- Timestamp:
- Jan 28, 2009, 12:03:03 AM (16 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/src/BFieldProp.cc
r193 r199 22 22 rr(-9999.), t(-9999.), t_z(-9999.), t_T(-9999.), 23 23 x_t(-9999.), y_t(-9999.), z_t(-9999.), 24 R_t(-9999.), Phi_t(-9999.), Theta_t(-9999.), Eta_t(-9999.) { 24 R_t(-9999.), Phi_t(-9999.), Theta_t(-9999.), Eta_t(-9999.), 25 Px_t(-9999), Py_t(-9999), Pz_t(-9999), PT_t(-9999), p_t(-9999), E_t(-9999) { 25 26 26 27 // if(DetDatacard="") { DET = new RESOLution(); } … … 47 48 if(z_max==0) { cout << "ERROR: magnetic field has no longitudinal extention\n"; return;} 48 49 49 if ( 0 &&B_x== 0 && B_y== 0) { // faster if only B_z50 if (B_x== 0 && B_y== 0) { // faster if only B_z 50 51 if (B_z==0) return; // nothing to do 51 52 … … 68 69 // x_c = x_0 - r*cos(phi_0) and y_c = y_0 - r*sin(phi_0) 69 70 // R_c = \sqrt{x_c² + y_c²} and \Phi_c = atan{y_c/x_c} 70 x_c = Part->X - r*cos(phi_0); 71 x_c = Part->X - r*cos(phi_0); /// TEST !! 71 72 y_c = Part->Y - r*sin(phi_0); 72 73 R_c = sqrt(pow(x_c,2.) + pow(y_c,2.) ); … … 75 76 // 3. time evaluation t = min(t_T, t_z) 76 77 // t_T : time to exit from the sides 78 // t_T= [ Phi_c - phi_0 + atan( (R_max^2 - (R_c^2 + r^2))/(2rR_c) ) ]/omega 77 79 // t_z : time to exit from the front or the back 80 // t_z = gamma * m /p_z0 \times (-z_0 + z_max * sign(p_z0)) 78 81 rr = sqrt( pow(R_c,2.) + pow(r,2.) ); // temp variable 79 82 t_T=0; 80 t_z = gammam / Part->Pz * (-Part->Z + DET-> TRACK_length/2.* TMath::Sign((Float_t)1.,(Float_t)Part->Pz) ) ;83 t_z = gammam / Part->Pz * (-Part->Z + z_max* TMath::Sign((Float_t)1.,(Float_t)Part->Pz) ) ; 81 84 if ( fabs(R_c - r) > R_max || R_c + r < R_max ) t = t_z; 82 85 else { … … 99 102 // Eta(t) = -ln tan (Theta(t)/2) 100 103 R_t = sqrt( pow(x_t,2.) + pow(y_t,2.) ); 101 double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check 102 if(fabs(R_t - R_t2) > 1e-11) 104 Phi_t = atan2( y_t, x_t); 105 /* if(R_t>0) { 106 Theta_t = acos( z_t / sqrt(z_t*z_t+ R_t*R_t)); 107 Eta_t = - log(tan(Theta_t/2.)); 108 } else{ 109 Theta_t=0; Eta_t = 9999; 110 } 111 */ 112 Px_t = - Part->PT * sin(omega*t + phi_0); 113 Py_t = Part->PT * cos(omega*t + phi_0); 114 Pz_t = Part->Pz; 115 PT_t = sqrt(Px_t*Px_t + Py_t*Py_t); 116 p_t = sqrt(PT_t*PT_t + Pz_t*Pz_t); 117 E_t=sqrt(Part->M*Part->M +p_t); 118 if(p_t != fabs(Pz_t) ) Eta_t = log( (p_t+Pz_t)/(p_t-Pz_t) )/2.; 119 if(p_t>0) Theta_t = acos(Pz_t/p_t); 120 momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E_t); 121 122 // test zone --- 123 /* 124 cout << cos(atan(R_t/z_t)) << "\t" << cos(Theta_t) << "\t" << cos(momentum.Theta()) << "\t" << Pz_t/temp_p << endl; 125 double Eta_t1 = log( (E+Pz_t)/(E-Pz_t) )/2.; 126 double Eta_t2 = log( (temp_p+Pz_t)/(temp_p-Pz_t) )/2.; 127 if(0 && fabs(Eta_t -Eta_t2)>1e-310) { 128 cout << "ERROR-BUG: Eta_t != Eta_t2\n"; 129 cout << "Eta_t= " << Eta_t << "\t Eta_t1= " << Eta_t1 << "\t Eta_t2= " << Eta_t2 << endl; 130 } 131 132 double R_t2 = sqrt( pow(R_c,2.) + pow(r,2.) + 2*r*R_c*cos(phi_0 + omega*t - Phi_c) ); // cross-check 133 if(fabs(R_t - R_t2) > 1e-7) 103 134 cout << "ERROR-BUG: R_t != R_t2: R_t=" << R_t << " R_t2=" << R_t2 << " R_t - R_t2 =" << R_t - R_t2 << endl; 104 Phi_t = atan2( y_t, x_t); 105 Theta_t = atan2( R_t , z_t); 106 Eta_t = - log(tan(Theta_t/2.)); 107 108 double Px_t = - Part->PT * sin(omega*t + phi_0); 109 double Py_t = Part->PT * cos(omega*t + phi_0); 110 double Pz_t = Part->Pz; 111 double PT_t = sqrt(Px_t*Px_t + Py_t*Py_t); 112 double E=sqrt(Part->M*Part->M + PT_t*PT_t + Pz_t*Pz_t); // cross-check 113 momentum.SetPxPyPzE(Px_t,Py_t,Pz_t,E); 114 TLorentzVector mom_temp; 115 mom_temp.SetPtEtaPhiM(PT_t,Eta_t,Phi_t+PI,Part->M); 116 117 if (momentum != mom_temp) { 118 // cout << "momentum et mom_temp different\n"; 119 /* if (momentum.Px() != mom_temp.Px() ) cout << " px: " << momentum.Px() << " & " << mom_temp.Px() << endl; 120 if (momentum.Py() != mom_temp.Py() ) cout << " py: " << momentum.Py() << " & " << mom_temp.Py() << endl; 121 if (momentum.Pz() != mom_temp.Pz() ) cout << " pz: " << momentum.Pz() << " & " << mom_temp.Pz() << endl; 122 if (momentum.Pt() != mom_temp.Pt() ) cout << " pt: " << momentum.Pt() << " & " << mom_temp.Pt() << endl;*/ 123 // cout << "eta: " << momentum.Eta() << " " << mom_temp.Eta() << endl; 124 // cout << "the: " << momentum.Theta() << " " << mom_temp.Theta() << endl; 125 // cout << "phi: " << momentum.Phi() << " " << mom_temp.Phi() << endl; 126 } 127 //cout << Part->PT << " or " << momentum.Pt() << " or " << mom_temp.Pt() << endl; 128 129 if( fabs(E - gammam) > 1e-4 ) { 135 if( fabs(E - gammam) > 1e-3 ) { 130 136 cout << "ERROR-BUG: energy is not conserved in src/BFieldProp.cc\n"; 131 137 cout << "E - momentum.E() = " << fabs(E - momentum.E()) << " gammam - E " << fabs(gammam -E) << endl; } 132 138 if( fabs(PT_t - Part->PT) > 1e-10 ) { 133 cout << "ERROR-BUG: PT is not con served in src/BFieldProp.cc. ";139 cout << "ERROR-BUG: PT is not conversed in src/BFieldProp.cc. "; 134 140 cout << "(at " << 100*(PT_t - Part->PT) << "%)\n"; 135 141 } … … 137 143 cout << "ERROR-BUG: Pz is not conserved in src/BFieldProp.cc\n"; 138 144 139 //momentum.SetPtEtaPhiE(Part->PT,Eta_t,Phi_t,Part->E); 140 145 double temp_p0=sqrt(Part->PT*Part->PT + Part->Pz*Part->Pz); 146 if(fabs( (temp_p-temp_p0)*(temp_p+temp_p0) )>1e-10 ) { 147 cout << "ERROR-BUG: momentum |vec{p}| is not conserved in src/BFieldProp.cc\n"; 148 cout << temp_p << "\t" << temp_p0 << endl; 149 } 150 151 // if x_c == y_c ==0 (set it by hand!), easy cross-check 152 //cout << "tan(phi_p)= " << momentum.Py()/momentum.Px() << "\t -1/tan(phi_x)= " << -x_t/y_t << endl; 153 */ 154 141 155 } else { // if B_x or B_y are non zero: longer computation 142 156 … … 153 167 double pz = Part->Pz / 0.003; 154 168 double pt = Part->PT / 0.003; // sqrt(px*px+py*py); 155 double p = sqrt(p x*px+py*py+pz*pz);169 double p = sqrt(pz*pz + pt*pt); //sqrt(px*px+py*py+pz*pz); 156 170 157 171 double M = Part->M;
Note:
See TracChangeset
for help on using the changeset viewer.