Changeset 134 in svn
- Timestamp:
- Jan 6, 2009, 4:05:06 PM (16 years ago)
- Location:
- trunk/paper
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/paper/notes.tex
r133 r134 37 37 \fi 38 38 39 \title{\textsc{Delphes}, a framework for fast simulation \\of a general purpose \textsc{lhc} detector} 40 \author{S. Ovyn and X. Rouby\thanks{Now in Physikalisches Institut, Albert-Ludwigs-Universit\"at Freiburg} \\ 41 Center for Particle Physics and Phenomenology (CP3)\\ Universit\'e catholique de Louvain \\ B-1348 Louvain-la-Neuve, Belgium \\ \\ 42 \textit{severine.ovyn@uclouvain.be, xavier.rouby@cern.ch} \\ 39 %\title{\textsc{Delphes}, a framework for fast simulation \\of a general purpose \textsc{lhc} detector} 40 \title{\textsc{Delphes}, a framework for fast simulation \\of a generic collider experiment} 41 \author{S. Ovyn and X. Rouby$^\textrm{a}$\\ 42 \small{Center for Particle Physics and Phenomenology (CP3)}\\ 43 \small{Universit\'e catholique de Louvain}\\ 44 \small{B-1348 Louvain-la-Neuve, Belgium}\\ \\ 45 \texttt{severine.ovyn@uclouvain.be, xavier.rouby@cern.ch} \\ 43 46 } 44 47 \date{} 45 48 49 46 50 \begin{document} 47 51 48 52 \twocolumn[ 49 53 \maketitle 54 55 \begin{center} 56 \includegraphics{DelphesLogoSml} 57 \end{center} 58 59 50 60 \begin{abstract} 51 61 Knowing whether theoretical predictions are visible and measurable in a high energy experiment is always delicate, due to the … … 56 66 The simulation of detector response takes into account the detector resolution, and usual reconstruction algorithms for complex objects, like \textsc{FastJet}. A simplified preselection can also be applied on processed data for trigger emulation. Detection of very forward scattered particles relies on the transport in beamlines with the \textsc{Hector} software. Finally, the \textsc{Frog} 2D/3D event display is used for visualisation of the collision final states. 57 67 An overview of \textsc{Delphes} is given as well as a few use-cases for illustration. 58 \vspace{ 1cm}68 \vspace{0.5cm} 59 69 60 70 \noindent 61 71 \textit{Keywords:} \textsc{Delphes}, fast simulation, \textsc{lhc}, smearing, trigger, \textsc{FastJet}, \textsc{Hector}, \textsc{Frog} 62 \vspace{1cm} 72 \vspace{1.5cm} 73 63 74 \end{abstract} 75 \small{$^\textrm{a}$ Now in Physikalisches Institut, Albert-Ludwigs-Universit\"at Freiburg} 64 76 ] 65 \saythanks77 %\saythanks 66 78 67 79 \section{Introduction} … … 99 111 %The simulation package proceeds in two stages. The first part is executed on the generated events. ``Particle-level" informations are read from input files and stored in a {\it \textsc{gen}} \textsc{root} tree. 100 112 101 Three formats of input files can currently be used as input in \textsc{Delphes}\footnote{\texttt{[code] }See the \texttt{HEPEVTConverter}, \texttt{LHEFConverter} and \texttt{STDHEPConverter} classes.}. In order to process events from many different generators, the standard Monte Carlo event structure \mbox{\textsc{s}td\textsc{hep}} can be used as an input. Besides, \textsc{Delphes} can also provide detector response for events read in ``Les Houches Event Format'' (\textsc{lhef}) and \textsc{root} files obtained using the \text bf{h2root} utility from the \textsc{root} framework~\cite{bib:Root}.113 Three formats of input files can currently be used as input in \textsc{Delphes}\footnote{\texttt{[code] }See the \texttt{HEPEVTConverter}, \texttt{LHEFConverter} and \texttt{STDHEPConverter} classes.}. In order to process events from many different generators, the standard Monte Carlo event structure \mbox{\textsc{s}td\textsc{hep}} can be used as an input. Besides, \textsc{Delphes} can also provide detector response for events read in ``Les Houches Event Format'' (\textsc{lhef}) and \textsc{root} files obtained using the \texttt{h2root} utility from the \textsc{root} framework~\cite{bib:Root}. 102 114 %Afterwards, \textsc{Delphes} performs a simple trigger simulation and reconstruct "high-level objects". These informations are organised in classes and each objects are ordered with respect to the transverse momentum. 103 115 104 The output of \textsc{Delphes} contains a copy of the generator level data (\textsc{gen} tree), the analysis data objects after reconstruction (\mbox{\textsc{A}nalysis} tree), and possibly the results of the trigger emulation (\mbox{\textsc{T}rigger} tree). The program is driven by input cards. The detector card (\texttt{data/DataCardDet.dat}) allows a large spectrum of running conditions by modifying basic detector parameters, including calorimeter and tracking coverage and resolution, thresholds or jet algorithm parameters. The trigger card (\texttt{data/trigger.dat}) lists the user algorithms for the simplified online preselection.\\ 116 \textsc{Delphes} uses the \texttt{ExRootAnalysis} utility~\cite{bib:ExRootAnalysis} to create output data in a \texttt{*.root} file format. 117 This output contains a copy of the generator level data (\textsc{gen} tree), the analysis data objects after reconstruction (\mbox{\textsc{A}nalysis} tree), and possibly the results of the trigger emulation (\mbox{\textsc{T}rigger} tree). The program is driven by input cards. The detector card (\texttt{data/DataCardDet.dat}) allows a large spectrum of running conditions by modifying basic detector parameters, including calorimeter and tracking coverage and resolution, thresholds or jet algorithm parameters. The trigger card (\texttt{data/trigger.dat}) lists the user algorithms for the simplified online preselection.\\ 105 118 106 119 … … 335 348 \begin{enumerate}[start=4] 336 349 337 \item {\it Longitudinally invariant $k_t$ jet} :350 \item {\it Longitudinally invariant $k_t$ jet}~\cite{bib:ktjet}: 338 351 \begin{equation} 339 352 \begin{array}{l} … … 343 356 \end{equation} 344 357 345 \item {\it Cambridge/Aachen jet}: 346 358 \item {\it Cambridge/Aachen jet}~\cite{bib:aachen}: 347 359 \begin{equation} 348 360 \begin{array}{l} … … 352 364 \end{equation} 353 365 354 \item {\it Anti $k_t$ jet}: where hard jets are exactly circular 355 366 \item {\it Anti $k_t$ jet}~\cite{bib:antikt}: where hard jets are exactly circular 356 367 \begin{equation} 357 368 \begin{array}{l} … … 381 392 382 393 383 \subsection{ $\tau$identification}394 \subsection{\texorpdfstring{$\tau$}{\texttau} identification} 384 395 385 396 Jets originating from $\tau$-decays are identified using an identification procedure consistent with the one applied in a full detector simulation~\cite{bib:cmstaus}. … … 427 438 \includegraphics[width=\columnwidth]{Tau2} 428 439 \caption{Distribution of the electromagnetic collimation $C_\tau$ variable for true $\tau$-jets, normalised to unity. This distribution is shown for associated $WH$ photoproduction~\cite{bib:whphotoproduction}, where the Higgs boson decays into a $W^+ W^-$ pair. Each $W$ boson decays into a $\ell \nu_\ell$ pair, where $\ell = e, \mu, \tau$. 429 Events generated with MadGraph/MadEvent~\cite{bib:mgme}. 440 Events generated with \textsc{MadGraph/MadEvent}~\cite{bib:mgme}. 441 Final state hadronisation is performed by \textsc{Pythia}~\cite{bib:pythia}. 430 442 Histogram entries correspond to true $\tau$-jets, matched with generator level data. } 431 443 \label{fig:tau2} … … 533 545 The majority of interesting processes at the \textsc{lhc} contain jets in the final state. The jet resolution obtained using \textsc{Delphes} is therefore a crucial point for its validation. Even if \textsc{Delphes} contains six algorithms for jet reconstruction, only the jet clustering algorithm (\textsc{jetclu}) with $R=0.7$ is used to validate the jet collection. 534 546 535 This validation \textcolor{red}{employs} $pp \rightarrow gg$ events produced with \textsc{ mg/me} and hadronised using \textsc{Pythia}~\cite{bib:mgme,bib:pythia}. The events were arranged in $14$ bins of gluon transverse momentum $\hat{p}_T$. In each $\hat{p}_T$ bin, every jet in \textsc{Delphes} is matched to the closest jet of generator-level particles, using the spatial separation between the two jet \textcolor{red}{axes}547 This validation \textcolor{red}{employs} $pp \rightarrow gg$ events produced with \textsc{MadGraph/MadEvent} and hadronised using \textsc{Pythia}~\cite{bib:mgme,bib:pythia}. The events were arranged in $14$ bins of gluon transverse momentum $\hat{p}_T$. In each $\hat{p}_T$ bin, every jet in \textsc{Delphes} is matched to the closest jet of generator-level particles, using the spatial separation between the two jet \textcolor{red}{axes} 536 548 \begin{equation} 537 549 \Delta R = \sqrt{ \big(\eta^\textrm{rec} - \eta^\textrm{MC} \big)^2 + \big(\phi^\textrm{rec} - \phi^\textrm{MC} \big)^2}<0.25. … … 572 584 The samples used to study the \textsc{met} performance are identical to those used for the jet validation. 573 585 It is worth noting that the contribution to $E_T^\textrm{miss}$ from muons is negligible in the studied sample. 574 \textcolor{red}{The\footnote{ je n'ai pas tout compris. Ce que j'ai devin\'e est en rouge.} input samples are divided in five bins of scalar $E_T$ sums $(\Sigma E_T)$. This sum, called \textit{total visible transverse energy}, is defined as the scalar sum of transverse energy in all towers.}586 \textcolor{red}{The\footnote{\textcolor{red}{je n'ai pas tout compris. Ce que j'ai devin\'e est en rouge.}} input samples are divided in five bins of scalar $E_T$ sums $(\Sigma E_T)$. This sum, called \textit{total visible transverse energy}, is defined as the scalar sum of transverse energy in all towers.} 575 587 The quality of the \textsc{met} reconstruction is checked via the resolution on its horizontal component $E_x^\textrm{miss}$. 576 588 … … 598 610 The same quantity obtained by \textsc{Delphes} is in excellent agreement with the expectations of the general purpose detector, as $\alpha = 0.68$. 599 611 600 \subsection{ $\tau$-jet efficiency}612 \subsection{\texorpdfstring{$\tau$}{\texttau}-jet efficiency} 601 613 Due to the complexity of their reconstruction algorithm, $\tau$-jets have also to be checked. 602 614 Table~\ref{tab:taurecoefficiency} lists the reconstruction efficiencies for the hadronic $\tau$-jets in the \textsc{cms} experiment and in \textsc{Delphes}. Agreement is good enough to validate this reconstruction. 603 615 604 ~\cite{bib:cmstauresolution}.605 606 616 \begin{table}[!h] 607 617 \begin{center} 608 \caption{Reconstruction efficiencies of $\tau$-jets in decays from $Z$ or $H$ bosons .\vspace{0.5cm}}618 \caption{Reconstruction efficiencies of $\tau$-jets in decays from $Z$ or $H$ bosons, in \textsc{Delphes} and in the \textsc{cms} experiment~\cite{bib:cmstauresolution}.\vspace{0.5cm}} 609 619 \begin{tabular}{lll} 610 620 \hline … … 624 634 \section{Visualisation} 625 635 636 When performing an event analysis, it can be usefull to convey informations about the detector layout or the event topology in a simple way. With this aim in view, a visualisation tool can be of great interest. Hence, the Fast and Realistic OpenGl Displayer \textsc{frog} has been interfaced in \textsc{Delphes} allowing an easy display of the defined detector configuration\footnote{\texttt{[code] } To prepare the visualisation, the \texttt{FLAG\_frog} parameter should be equal to $1$.}. 637 626 638 \begin{figure}[!h] 627 639 \begin{center} 628 640 \includegraphics[width=\columnwidth]{Detector_Delphes_1} 629 \caption{Layout of the generic detector geometry assumed in \textsc{Delphes}. The innermost layer, close to the interaction point, is a central tracking system (pink). 630 It is surrounded by a central calorimeter volume (green) with both electromagnetic and hadronic sections. 631 The outer layer of the central system (red) consist of a muon system. In addition, two end-cap calorimeters (blue) extend the pseudorapidity coverage of the central detector. 641 \caption{Layout of the generic detector geometry assumed in \textsc{Delphes}. The innermost layer, close to the interaction point, is a central tracking system (pink). 642 It is surrounded by a central calorimeter volume (green) with both electromagnetic and hadronic sections. 643 The outer layer of the central system (red) consist of a muon system. In addition, two end-cap calorimeters (blue) extend the pseudorapidity coverage of the central detector. 632 644 The actual detector granularity and extension is defined in the user-configuration card. The detector is assumed to be strictly symmetric around the beam axis (black line). Additional forward detectors are not depicted.} 633 645 \label{fig:GenDet} 634 646 \end{center} 635 647 \end{figure} 636 637 648 649 For the purpose of publication and talks, the two and three-dimentional representation of the used detector configuration can be used as it clearly show the geometric coverage of the different detector subsystems. An an illustration, the obtained representation of the generic detector geometry assumed in \textsc{Delphes} is shown in Fig.\ref{fig:GenDet} and \ref{fig:GenDet2} As pointed before, the detector is assumed to be strictly symmetric around the beam axis. The extention in pseudorapidity of the central tracking system, the central calorimeters are displayed. In addition, the two end-cap calorimeters ad defined in the Datacard extend the pseudorapidity coverage of the central detector until $|\eta|=5$. Nevertheless, it should be noticed that only the geometry coverage is represented and that the calorimeter segmentation is not taken into account in the draw of the detector. Morevocer, the radius as well as the length of the different sub-detectors are insignifiant 650 638 651 \begin{figure}[!h] 639 652 \begin{center} … … 643 656 \end{center} 644 657 \end{figure} 645 646 647 As an illustration, an associated photoproduction of a $W$ boson and a $t$ quark is shown in Fig.~\ref{fig:wt}. This corresponds to a $pp \rightarrow Wt \ + \ p \ + \ X$ process, where the $Wt$ couple is induced by an incoming photon emitted by one interacting proton. This leading proton survives from the photon emission and subsequently from the $pp$ interaction, and is present in the final state. The experimental signature is a lack of hadronic activity in one forward hemisphere, where the surviving proton escapes. The $t$ quark decays into a $W$ and a $b$. Both $W$ bosons decay into leptons ($W \rightarrow \mu \nu_\mu$ and $W \rightarrow \tau \nu_\tau$). 648 658 659 A more deep understanding of interesting physics processes is obtained using the display of the events. The visibility of each set of objects (e.g. electrons, muons, taus, jets, transverse missing energy) is enhanced by a color coding. Moreover, each object is toggled on by a simple mouse action allowing to access its four-momentum infomration. As an illustration, an associated photoproduction of a $W$ boson and a $t$ quark is shown in Fig.~\ref{fig:wt}. This corresponds to a $pp \rightarrow Wt \ + \ p \ + \ X$ process, where the $Wt$ couple is induced by an incoming photon emitted by one interacting proton. This leading proton survives from the photon emission and subsequently from the $pp$ interaction, and is present in the final state. The experimental signature is a lack of hadronic activity in one forward hemisphere, where the surviving proton escapes. The $t$ quark decays into a $W$ and a $b$. Both $W$ bosons decay into leptons ($W \rightarrow \mu \nu_\mu$ and $W \rightarrow \tau \nu_\tau$). 660 649 661 \begin{figure}[!h] 650 662 \begin{center} … … 655 667 \end{figure} 656 668 657 658 659 660 669 \section{Conclusion and perspectives} 661 670 671 \subsection{version 1} 672 We have described here the major features of the \textsc{Delphes} framework, introduced for the fast simulation of a collider experiment. 673 It has already been used for several phenomenological studies, in particular in photon interactions at the \textsc{lhc}. 674 675 \textsc{Delphes} takes the output of event generators, in various formats, and yields analysis object data. 676 The simulation applies the resolutions of central and forward detectors by smearing the kinematical properties of final state particles. 677 It yields tracks in a solenoidal magnetic field and calorimetric towers. 678 Realistic reconstruction algorithms are run, including the \textsc{FastJet} package, to produce collections of $e^\pm$, $\mu^\pm$, jets and $\tau$-jets. $b$-tag and missing transverse energy are also evaluated. 679 The output is validated by comparing to the \textsc{cms} expected performances. 680 A trigger stage can be emulated on the output data. 681 At last, event visualisation is possible through the \textsc{Frog} 3D event display. 682 683 684 \textsc{Delphes} has been developped using the parameters of the \textsc{cms} experiment but can be easily extended to \textsc{atlas} and other non-\textsc{lhc} experiments, as at Tevatron or at the \textsc{ilc}. Further developments include a more flexible design for the subdetector assembly and possibly the implementation of an event mixing module for pile-up event simulation. 685 \textcolor{red}{c'est complet, mais ca ressemble fort a l'abstract et a l'intro.} 686 687 688 \subsection{version 2} 689 We have described here the major features of the \textsc{Delphes} framework, introduced for the fast simulation of a collider experiment. This framework is a tool meant for feasibility studies in phenomenology, probing the observability of models in collider experiments. It has already been used for several analyses, in particular in photon interactions at the \textsc{lhc}. 690 691 \textsc{Delphes} takes the output of event generators and yields analysis object data. 692 The simulation includes central and forward detectors to produce realistic observables using standard reconstruction algorithms. 693 Moreover, the framework allows trigger emulation and 3D event visualisation. 694 695 \textsc{Delphes} has been developped using the parameters of the \textsc{cms} experiment but can be easily extended to \textsc{atlas} and other non-\textsc{lhc} experiments, as at Tevatron or at the \textsc{ilc}. Further developments include a more flexible design for the subdetector assembly and possibly the implementation of an event mixing module for pile-up event simulation. 696 697 698 699 \section*{Acknowledgements} 700 \addcontentsline{toc}{section}{Acknowledgements} 701 The author would like to thank Vincent Lemaitre, Muriel Vander Donckt and David d'Enterria for useful discussions and comments, and Loic Quertenmont for support in interfacing \textsc{Frog}. 702 Part of this work was supported by the Belgian Federal Office for Scientific, Technical and Cultural Affairs through the Interuniversity Attraction Pole P6/11. 703 704 662 705 \begin{thebibliography}{99} 706 \addcontentsline{toc}{section}{References} 663 707 664 708 \bibitem{bib:Delphes} \textsc{Delphes}, hepforge: 665 \bibitem{bib:FastJet} \textsc{Fast-Jet}, 666 \bibitem{bib:SIScone} A practical Seedless Infrared-Safe Cone jet algorithm, G.P. Salam, G. Soyez, JHEP0705:086,2007. 667 \bibitem{bib:Hector} \textsc{Hector}, 709 \bibitem{bib:Root} %\textsc{Root}, \textit{An Object Oriented Data Analysis Framework}, 710 R. Brun, F. Rademakers, Nucl. Inst. \& Meth. in Phys. Res. A 389 (1997) 81-86. 711 \bibitem{bib:ExRootAnalysis} %\textit{The} \textsc{ExRootAnalysis} \textit{analysis steering utility}, 712 P. Demin, (2006), unpublished. Now part of \textsc{MadGraph/MadEvent}. 713 \bibitem{bib:Hector} %\textsc{Hector}, \textit{a fast simulator for the transport of particles in beamlines}, 714 X. Rouby, J. de Favereau, K. Piotrzkowski, JINST 2 P09005 (2007). 715 \bibitem{bib:FastJet} %\textit{The} \textsc{FastJet} \textit{package}, 716 M. Cacciari, G. Salam, Phys. Lett. B 641 (2006) 57. 717 \bibitem{bib:SIScone} %\textsc{SIScone}, \textit{A practical Seedless Infrared-Safe Cone jet algorithm}, 718 G.P. Salam, G. Soyez, JHEP0705:086 (2007). 719 \bibitem{bib:ktjet} S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Nucl. Phys. B 406 (1993) 187. S. D. Ellis and D. E. Soper, Phys. Rev. D 48 (1993) 3160. 720 \bibitem{bib:aachen} Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, JHEP 9708 (1997) 001. M. Wobisch and T. Wengler, arXiv:hep-ph/9907280. 721 \bibitem{bib:antikt} %\textit{The anti-kt jet clustering algorithm}, 722 M. Cacciari, G. P. Salam and G. Soyez, JHEP 0804 (2008) 063. 723 \bibitem{bib:cmstaus} Tau reconstruction in CMS 724 \bibitem{bib:pdg} C. Amsler et al. (Particle Data Group), PL B667, 1 (2008). 725 \bibitem{bib:whphotoproduction} S. Ovyn 726 \bibitem{bib:mgme} %\textsc{MadGraph/MadEvent v4}, \textit{The New Web Generation}, 727 J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater, T. Stelzer, JHEP 0709:028 (2007). 728 \bibitem{bib:pythia} %\textsc{Pythia 6.4}, \textit{Physics and Manual}, 729 T. Sjostrand, S. Mrenna and P. Skands, JHEP 05 (2006) 026. 730 \bibitem{bib:cmsjetresolution} CMS IN 2007/053. 731 \bibitem{bib:cmstauresolution} %\textit{Study of $\tau$-jet identification in CMS}, 732 R. Kinnunen, CMS NOTE 1997/002. 668 733 \bibitem{bib:Frog} \textsc{Frog}, 669 \bibitem{bib:cmsjetresolution} CMS IN 2007/053670 \bibitem{bib:Root} \textsc{Root} - An Object Oriented Data Analysis Framework, R. Brun and F. Rademakers, Nucl. Inst. \& Meth. in Phys. Res. A 389 (1997) 81-86, \url{http://root.cern.ch}671 \bibitem{bib:cmstaus} Tau reconstruction in CMS672 \bibitem{bib:whphotoproduction} WH photoproduction, S. Ovyn673 \bibitem{bib:mgme} Madgraph/Madevent version xx.yy674 \bibitem{bib:pythia} \textsc{Pythia} version xx.yy675 \bibitem{bib:pdg} C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)676 \bibitem{bib:cmstauresolution} R. Kinnunen, \textit{Study of $\tau$-jet identification in CMS}, CMS NOTE 1997/002.677 734 \end{thebibliography} 678 735 … … 957 1014 958 1015 \end{document} 1016 1017 %[25] ATLAS Collaboration, Detector and Physics Performance Technical Design 1018 % Report, Vols. 1 and 2, CERNâLHCCâ99â14 and CERNâLHCCâ99â15. 1019 %[26] CMS Collaboration, CMS Physics Technical Design Report, CERN/LHCC 1020 % 2006â001. 1021 %[27] A. Djouadi, J. Lykken, K. Monig, Y. Okada, M. J. Oreglia and S. Yamashita, 1022 % International Linear Collider Reference Design Report Volume 2: PHYSICS 1023 % AT THE ILC, arXiv:0709.1893 [hep-ph]. 1024 1025 % personnes qui pourraient être intéressées: 1026 % Alice, Benjamin 1027 % auteurs de arXiv:0801.3359
Note:
See TracChangeset
for help on using the changeset viewer.