr(temp_string.c_str(),"CEN_max_calo_ec")) {CEN_max_calo_ec_flag=true; curstring >> varname >> value; CEN_max_calo_ec = value;}
else if(strstr(temp_string.c_str(),"CEN_max_calo_fwd")) {curstring >> varname >> value; CEN_max_calo_fwd = value;}
else if(strstr(temp_string.c_str(),"CEN_max_mu")) {curstring >> varname >> value; CEN_max_mu = value;}
else if(strstr(temp_string.c_str(),"VFD_min_calo_vfd")) {curstring >> varname >> value; VFD_min_calo_vfd = value;}
else if(strstr(temp_string.c_str(),"VFD_max_calo_vfd")) {curstring >> varname >> value; VFD_max_calo_vfd = value;}
else if(strstr(temp_string.c_str(),"VFD_min_zdc")) {curstring >> varname >> value; VFD_min_zdc = value;}
else if(strstr(temp_string.c_str(),"VFD_s_zdc")) {curstring >> varname >> value; VFD_s_zdc = value;}
else if(strstr(temp_string.c_str(),"RP_220_s")) {curstring >> varname >> value; RP_220_s = value;}
else if(strstr(temp_string.c_str(),"RP_220_x")) {curstring >> varname >> value; RP_220_x = value;}
else if(strstr(temp_string.c_str(),"RP_420_s")) {curstring >> varname >> value; RP_420_s = value;}
else if(strstr(temp_string.c_str(),"RP_420_x")) {curstring >> varname >> value; RP_420_x = value;}
else if(strstr(temp_string.c_str(),"RP_beam1Card")) {curstring >> varname >> svalue;RP_beam1Card = svalue;}
else if(strstr(temp_string.c_str(),"RP_beam2Card")) {curstring >> varname >> svalue;RP_beam2Card = svalue;}
else if(strstr(temp_string.c_str(),"RP_IP_name")) {curstring >> varname >> svalue;RP_IP_name = svalue;}
else if(strstr(temp_string.c_str(),"RP_offsetEl_s")) {curstring >> varname >> value; RP_offsetEl_s = value;}
else if(strstr(temp_string.c_str(),"RP_offsetEl_x")) {curstring >> varname >> value; RP_offsetEl_x = value;}
else if(strstr(temp_string.c_str(),"RP_offsetEl_y")) {curstring >> varname >> value; RP_offsetEl_y = value;}
else if(strstr(temp_string.c_str(),"RP_cross_x")) {curstring >> varname >> value; RP_cross_x = value;}
else if(strstr(temp_string.c_str(),"RP_cross_y")) {curstring >> varname >> value; RP_cross_y = value;}
else if(strstr(temp_string.c_str(),"RP_cross_ang_x")) {curstring >> varname >> value; RP_cross_ang_x = value;}
else if(strstr(temp_string.c_str(),"RP_cross_ang_y")) {curstring >> varname >> value; RP_cross_ang_y = value;}
else if(strstr(temp_string.c_str(),"ELG_Scen")) {curstring >> varname >> value; ELG_Scen = value;}
else if(strstr(temp_string.c_str(),"ELG_Ncen")) {curstring >> varname >> value; ELG_Ncen = value;}
else if(strstr(temp_string.c_str(),"ELG_Ccen")) {curstring >> varname >> value; ELG_Ccen = value;}
else if(strstr(temp_string.c_str(),"ELG_Sec")) {curstring >> varname >> value; ELG_Sec = value;}
else if(strstr(temp_string.c_str(),"ELG_Nec")) {curstring >> varname >> value; ELG_Nec = value;}
else if(strstr(temp_string.c_str(),"ELG_Cec")) {curstring >> varname >> value; ELG_Cec = value;}
else if(strstr(temp_string.c_str(),"ELG_Sfwd")) {curstring >> varname >> value; ELG_Sfwd = value;}
else if(strstr(temp_string.c_str(),"ELG_Cfwd")) {curstring >> varname >> value; ELG_Cfwd = value;}
else if(strstr(temp_string.c_str(),"ELG_Nfwd")) {curstring >> varname >> value; ELG_Nfwd = value;}
else if(strstr(temp_string.c_str(),"ELG_Szdc")) {curstring >> varname >> value; ELG_Szdc = value;}
else if(strstr(temp_string.c_str(),"ELG_Czdc")) {curstring >> varname >> value; ELG_Czdc = value;}
else if(strstr(temp_string.c_str(),"ELG_Nzdc")) {curstring >> varname >> value; ELG_Nzdc = value;}
else if(strstr(temp_string.c_str(),"HAD_Shcal")) {warning("HAD_Shcal","HAD_Scen"); curstring >> varname >> value; HAD_Scen = value;}
else if(strstr(temp_string.c_str(),"HAD_Nhcal")) {warning("HAD_Nhcal","HAD_Ncen"); curstring >> varname >> value; HAD_Ncen = value;}
else if(strstr(temp_string.c_str(),"HAD_Chcal")) {warning("HAD_Chcal","HAD_Ccen"); curstring >> varname >> value; HAD_Ccen = value;}
else if(strstr(temp_string.c_str(),"HAD_Shf")) {warning("HAD_Shf","HAD_Sfwd"); curstring >> varname >> value; HAD_Sfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Nhf")) {warning("HAD_Nhf","HAD_Nfwd"); curstring >> varname >> value; HAD_Nfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Chf")) {warning("HAD_Chf","HAD_Cfwd"); curstring >> varname >> value; HAD_Cfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Scen")) {curstring >> varname >> value; HAD_Scen = value;}
else if(strstr(temp_string.c_str(),"HAD_Ncen")) {curstring >> varname >> value; HAD_Ncen = value;}
else if(strstr(temp_string.c_str(),"HAD_Ccen")) {curstring >> varname >> value; HAD_Ccen = value;}
else if(strstr(temp_string.c_str(),"HAD_Sec")) {curstring >> varname >> value; HAD_Sec = value;}
else if(strstr(temp_string.c_str(),"HAD_Nec")) {curstring >> varname >> value; HAD_Nec = value;}
else if(strstr(temp_string.c_str(),"HAD_Cec")) {curstring >> varname >> value; HAD_Cec = value;}
else if(strstr(temp_string.c_str(),"HAD_Sfwd")) {curstring >> varname >> value; HAD_Sfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Nfwd")) {curstring >> varname >> value; HAD_Nfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Cfwd")) {curstring >> varname >> value; HAD_Cfwd = value;}
else if(strstr(temp_string.c_str(),"HAD_Szdc")) {curstring >> varname >> value; HAD_Szdc = value;}
else if(strstr(temp_string.c_str(),"HAD_Nzdc")) {curstring >> varname >> value; HAD_Nzdc = value;}
else if(strstr(temp_string.c_str(),"HAD_Czdc")) {curstring >> varname >> value; HAD_Czdc = value;}
else if(strstr(temp_string.c_str(),"ZDC_T_resolution")) {curstring >> varname >> value; ZDC_T_resolution = value;}
else if(strstr(temp_string.c_str(),"RP220_T_resolution")) {curstring >> varname >> value; RP220_T_resolution = value;}
else if(strstr(temp_string.c_str(),"RP420_T_resolution")) {curstring >> varname >> value; RP420_T_resolution = value;}
else if(strstr(temp_string.c_str(),"MU_SmearPt")) {curstring >> varname >> value; MU_SmearPt = value;}
else if(strstr(temp_string.c_str(),"TRACK_radius")) {curstring >> varname >> ivalue;TRACK_radius = ivalue;}
else if(strstr(temp_string.c_str(),"TRACK_length")) {curstring >> varname >> ivalue;TRACK_length = ivalue;}
else if(strstr(temp_string.c_str(),"TRACK_bfield_x")) {curstring >> varname >> value; TRACK_bfield_x = value;}
else if(strstr(temp_string.c_str(),"TRACK_bfield_y")) {curstring >> varname >> value; TRACK_bfield_y = value;}
else if(strstr(temp_string.c_str(),"TRACK_bfield_z")) {curstring >> varname >> value; TRACK_bfield_z = value;}
else if(strstr(temp_string.c_str(),"FLAG_bfield")) {curstring >> varname >> ivalue; FLAG_bfield = ivalue;}
else if(strstr(temp_string.c_str(),"TRACK_ptmin")) {curstring >> varname >> value; TRACK_ptmin = value;}
else if(strstr(temp_string.c_str(),"TRACK_eff")) {curstring >> varname >> value; TRACK_eff = value;}
else if(strstr(temp_string.c_str(),"TOWER_number")) {curstring >> varname >> ivalue;TOWER_number = ivalue;}
else if(strstr(temp_string.c_str(),"TOWER_eta_edges")){
curstring >> varname; for(unsigned int i=0; i<TOWER_number+1; i++) {curstring >> value; TOWER_eta_edges[i] = value;} }
else if(strstr(temp_string.c_str(),"TOWER_dphi")){
curstring >> varname; for(unsigned int i=0; i<TOWER_number; i++) {curstring >> value; TOWER_dphi[i] = value;} }
else if(strstr(temp_string.c_str(),"PTCUT_elec")) {curstring >> varname >> value; PTCUT_elec = value;}
else if(strstr(temp_string.c_str(),"PTCUT_muon")) {curstring >> varname >> value; PTCUT_muon = value;}
else if(strstr(temp_string.c_str(),"PTCUT_jet")) {curstring >> varname >> value; PTCUT_jet = value;}
else if(strstr(temp_string.c_str(),"PTCUT_gamma")) {curstring >> varname >> value; PTCUT_gamma = value;}
else if(strstr(temp_string.c_str(),"PTCUT_taujet")) {curstring >> varname >> value; PTCUT_taujet = value;}
else if(strstr(temp_string.c_str(),"ZDC_gamma_E")) {curstring >> varname >> value; ZDC_gamma_E = value;}
else if(strstr(temp_string.c_str(),"ZDC_n_E")) {curstring >> varname >> value; ZDC_n_E = value;}
else if(strstr(temp_string.c_str(),"ISOL_PT")) {curstring >> varname >> value; ISOL_PT = value;}
else if(strstr(temp_string.c_str(),"ISOL_Cone")) {curstring >> varname >> value; ISOL_Cone = value;}
else if(strstr(temp_string.c_str(),"ISOL_Calo_ET")) {curstring >> varname >> value; ISOL_Calo_ET = value;}
else if(strstr(temp_string.c_str(),"ISOL_Calo_Grid")) {curstring >> varname >> ivalue; ISOL_Calo_Grid = ivalue;}
else if(strstr(temp_string.c_str(),"JET_coneradius")) {curstring >> varname >> value; JET_coneradius = value;}
else if(strstr(temp_string.c_str(),"JET_jetalgo")) {curstring >> varname >> ivalue;JET_jetalgo = ivalue;}
else if(strstr(temp_string.c_str(),"JET_seed")) {curstring >> varname >> value; JET_seed = value;}
else if(strstr(temp_string.c_str(),"JET_Eflow")) {curstring >> varname >> ivalue; JET_Eflow = ivalue;}
else if(strstr(temp_string.c_str(),"BTAG_b")) {curstring >> varname >> value;BTAG_b = value;}
else if(strstr(temp_string.c_str(),"BTAG_mistag_c")) {curstring >> varname >> value;BTAG_mistag_c = value;}
else if(strstr(temp_string.c_str(),"BTAG_mistag_l")) {curstring >> varname >> value;BTAG_mistag_l = value;}
else if(strstr(temp_string.c_str(),"FLAG_vfd")) {curstring >> varname >> ivalue; FLAG_vfd = ivalue;}
else if(strstr(temp_string.c_str(),"FLAG_RP")) {curstring >> varname >> ivalue; FLAG_RP = ivalue;}
else if(strstr(temp_string.c_str(),"FLAG_trigger")) {curstring >> varname >> ivalue; FLAG_trigger = ivalue;}
else if(strstr(temp_string.c_str(),"FLAG_frog")) {curstring >> varname >> ivalue; FLAG_frog = ivalue;}
else if(strstr(temp_string.c_str(),"FLAG_lhco")) {curstring >> varname >> ivalue; FLAG_lhco = ivalue;}
else if(strstr(temp_string.c_str(),"NEvents_Frog")) {curstring >> varname >> ivalue; NEvents_Frog = ivalue;}
else if(strstr(temp_string.c_str(),"NEvents")) {curstring >> varname >> ivalue; NEvents = ivalue;}
else if(strstr(temp_string.c_str(),"PdgTableFilename")) {curstring >> varname >> svalue; PdgTableFilename = svalue;}
}
for compatibility with old data cards
if(!CEN_max_calo_ec_flag) {
cout << " Warning \'CEN_max_calo_ec\' not found in datacard. "<< endl;
cout << " Same values will be applied for calorimeter endcaps "<< endl;
cout << " as for central calorimeters "<< endl;
string text = " Please update your card ("+ datacard +")";
cout << left << setw(67) << text << right << setw(2) << "" << endl;
cout << " This change is 100\% backward compatibly with older DetectorCard. " << endl;
cout << " However, please update your DetectorCard. " << endl;
CEN_max_calo_ec = CEN_max_calo_cen;
CEN_max_calo_cen = CEN_max_calo_cen/2;
ELG_Sec = ELG_Scen;
ELG_Nec = ELG_Ncen;
ELG_Cec = ELG_Ccen;
HAD_Sec = HAD_Scen;
HAD_Nec = HAD_Ncen;
HAD_Cec = HAD_Ccen;
}
if(ISOL_Calo_Grid%2 ==0) {
ISOL_Calo_Grid++;
cout <<" WARNING: ISOL_Calo_Grid is not odd. Set it to "<< ISOL_Calo_Grid << " " << endl;
}
jet stuffs not defined in the input datacard
JET_overlap = 0.75;
MidPoint algorithm definition
JET_M_coneareafraction = 0.25;
JET_M_maxpairsize = 2;
JET_M_maxiterations = 100;
Define Cone algorithm.
JET_C_adjacencycut = 2;
JET_C_maxiterations = 100;
JET_C_iratch = 1;
Define SISCone algorithm.
JET_S_npass = 0;
JET_S_protojet_ptmin= 0.0;
For Tau-jet definition
TAU_energy_scone = 0.15; radius R of the cone for tau definition, based on energy threshold
TAU_track_scone = 0.4; radius R of the cone for tau definition, based on track number
TAU_track_pt = 2; minimal pt [GeV] for tracks to be considered in tau definition
TAU_energy_frac = 0.95; fraction of energy required in the central part of the cone, for tau jets
}
void RESOLution::Logfile(const string& LogName) {
creates the list of good input files
this list is vector<string> inputfiles.
ifstream infile(inputfilelist.c_str());
vector<string> inputfiles;
string filename;
while(1) {
infile >> filename; reads the first line of the list
if(!infile.good()) break; quits when at the end of the list
ifstream checking_the_file(filename.c_str()); try to open the file
if(!checking_the_file.good()) continue; skips bad/unknown files
else checking_the_file.close(); close file if found
inputfiles.push_back(filename); append the name to the vector
}
infile.close();
ofstream f_out(LogName.c_str());
f_out <<""<< endl;
f_out <<""<< endl;
f_out <<" "<< endl;
f_out <<" Welcome to "<< endl;
f_out <<" "<< endl;
f_out <<" "<< endl;
f_out <<" .ddddddd- lL hH "<< endl;
f_out <<" -Dd
f_out <<" dDd dDd eeee. lL .pp+pp Hh+hhh-eeee-
sssss "<< endl;
f_out <<" -Dd `DD ee. ee Ll .Pp. PP Hh. HH. ee. ee sSs "<< endl;
f_out <<" dDdDd eEeee: lL. pP. pP hH hH
eEeee:` -sSSSs. "<< endl;
f_out <<" .Dd :dd eE. LlL PpppPP Hh Hh eE sSS "<< endl;
f_out <<" dddddd:. eee+: lL. pp. hh. hh eee+ sssssS "<< endl;
f_out <<" Pp "<< endl;
f_out <<" "<< endl;
f_out <<" Delphes, a framework for the fast simulation "<< endl;
f_out <<" of a generic collider experiment "<< endl;
f_out <<" "<< endl;
f_out <<" --- Version 1.8 of Delphes --- "<< endl;
f_out <<" Last date of change: 16 August 2009 "<< endl;
f_out <<" "<< endl;
f_out <<" "<< endl;
f_out <<" This package uses: "<< endl;
f_out <<" ------------------ "<< endl;
f_out <<" FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] "<< endl;
f_out <<" Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] "<< endl;
f_out <<" FROG: L. Quertenmont, V. Roberfroid [hep-ex/0901.2718v1] "<< endl;
f_out <<" "<< endl;
f_out <<" ---------------------------------------------------------------- "<< endl;
f_out <<" "<< endl;
f_out <<" Main authors: "<< endl;
f_out <<" ------------- "<< endl;
f_out <<" "<< endl;
f_out <<" Séverine Ovyn Xavier Rouby "<< endl;
f_out <<" severine.ovyn@… xavier.rouby@cern "<< endl;
f_out <<" Center for Particle Physics and Phenomenology (CP3) "<< endl;
f_out <<" Universite Catholique de Louvain (UCL) "<< endl;
f_out <<" Louvain-la-Neuve, Belgium "<< endl;
f_out <<" "<< endl;
f_out <<" ---------------------------------------------------------------- "<< endl;
f_out <<" "<< endl;
f_out <<" Former Delphes versions and documentation can be found on : "<< endl;
f_out <<" http://www.fynu.ucl.ac.be/delphes.html "<< endl;
f_out <<" "<< endl;
f_out <<" "<< endl;
f_out <<" Disclaimer: this program comes without guarantees. "<< endl;
f_out <<" Beware of errors and please give us "<< endl;
f_out <<" your feedbacks about potential bugs. "<< endl;
f_out <<" "<< endl;
f_out <<""<< endl;
f_out <<" "<< endl;
f_out<<"#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>"<<"\n";
f_out <<"* *"<< endl;
f_out <<"# *"<<"\n";
f_out <<"# Input files *"<<"\n";
f_out <<"# *"<<"\n";
f_out << left << setw(22) <<"* Input list "<<""
<< left << setw(39) << inputfilelist << "" << right << setw(9) << "*"<<"\n";
for (unsigned int i =0; i<inputfiles.size(); i++) {
f_out << left << setw(22) <<"* - file "<<""
<< left << setw(43) << inputfiles[i] << "" << right << setw(5) << "*"<<"\n";
}
if(detectorcard != "")
f_out << left << setw(22) <<"* Detector card "<<""
<< left << setw(39) << detectorcard << "" << right << setw(9) << "*"<<"\n";
if(triggercard != "")
f_out << left << setw(22) <<"* Trigger card "<<""
<< left << setw(39) << triggercard << "" << right << setw(9) << "*"<<"\n";
f_out<<"* Beam optics : *"<<"\n";
f_out << left << setw(22) <<"* - beam 1 "<<""
<< left << setw(33) << RP_beam1Card << "" << right << setw(15) << "*"<<"\n";
f_out << left << setw(22) <<"* - beam 2 "<<""
<< left << setw(33) << RP_beam2Card << "" << right << setw(15) << "*"<<"\n";
f_out << left << setw(22) <<"* Input PDG table " << ""
<< left << setw(39) << PdgTableFilename << "" << right << setw(9) << "*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"# *"<<"\n";
f_out<<"# Central detector caracteristics *"<<"\n";
f_out<<"# *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(30) <<"* Maximum tracking system: "<<""
<< left << setw(10) <<CEN_max_tracker <<""<< right << setw(15)<<"*"<<"\n";
f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
<< left << setw(10) <<CEN_max_calo_cen <<""<< right << setw(15)<<"*"<<"\n";
f_out << left << setw(30) <<"* Maximum endcap calorimeter: "<<""
<< left << setw(10) <<CEN_max_calo_ec <<""<< right << setw(15)<<"*"<<"\n";
f_out << left << setw(30) <<"* Maximum central calorimeter: "<<""
<< left << setw(10) <<CEN_max_calo_fwd <<""<< right << setw(15)<<"*"<<"\n";
f_out << left << setw(30) <<"* Muon chambers coverage: "<<""
<< left << setw(10) <<CEN_max_mu <<""<< right << setw(15)<<"*"<<"\n";
f_out<<"* *"<<"\n";
if(FLAG_RP==1){
f_out<<"# *"<<"\n";
f_out<<"# Very forward Roman Pots switched on *"<<"\n";
f_out<<"# *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(55) <<"* Distance of the 220 RP to the IP in meters:"<<""
<< left << setw(5) <<RP_220_s <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Distance of the 220 RP to the beam in meters:"<<""
<< left << setw(5) <<RP_220_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Distance of the 420 RP to the IP in meters:"<<""
<< left << setw(5) <<RP_420_s <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Distance of the 420 RP to the beam in meters:"<<""
<< left << setw(5) <<RP_420_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Interaction point at the LHC named: "<<""
<< left << setw(5) <<RP_IP_name <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(35) <<"* Datacard for beam 1: "<<""
<< left << setw(25) <<RP_beam1Card <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(35) <<"* Datacard for beam 2: "<<""
<< left << setw(25) <<RP_beam2Card <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* Beam separation, in meters(hor):"<<""
<< left << setw(6) << RP_offsetEl_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* Beam separation, in meters(ver):"<<""
<< left << setw(6) << RP_offsetEl_y <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* Distance from IP for Beam separation (m):"<<""
<< left << setw(6) <<RP_offsetEl_s <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* X offset of beam crossing in micrometers:"<<""
<< left << setw(6) <<RP_cross_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* Y offset of beam crossing in micrometers:"<<""
<< left << setw(6) <<RP_cross_y <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* X Angle of beam crossing:"<<""
<< left << setw(6) <<RP_cross_ang_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(54) <<"* Y Angle of beam crossing:"<<""
<< left << setw(6) <<RP_cross_ang_y <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
}
else {
f_out<<"#* *"<<"\n";
f_out<<"# Very forward Roman Pots switched off *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
}
if(FLAG_vfd==1){
f_out<<"# *"<<"\n";
f_out<<"# Very forward calorimeters switched on *"<<"\n";
f_out<<"# *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(55) <<"* Minimum very forward calorimeter: "<<""
<< left << setw(5) <<VFD_min_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Maximum very forward calorimeter: "<<""
<< left << setw(5) <<VFD_max_calo_vfd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Minimum coverage zero_degree calorimeter "<<""
<< left << setw(5) <<VFD_min_zdc <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Distance of the ZDC to the IP, in meters: "<<""
<< left << setw(5) <<VFD_s_zdc <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
}
else {
f_out<<"#* *"<<"\n";
f_out<<"# Very forward calorimeters switched off *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
}
f_out<<"# *"<<"\n";
f_out<<"# Electromagnetic smearing parameters *"<<"\n";
f_out<<"# *"<<"\n";
f_out<<"* *"<<"\n";
# \sigma/E = C + N/E + S/\sqrt{E}
f_out << left << setw(30) <<"* S term for central ECAL: "<<""
<< left << setw(30) <<ELG_Scen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for central ECAL: "<<""
<< left << setw(30) <<ELG_Ncen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for central ECAL: "<<""
<< left << setw(30) <<ELG_Ccen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for ECAL end-cap: "<<""
<< left << setw(30) <<ELG_Sec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for ECAL end-cap: "<<""
<< left << setw(30) <<ELG_Nec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for ECAL end-cap: "<<""
<< left << setw(30) <<ELG_Cec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for FCAL: "<<""
<< left << setw(30) <<ELG_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for FCAL: "<<""
<< left << setw(30) <<ELG_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for FCAL: "<<""
<< left << setw(30) <<ELG_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for ZDC: "<<""
<< left << setw(30) <<ELG_Szdc <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for ZDC: "<<""
<< left << setw(30) <<ELG_Nzdc <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for ZDC: "<<""
<< left << setw(30) <<ELG_Czdc <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Hadronic smearing parameters *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(30) <<"* S term for central HCAL: "<<""
<< left << setw(30) <<HAD_Scen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for central HCAL: "<<""
<< left << setw(30) <<HAD_Ncen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for central HCAL: "<<""
<< left << setw(30) <<HAD_Ccen <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for HCAL endcap: "<<""
<< left << setw(30) <<HAD_Sec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for HCAL endcap: "<<""
<< left << setw(30) <<HAD_Nec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for HCAL endcap: "<<""
<< left << setw(30) <<HAD_Cec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for FCAL: "<<""
<< left << setw(30) <<HAD_Sfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for FCAL: "<<""
<< left << setw(30) <<HAD_Nfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for FCAL: "<<""
<< left << setw(30) <<HAD_Cfwd <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* S term for ZDC: "<<""
<< left << setw(30) <<HAD_Szdc <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* N term for ZDC: "<<""
<< left << setw(30) <<HAD_Nzdc <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(30) <<"* C term for ZDC: "<<""
<< left << setw(30) <<HAD_Czdc <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Time smearing parameters *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(55) <<"* Time resolution for ZDC : "<<""
<< left << setw(5) <<ZDC_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Time resolution for RP220 : "<<""
<< left << setw(5) <<RP220_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Time resolution for RP420 : "<<""
<< left << setw(5) <<RP420_T_resolution <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Muon smearing parameters *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(55) <<"* PT resolution for muons : "<<""
<< left << setw(5) <<MU_SmearPt <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
if(FLAG_bfield==1){
f_out<<"#* *"<<"\n";
f_out<<"# Magnetic field switched on *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(55) <<"* Radius of the BField coverage: "<<""
<< left << setw(5) <<TRACK_radius <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Length of the BField coverage: "<<""
<< left << setw(5) <<TRACK_length <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* BField X component: "<<""
<< left << setw(5) <<TRACK_bfield_x <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* BField Y component: "<<""
<< left << setw(5) <<TRACK_bfield_y <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* BField Z component: "<<""
<< left << setw(5) <<TRACK_bfield_z <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
<< left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
<< left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
f_out<<"* *"<<"\n";
}
else {
f_out<<"# *"<<"\n";
f_out<<"# Magnetic field switched off *"<<"\n";
f_out<<"# *"<<"\n";
f_out << left << setw(55) <<"* Minimal pT needed to reach the calorimeter [GeV]: "<<""
<< left << setw(10) <<TRACK_ptmin <<""<< right << setw(5)<<"*"<<"\n";
f_out << left << setw(55) <<"* Efficiency associated to the tracking: "<<""
<< left << setw(10) <<TRACK_eff <<""<< right << setw(5)<<"*"<<"\n";
f_out<<"* *"<<"\n";
}
f_out<<"# *"<<"\n";
f_out<<"# Calorimetric Towers *"<<"\n";
f_out<<"# *"<<"\n";
f_out << left << setw(55) <<"* Number of calorimetric towers in eta, for eta>0: "<<""
<< left << setw(5) << TOWER_number <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(55) <<"* Tower edges in eta, for eta>0: "<<"" << right << setw(15)<<"*"<<"\n";
f_out << "* ";
for (unsigned int i=0; i<TOWER_number+1; i++) {
f_out << left << setw(7) << TOWER_eta_edges[i];
if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
}
for (unsigned int i=(TOWER_number+1)%9; i<9; i++) f_out << left << setw(7) << "";
f_out << right << setw(3)<<"*"<<"\n";
f_out << left << setw(55) <<"* Tower sizes in phi, for eta>0 [degree]:"<<"" << right << setw(15)<<"*"<<"\n";
f_out << "* ";
for (unsigned int i=0; i<TOWER_number; i++) {
f_out << left << setw(7) << TOWER_dphi[i];
if(!( (i+1) %9 )) f_out << right << setw(3) << "*" << "\n" << "* ";
}
for (unsigned int i=(TOWER_number)%9; i<9; i++) f_out << left << setw(7) << "";
f_out << right << setw(3)<<"*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Minimum pT's [GeV] *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for electrons: "<<""
<< left << setw(20) <<PTCUT_elec <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for muons: "<<""
<< left << setw(20) <<PTCUT_muon <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for jets: "<<""
<< left << setw(20) <<PTCUT_jet <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for Tau-jets: "<<""
<< left << setw(20) <<PTCUT_taujet <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for photons: "<<""
<< left << setw(20) <<PTCUT_gamma <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum E for photons in ZDC: "<<""
<< left << setw(20) <<ZDC_gamma_E <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Minimum E for neutrons in ZDC: "<<""
<< left << setw(20) <<ZDC_n_E <<""<< right << setw(10)<<"*"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Isolation criteria *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"* *"<<"\n";
f_out << left << setw(40) <<"* Minimum pT for tracks [GeV]: "<<""
<< left << setw(20) <<ISOL_PT <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Cone for isolation criteria: "<<""
<< left << setw(20) <<ISOL_Cone <<""<< right << setw(10)<<"*"<<"\n";
if(ISOL_Calo_ET > 1E98) f_out<<"# No Calorimetric isolation applied *"<<"\n";
else {
f_out << left << setw(40) <<"* Minimum ET for towers [GeV]: "<<""
<< left << setw(20) <<ISOL_Calo_ET <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* Grid size (NxN) for calorimetric isolation: "<<""
<< left << setw(20) <<ISOL_Calo_Grid <<""<< right << setw(4)<<"*"<<"\n";
}
f_out<<"* *"<<"\n";
f_out<<"#* *"<<"\n";
f_out<<"# Jet definition *"<<"\n";
f_out<<"#* *"<<"\n";
if(JET_Eflow)
{
f_out<<"#* *"<<"\n";
f_out<<"#* Running considering perfect energy flow on the tracker coverage *"<<"\n";
}
else
{
f_out<<"#* Running considering no energy flow on the tracker coverage *"<<"\n";
f_out<<"#* --> jet algo applied on the calorimetric towers *"<<"\n";
}
f_out<<"* *"<<"\n";
f_out<<"* Six algorithms are currently available: *"<<"\n";
f_out<<"* - 1) CDF cone algorithm, *"<<"\n";
f_out<<"* - 2) CDF MidPoint algorithm, *"<<"\n";
f_out<<"* - 3) SIScone algorithm, *"<<"\n";
f_out<<"* - 4) kt algorithm, *"<<"\n";
f_out<<"* - 5) Cambrigde/Aachen algorithm, *"<<"\n";
f_out<<"* - 6) Anti-kt algorithm. *"<<"\n";
f_out<<"* *"<<"\n";
f_out<<"* You have chosen *"<<"\n";
switch(JET_jetalgo) {
default:
case 1: {
f_out<<"* CDF JetClu jet algorithm with parameters: *"<<"\n";
f_out << left << setw(40) <<"* - Seed threshold: "<<""
<< left << setw(10) <<JET_seed <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Cone radius: "<<""
<< left << setw(10) <<JET_coneradius <<""<< right << setw(20)<<"*"<<"\n";
f_out << left << setw(40) <<"* - Adjacency cut: "<<""
<< left << setw(10) <<JET_C_adjacencycut <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Max iterations: "<<""
<< left << setw(10) <<JET_C_maxiterations <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Iratch: "<<""
<< left << setw(10) <<JET_C_iratch <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Overlap threshold: "<<""
<< left << setw(10) <<JET_overlap <<""<< right << setw(20)<<"! not in datacard *"<<"\n";
}
break;
case 2: {
f_out<<"* CDF midpoint jet algorithm with parameters: *"<<"\n";
f_out << left << setw(40) <<"* - Seed threshold: "<<""
<< left << setw(20) <<JET_seed <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Cone radius: "<<""
<< left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* - Cone area fraction:"<<""
<< left << setw(20) <<JET_M_coneareafraction <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Maximum pair size: "<<""
<< left << setw(20) <<JET_M_maxpairsize <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Max iterations: "<<""
<< left << setw(20) <<JET_M_maxiterations <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
f_out << left << setw(40) <<"* - Overlap threshold: "<<""
<< left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in datacard *"<<"\n";
}
break;
case 3: {
f_out <<"* SISCone jet algorithm with parameters: *"<<"\n";
f_out << left << setw(40) <<"* - Cone radius: "<<""
<< left << setw(20) <<JET_coneradius <<""<< right << setw(10)<<"*"<<"\n";
f_out << left << setw(40) <<"* - Overlap threshold: "<<""
<< left << setw(20) <<JET_overlap <<""<< right << setw(10)<<"! not in data
- Location:
- trunk
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Delphes.cpp
r551 r555 627 627 elementElec->Charge = - sign(electron[i].PID()); 628 628 elementElec->IsolFlag = DET->Isolation(electron[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoEl); 629 elementElec->IsolPt = ptisoEl;630 629 631 630 int electron_tower_index = DET->BinEtaPhi(elementElec->PhiCalo,elementElec->EtaCalo,iPhiEl,iEtaEl); … … 633 632 elementElec->EHoverEE = calElec.getEhad()/calElec.getEem(); 634 633 elementElec->EtRatio = DET->CaloIsolation(electron[i], list_of_active_towers,iPhiEl,iEtaEl,electron_tower_index); 634 elementElec->SumEt = DET->IsolationSumEt(iPhiEl,iEtaEl, list_of_active_towers); 635 elementElec->SumPt = ptisoEl; 636 635 637 } 636 638 … … 645 647 elementMu->PhiCalo = muon[i].PhiCalo(); 646 648 elementMu->IsolFlag = DET->Isolation(muon[i],TrackCentral,DET->ISOL_PT,DET->ISOL_Cone,ptisoMu); 647 elementMu->IsolPt = ptisoMu; 649 elementMu->SumPt = ptisoMu; 650 elementMu->SumEt = DET->IsolationSumEt(iPhiMu,iEtaMu, list_of_active_towers); 648 651 649 652 int muon_tower_index = DET->BinEtaPhi(elementMu->PhiCalo,elementMu->EtaCalo,iPhiMu,iEtaMu); -
trunk/Utilities/ExRootAnalysis/interface/BlockClasses.h
r550 r555 254 254 class TRootElectron: public TRootParticle { 255 255 public: 256 TRootElectron():Charge(-999), IsolFlag(false), IsolPt(UNDEFINED),EtaCalo(UNDEFINED), PhiCalo(UNDEFINED), EHoverEE(UNDEFINED){};256 TRootElectron():Charge(-999), IsolFlag(false), EtaCalo(UNDEFINED), PhiCalo(UNDEFINED), EHoverEE(UNDEFINED){}; 257 257 static TCompare *fgCompare; //! 258 258 int Charge; // particle Charge [RawHepEventParticle::pid()] 259 259 bool IsolFlag; // stores the result of the isolation test 260 float IsolPt; // sum of pt around the electron, for isolation criteria261 260 float EtaCalo; // particle pseudorapidity when entering the calo, 262 261 float PhiCalo; // particle azimuthal angle in rad when entering the calo 263 262 float EHoverEE; 264 263 float EtRatio; 264 float SumEt; 265 float SumPt; 265 266 266 267 void SetEtaPhiCalo(const float eta, const float phi) {EtaCalo=eta; PhiCalo=phi;}; … … 285 286 class TRootMuon: public TRootParticle { 286 287 public: 287 TRootMuon():Charge(-999), IsolFlag(false), IsolPt(UNDEFINED), EtaCalo(UNDEFINED), PhiCalo(UNDEFINED), 288 EHoverEE(UNDEFINED), EtRatio(UNDEFINED) {}; 288 TRootMuon():Charge(-999), IsolFlag(false), EtaCalo(UNDEFINED), PhiCalo(UNDEFINED), EHoverEE(UNDEFINED), EtRatio(UNDEFINED) {}; 289 289 static TCompare *fgCompare; //! 290 290 int Charge; // particle Charge [RawHepEventParticle::pid()] 291 291 bool IsolFlag; 292 float IsolPt;293 292 float EtaCalo; // particle pseudorapidity when entering the calo, 294 293 float PhiCalo; // particle azimuthal angle in rad when entering the calo 295 294 float EHoverEE; // hadronic energy over electromagnetic energy 296 295 float EtRatio; // calo Et in NxN-tower grid around the muon over the muon Et 296 float SumEt; 297 float SumPt; 297 298 298 299 void SetEtaPhiCalo(const float eta, const float phi) {EtaCalo=eta; PhiCalo=phi;}; -
trunk/interface/SmearUtil.h
r550 r555 279 279 /// Lepton isolation based on calorimetry (optional. Default: off) 280 280 float CaloIsolation(const D_Particle& part, const D_CaloTowerList & towers, const float iPhi, const float iEta, const int iTower); 281 float IsolationSumEt(const float iPhi, const float iEta, D_CaloTowerList & towers); 282 281 283 282 284 //********************* returns a segmented value for eta and phi, for calo towers *****