Fork me on GitHub

Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • modules/ParticlePropagator.cc

    rae93700 r38b4e15  
    126126  Double_t px, py, pz, pt, pt2, e, q;
    127127  Double_t x, y, z, t, r;
    128   Double_t x_c, y_c, r_c, phi_0;
    129   Double_t x_t, y_t, z_t, r_t, phi_t;
    130   Double_t t_r, t_z;
    131   Double_t tmp;
     128  Double_t x_c, y_c, r_c, phi_c, phi_0;
     129  Double_t x_t, y_t, z_t, r_t;
     130  Double_t t_z, t_r;
     131  Double_t discr;
    132132  Double_t gammam, omega;
    133133  Double_t xd, yd, zd;
    134134  Double_t l, d0, dz, ctgTheta, alpha;
    135135  Double_t bsx, bsy, bsz;
    136   Double_t td, pio, phid, vz;
     136  Double_t rxp, rdp, t_R;
     137  Double_t td, pio, phid, sign_pz, vz;
    137138
    138139  const Double_t c_light = 2.99792458E8;
    139140
    140141  if(!fBeamSpotInputArray || fBeamSpotInputArray->GetSize() == 0)
    141   {
    142142    beamSpotPosition.SetXYZT(0.0, 0.0, 0.0, 0.0);
    143   }
    144143  else
    145144  {
     
    162161    particlePosition = particle->Position;
    163162    particleMomentum = particle->Momentum;
     163
     164    // Constants
    164165
    165166    x = particlePosition.X() * 1.0E-3;
     
    207208    else if(TMath::Abs(q) < 1.0E-9 || TMath::Abs(fBz) < 1.0E-9)
    208209    {
    209       // solve pt2*t^2 + 2*(px*x + py*y)*t - (fRadius2 - x*x - y*y) = 0
    210       tmp = px * y - py * x;
    211       t_r = (TMath::Sqrt(pt2 * fRadius2 - tmp * tmp) - px * x - py * y) / pt2;
    212 
    213       t_z = (TMath::Sign(fHalfLength, pz) - z) / pz;
    214 
    215       t = TMath::Min(t_r, t_z);
    216 
    217       x_t = x + px * t;
    218       y_t = y + py * t;
    219       z_t = z + pz * t;
    220 
    221       l = TMath::Sqrt((x_t - x) * (x_t - x) + (y_t - y) * (y_t - y) + (z_t - z) * (z_t - z));
     210
     211      rxp = x*py - y*px;
     212      rdp = x*px + y*py;
     213
     214      discr = fRadius*fRadius*pt*pt - rxp*rxp;
     215
     216      t_R = e * (sqrt(discr) - rdp) / (c_light * pt * pt);
     217      t_z = e * (TMath::Sign(fHalfLengthMax, pz) - z) / ( c_light * pz);
     218
     219      t = TMath::Min(t_R, t_z);
     220
     221      x_t = x + px*t*c_light/e;
     222      y_t = y + py*t*c_light/e;
     223      z_t = z + pz*t*c_light/e;
     224      r_t = TMath::Hypot(x_t, y_t);
     225
     226      l = TMath::Sqrt( (x_t - x)*(x_t - x) + (y_t - y)*(y_t - y) + (z_t - z)*(z_t - z));
    222227
    223228      mother = candidate;
    224       candidate = static_cast<Candidate *>(candidate->Clone());
     229      candidate = static_cast<Candidate*>(candidate->Clone());
    225230
    226231      candidate->InitialPosition = particlePosition;
    227       candidate->Position.SetXYZT(x_t * 1.0E3, y_t * 1.0E3, z_t * 1.0E3, particlePosition.T() + t * e * 1.0E3);
    228       candidate->L = l * 1.0E3;
     232      candidate->Position.SetXYZT(x_t*1.0E3, y_t*1.0E3, z_t*1.0E3, particlePosition.T() + t*c_light*1.0E3);
     233      candidate->L = l*1.0E3;
    229234
    230235      candidate->Momentum = particleMomentum;
     
    255260    {
    256261
    257       // 1. initial transverse momentum p_{T0}: Part->pt
    258       //    initial transverse momentum direction phi_0 = -atan(p_{X0} / p_{Y0})
    259       //    relativistic gamma: gamma = E / mc^2; gammam = gamma * m
    260       //    gyration frequency omega = q * Bz / (gammam)
    261       //    helix radius r = p_{T0} / (omega * gammam)
    262 
    263       gammam = e * 1.0E9 / (c_light * c_light); // gammam in [eV/c^2]
    264       omega = q * fBz / gammam; // omega is here in [89875518/s]
    265       r = pt / (q * fBz) * 1.0E9 / c_light; // in [m]
     262      // 1.  initial transverse momentum p_{T0}: Part->pt
     263      //     initial transverse momentum direction phi_0 = -atan(p_X0/p_Y0)
     264      //     relativistic gamma: gamma = E/mc^2; gammam = gamma * m
     265      //     gyration frequency omega = q/(gamma m) fBz
     266      //     helix radius r = p_{T0} / (omega gamma m)
     267
     268      gammam = e*1.0E9 / (c_light*c_light);      // gammam in [eV/c^2]
     269      omega = q * fBz / (gammam);                // omega is here in [89875518/s]
     270      r = pt / (q * fBz) * 1.0E9/c_light;        // in [m]
    266271
    267272      phi_0 = TMath::ATan2(py, px); // [rad] in [-pi, pi]
    268273
    269274      // 2. helix axis coordinates
    270       x_c = x + r * TMath::Sin(phi_0);
    271       y_c = y - r * TMath::Cos(phi_0);
     275      x_c = x + r*TMath::Sin(phi_0);
     276      y_c = y - r*TMath::Cos(phi_0);
    272277      r_c = TMath::Hypot(x_c, y_c);
    273 
    274       // time of closest approach
    275       td = (phi_0 + TMath::ATan2(x_c, y_c)) / omega;
    276 
    277       // remove all the modulo pi that might have come from the atan
    278       pio = TMath::Abs(TMath::Pi() / omega);
    279       while(TMath::Abs(td) > 0.5 * pio)
    280       {
    281         td -= TMath::Sign(1.0, td) * pio;
    282       }
    283 
    284       vz = pz * c_light / e;
    285 
    286       // calculate coordinates of closest approach to z axis
    287       phid = phi_0 - omega * td;
    288       xd = x_c - r * TMath::Sin(phid);
    289       yd = y_c + r * TMath::Cos(phid);
    290       zd = z + vz * td;
    291 
    292       // momentum at closest approach
    293       px = pt * TMath::Cos(phid);
    294       py = pt * TMath::Sin(phid);
     278      phi_c = TMath::ATan(y_c/x_c);
     279      if(x_c < 0.0) phi_c -= TMath::Sign(1., phi_c)*TMath::Pi();
     280
     281      //Find the time of closest approach
     282      td = (phi_0 - TMath::ATan(-x_c/y_c))/omega;
     283
     284      //Remove all the modulo pi that might have come from the atan
     285      pio = fabs(TMath::Pi()/omega);
     286      while(fabs(td) > 0.5*pio)
     287      {
     288        td -= TMath::Sign(1., td)*pio;
     289      }
     290
     291      //Compute the coordinate of closed approach to z axis
     292      //if wants wtr beamline need to be changedto re-center with a traslation of the z axis
     293      phid = phi_0 - omega*td;
     294      xd = x_c - r*TMath::Sin(phid);
     295      yd = y_c + r*TMath::Cos(phid);
     296      zd = z + c_light*(pz/e)*td;
     297
     298      //Compute momentum at closest approach (perigee??)
     299      px = pt*TMath::Cos(phid);
     300      py = pt*TMath::Sin(phid);
    295301
    296302      particleMomentum.SetPtEtaPhiE(pt, particleMomentum.Eta(), phid, particleMomentum.E());
     
    299305      d0 = ((xd - bsx) * py - (yd - bsy) * px) / pt;
    300306      dz = zd - bsz;
    301       ctgTheta = 1.0 / TMath::Tan(particleMomentum.Theta());
     307      ctgTheta  = 1.0 / TMath::Tan (particleMomentum.Theta());
    302308
    303309      // 3. time evaluation t = TMath::Min(t_r, t_z)
    304310      //    t_r : time to exit from the sides
    305311      //    t_z : time to exit from the front or the back
    306       t_z = (vz == 0.0) ? 1.0E99 : (TMath::Sign(fHalfLength, pz) - z) / vz;
    307 
    308       if(r_c + TMath::Abs(r) < fRadius)
    309       {
    310         // helix does not cross the cylinder sides
     312      t = 0;
     313      t_z = 0;
     314      sign_pz = (pz > 0.0) ? 1 : -1;
     315      if(pz == 0.0) t_z = 1.0E99;
     316      else t_z = gammam / (pz*1.0E9/c_light) * (-z + fHalfLength*sign_pz);
     317
     318      if(r_c + TMath::Abs(r)  < fRadius)   // helix does not cross the cylinder sides
     319      {
    311320        t = t_z;
    312321      }
    313322      else
    314323      {
    315         alpha = TMath::ACos((r * r + r_c * r_c - fRadius * fRadius) / (2 * TMath::Abs(r) * r_c));
    316         t_r = td + TMath::Abs(alpha / omega);
     324        alpha = -(fRadius*fRadius - r*r - r_c*r_c)/(2*fabs(r)*r_c);
     325        alpha = fabs(TMath::ACos(alpha));
     326        t_r = td + alpha/fabs(omega);
    317327
    318328        t = TMath::Min(t_r, t_z);
    319329      }
    320330
    321       // 4. position in terms of x(t), y(t), z(t)
    322       phi_t = phi_0 - omega * t;
    323       x_t = x_c - r * TMath::Sin(phi_t);
    324       y_t = y_c + r * TMath::Cos(phi_t);
    325       z_t = z + vz * t;
    326       r_t = TMath::Hypot(x_t, y_t);
    327 
    328       // lenght of the path from production to tracker
    329       l = t * TMath::Hypot(vz, r * omega);
     331      x_t = x_c - r*TMath::Sin(phi_0 - omega*t);
     332      y_t = y_c + r*TMath::Cos(phi_0 - omega*t);
     333      z_t = z + c_light*t*pz/e;
     334      r_t =  TMath::Hypot(x_t, y_t);
     335
     336      // compute path length for an helix
     337      vz = pz*1.0E9 / c_light / gammam;
     338      //lenght of the path from production to tracker
     339      l = t * TMath::Sqrt(vz*vz + r*r*omega*omega);
    330340
    331341      if(r_t > 0.0)
Note: See TracChangeset for help on using the changeset viewer.