1 | /***********************************************************************
|
---|
2 | ** **
|
---|
3 | ** /----------------------------------------------\ **
|
---|
4 | ** | Delphes, a framework for the fast simulation | **
|
---|
5 | ** | of a generic collider experiment | **
|
---|
6 | ** \------------- arXiv:0903.2225v1 ------------/ **
|
---|
7 | ** **
|
---|
8 | ** **
|
---|
9 | ** This package uses: **
|
---|
10 | ** ------------------ **
|
---|
11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
14 | ** **
|
---|
15 | ** ------------------------------------------------------------------ **
|
---|
16 | ** **
|
---|
17 | ** Main authors: **
|
---|
18 | ** ------------- **
|
---|
19 | ** **
|
---|
20 | ** Severine Ovyn Xavier Rouby **
|
---|
21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
22 | ** **
|
---|
23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
24 | ** Universite catholique de Louvain (UCL) **
|
---|
25 | ** Louvain-la-Neuve, Belgium **
|
---|
26 | ** **
|
---|
27 | ** Copyright (C) 2008-2009, **
|
---|
28 | ** All rights reserved. **
|
---|
29 | ** **
|
---|
30 | ***********************************************************************/
|
---|
31 |
|
---|
32 | #include "VeryForward.h"
|
---|
33 | #include "PdgParticle.h"
|
---|
34 | #include "H_RomanPot.h"
|
---|
35 |
|
---|
36 | #include <iostream>
|
---|
37 | #include <fstream>
|
---|
38 | #include<cmath>
|
---|
39 |
|
---|
40 | using namespace std;
|
---|
41 |
|
---|
42 | /* Notes on the correct initialisation for Hector
|
---|
43 | * -- these notes apply to the LHC beamlines
|
---|
44 | *
|
---|
45 | * beam1 : forward direction is for increasing 's' values
|
---|
46 | * beamline1 = new H_BeamLine(1,...);
|
---|
47 | * beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
|
---|
48 | * beam2 : forward direction is for decreasing 's' values
|
---|
49 | * beamline2 = new H_BeamLine(-1,...);
|
---|
50 | * beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
|
---|
51 | *
|
---|
52 | * relative_energy should be false -- kickers_on should be 1
|
---|
53 | *
|
---|
54 | */
|
---|
55 |
|
---|
56 | //------------------------------------------------------------------------------
|
---|
57 | VeryForward::VeryForward() :
|
---|
58 | DET(new RESOLution()), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
59 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(-1,d_max)),
|
---|
60 | rel_energy(true), // should always be true
|
---|
61 | kickers(1) // should always be 1
|
---|
62 | {
|
---|
63 | init(); //Initialisation of Hector
|
---|
64 | }
|
---|
65 |
|
---|
66 | VeryForward::VeryForward(const string& DetDatacard) :
|
---|
67 | DET(new RESOLution())
|
---|
68 | {
|
---|
69 | DET->ReadDataCard(DetDatacard);
|
---|
70 | const float d_max = 1.+std::max(DET->RP_420_s,DET->RP_220_s);
|
---|
71 | beamline1 = new H_BeamLine(1,d_max);
|
---|
72 | beamline2 = new H_BeamLine(-1,d_max);
|
---|
73 | init(); //Initialisation of Hector
|
---|
74 | rel_energy = true; // should always be true
|
---|
75 | kickers = 1; // should always be 1
|
---|
76 | }
|
---|
77 |
|
---|
78 | VeryForward::VeryForward(const RESOLution * DetDatacard) :
|
---|
79 | DET(new RESOLution(*DetDatacard)), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
80 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(-1,d_max)),
|
---|
81 | rel_energy(true), // should always be true
|
---|
82 | kickers(1) // should always be 1
|
---|
83 | {
|
---|
84 | init(); //Initialisation of Hector
|
---|
85 | }
|
---|
86 |
|
---|
87 | VeryForward::VeryForward(const VeryForward& vf) :
|
---|
88 | DET(new RESOLution(*(vf.DET))), d_max(vf.d_max),
|
---|
89 | beamline1(new H_BeamLine(*(vf.beamline1))), beamline2(new H_BeamLine(*(vf.beamline2))),
|
---|
90 | rel_energy(vf.rel_energy),
|
---|
91 | kickers(vf.kickers) {
|
---|
92 | }
|
---|
93 |
|
---|
94 | VeryForward& VeryForward::operator=(const VeryForward& vf){
|
---|
95 | if (this==&vf) return *this;
|
---|
96 | DET = new RESOLution(*(vf.DET));
|
---|
97 | d_max = vf.d_max;
|
---|
98 | beamline1 = new H_BeamLine(*(vf.beamline1));
|
---|
99 | beamline2 = new H_BeamLine(*(vf.beamline2));
|
---|
100 | rel_energy =vf.rel_energy;
|
---|
101 | kickers = vf.kickers;
|
---|
102 | return *this;
|
---|
103 | }
|
---|
104 |
|
---|
105 |
|
---|
106 | void VeryForward::init() {
|
---|
107 | //Initialisation of Hector
|
---|
108 | static unsigned int counter;
|
---|
109 | counter =0;
|
---|
110 | extern bool relative_energy;
|
---|
111 | extern int kickers_on;
|
---|
112 | relative_energy = rel_energy; // should always be true
|
---|
113 | kickers_on = kickers; // should always be 1
|
---|
114 | beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
|
---|
115 | beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x); // relative energy: does not change anything
|
---|
116 | H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*1E6);
|
---|
117 | // RP 220m, 2mm, beam 1
|
---|
118 | H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*1E6);
|
---|
119 | // RP 420m, 4mm, beam 1
|
---|
120 | //rp220_1->printProperties();
|
---|
121 | //rp420_1->printProperties();
|
---|
122 | beamline1->add(rp220_1);
|
---|
123 | beamline1->add(rp420_1);
|
---|
124 |
|
---|
125 | beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
|
---|
126 | beamline2->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x); // relative energy: does not change anything
|
---|
127 | H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*1E6);
|
---|
128 | // RP 220m, 2mm, beam 2
|
---|
129 | H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*1E6);
|
---|
130 | // RP 420m, 4mm, beam 2
|
---|
131 | //rp220_2->printProperties();
|
---|
132 | //rp420_2->printProperties();
|
---|
133 | beamline2->add(rp220_2);
|
---|
134 | beamline2->add(rp420_2);
|
---|
135 | // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine
|
---|
136 | // do not put explicit delete
|
---|
137 | }
|
---|
138 |
|
---|
139 |
|
---|
140 | float VeryForward::time_of_flight(TRootGenParticle *particle, const float detector_s, const float detector_etamin, const float detector_t_resolution) {
|
---|
141 | // time of flight t is t = T + d/[ cos(theta) v ]
|
---|
142 | float cos_theta = 1; //very good approximation, if detector_etamin >3
|
---|
143 | if (detector_etamin<3) { // if smaller eta -> make the complete calculation
|
---|
144 | double tx = atan(particle->Px/particle->Pz);
|
---|
145 | double ty = atan(particle->Py/particle->Pz);
|
---|
146 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
147 | // cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
148 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
149 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
150 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
151 | cos_theta = cos(theta);
|
---|
152 | }
|
---|
153 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
154 | // units from Delphes : VFD_s_zdc [m] speed_of_light [m/s]
|
---|
155 | double flight_distance = (detector_s - particle->Z*(1E-3))/cos_theta ;
|
---|
156 | // assumes highly relativistic particles
|
---|
157 | double flight_time = (flight_distance + 1E-3 * particle->T )/speed_of_light;
|
---|
158 | double timeS = gRandom->Gaus(flight_time,detector_t_resolution);
|
---|
159 | return timeS;
|
---|
160 | }
|
---|
161 |
|
---|
162 |
|
---|
163 |
|
---|
164 | void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC, TRootGenParticle *particle)
|
---|
165 | {
|
---|
166 | TRootZdcHits *elementZdc;
|
---|
167 | float energy = particle->E;
|
---|
168 |
|
---|
169 | // Zero degree calorimeter, for forward neutrons and photons
|
---|
170 | if (particle->Status ==1 && ( (particle->PID==pN && energy>DET->ZDC_n_E) ||
|
---|
171 | (particle->PID==pGAMMA && energy>DET->ZDC_gamma_E) )
|
---|
172 | && fabs(particle->Eta) > DET->VFD_min_zdc ) {
|
---|
173 | elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
|
---|
174 |
|
---|
175 | TLorentzVector genMomentum;
|
---|
176 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
177 | elementZdc->Set(genMomentum); // initialises the gen-level data
|
---|
178 | elementZdc->pid = particle->PID;
|
---|
179 |
|
---|
180 | // 1) energy smearing
|
---|
181 | float energyS = -1.;
|
---|
182 | if (particle->PID == pGAMMA)
|
---|
183 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->ELG_Nzdc,2) +
|
---|
184 | pow(DET->ELG_Czdc*particle->E,2) +
|
---|
185 | pow(DET->ELG_Szdc*sqrt(particle->E),2) ));
|
---|
186 | else // smearing with hadronic resolution
|
---|
187 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->HAD_Nzdc,2) +
|
---|
188 | pow(DET->HAD_Czdc*particle->E,2) +
|
---|
189 | pow(DET->HAD_Szdc*sqrt(particle->E),2) ));
|
---|
190 | elementZdc->E = energyS;
|
---|
191 |
|
---|
192 | // 2) time of flight t is t = T + d/[ cos(theta) v ] + detector smearing on time
|
---|
193 | elementZdc->T = time_of_flight(particle, DET->VFD_s_zdc, DET->VFD_min_zdc, DET->ZDC_T_resolution);
|
---|
194 |
|
---|
195 | // 3) side: which ZDC has been hit?
|
---|
196 | elementZdc->side = sign(particle->Eta);
|
---|
197 |
|
---|
198 | // 4) object nature : e.m. (photon) or had (neutron) ?
|
---|
199 | elementZdc->hadronic_hit = (bool) (particle->PID!=pGAMMA);
|
---|
200 | } // if neutrons or photons over E_threshold
|
---|
201 |
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle)
|
---|
206 | {
|
---|
207 | if(particle->Status != 1) return; // reject particles that are not final ones
|
---|
208 | extern bool relative_energy;
|
---|
209 | relative_energy = rel_energy;
|
---|
210 | extern int kickers_on;
|
---|
211 | kickers_on = kickers;
|
---|
212 |
|
---|
213 | float charge = particle->Charge, mass = particle->M;
|
---|
214 | //float charge, mass, ctau;
|
---|
215 | //charge = mass = ctau = UNDEFINED;
|
---|
216 | if (mass<-999) { // unitialised!
|
---|
217 | PdgParticle pdg_part = DET->PDGtable[particle->PID];
|
---|
218 | charge = pdg_part.charge(); // e+
|
---|
219 | mass = pdg_part.mass(); // GeV
|
---|
220 | // ctau = pdg_part.ctau(); // m
|
---|
221 | // cout << "ctau = " << ctau << endl;
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | if(particle->Charge==0) return; // only particles with Q=+1 can hope to reach RP200/FP420
|
---|
226 | //cout << "particle ("<< particle->PID << "): m = " << mass << " \t Q= " << charge << endl;
|
---|
227 | TRootRomanPotHits* elementRP220;
|
---|
228 | //TRootForwardTaggerHits* elementFP420;
|
---|
229 | TRootRomanPotHits* elementFP420;
|
---|
230 |
|
---|
231 | TLorentzVector genMomentum;
|
---|
232 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
233 |
|
---|
234 | // to go faster, why not rejecting particles already going into the ZDC?
|
---|
235 |
|
---|
236 | // K_L^0 has a ctau of ~16m ; only pi+ and p+ can beat it ;
|
---|
237 | // so if RP/FP too far away, the particle must be a proton or a mu+
|
---|
238 | if( std::min(DET->RP_420_s,DET->RP_220_s) > 17 && (particle->PID != pP && particle->PID != 13)) return;
|
---|
239 |
|
---|
240 | if( fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd )
|
---|
241 | {
|
---|
242 | H_BeamParticle p1(mass,charge);
|
---|
243 | double tx = 1E6*atan(particle->Px/particle->Pz); // in microrad
|
---|
244 | double ty = 1E6*atan(particle->Py/particle->Pz); // in microrad
|
---|
245 | //p1.smearAng(); p1.smearPos(); // vertex smearing do not put it here !!!
|
---|
246 |
|
---|
247 | /* cout << "x = " << particle->X << " + " << p1.getX() << " + " << DET->RP_cross_x
|
---|
248 | << " y= " << particle->Y << " + " << p1.getY() << " + " << DET->RP_cross_y
|
---|
249 | << " tx= " << tx << " + " << p1.getTX() << " - " << kickers_on*DET->RP_cross_ang_x
|
---|
250 | << " ty= " << ty << " + " << p1.getTY() << " - " << kickers_on*DET->RP_cross_ang_y
|
---|
251 | << " z= " << particle->Z << endl;*/
|
---|
252 |
|
---|
253 | // here below, p1.getX(), p1.getY(), p1.getTX() and p1.getTY() =0 unless some smearing is done
|
---|
254 | // all in micrometers or microradians
|
---|
255 | p1.setPosition((1E3)*particle->X + p1.getX() + DET->RP_cross_x,
|
---|
256 | (1E3)*particle->Y + p1.getY() + DET->RP_cross_y,
|
---|
257 | tx + p1.getTX()- kickers_on*DET->RP_cross_ang_x,
|
---|
258 | ty + p1.getTY()- kickers_on*DET->RP_cross_ang_y,
|
---|
259 | 0*(1E3)*particle->Z);
|
---|
260 | p1.setE(particle->E);
|
---|
261 |
|
---|
262 | H_BeamLine *beamline;
|
---|
263 | if(genMomentum.Eta() >0) beamline = beamline1;
|
---|
264 | else beamline = beamline2;
|
---|
265 |
|
---|
266 | p1.computePath(beamline,1);
|
---|
267 |
|
---|
268 | if(p1.stopped(beamline)) {
|
---|
269 | // roman pots at 220 m
|
---|
270 | if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
|
---|
271 |
|
---|
272 | /*static unsigned int counter;
|
---|
273 | counter++;
|
---|
274 | if (counter==1) {
|
---|
275 | p1.getPath(0,"p1path.txt");
|
---|
276 | cout << "RP : " << particle->PID << "\t" << charge << "=" << particle->Charge
|
---|
277 | << "\t" << mass << "=" << particle->M << "\t E=" << particle->E << endl;
|
---|
278 | }*/
|
---|
279 |
|
---|
280 | p1.propagate(DET->RP_220_s);
|
---|
281 | elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
|
---|
282 |
|
---|
283 | // detector measurements
|
---|
284 | elementRP220->X = (1E-6)*p1.getX(); // [m]
|
---|
285 | elementRP220->Y = (1E-6)*p1.getY(); // [m]
|
---|
286 | elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
287 | elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
288 | elementRP220->S = p1.getS(); // [m]
|
---|
289 | elementRP220->T = time_of_flight(particle, DET->RP_220_s, DET->CEN_max_calo_fwd, DET->RP220_T_resolution);
|
---|
290 | elementRP220->side = sign(particle->Eta);
|
---|
291 |
|
---|
292 | // reconstructed data
|
---|
293 | float sE = p1.getE(); // apply the smearing here!!!
|
---|
294 | elementRP220->E = sE; // not yet implemented
|
---|
295 | elementRP220->q2 = UNDEFINED; // not yet implemented
|
---|
296 |
|
---|
297 | // generator level data
|
---|
298 | elementRP220->pid = particle->PID;
|
---|
299 | elementRP220->Set(genMomentum);
|
---|
300 | } // if RP220
|
---|
301 |
|
---|
302 | // proton taggers at 420 m
|
---|
303 | else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
|
---|
304 |
|
---|
305 | p1.propagate(DET->RP_420_s);
|
---|
306 | elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry();
|
---|
307 | //elementFP420 = (TRootForwardTaggerHits*) branchFP420->NewEntry();
|
---|
308 |
|
---|
309 | // detector measurements
|
---|
310 | elementFP420->X = (1E-6)*p1.getX(); // [m]
|
---|
311 | elementFP420->Y = (1E-6)*p1.getY(); // [m]
|
---|
312 | elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
313 | elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
314 | elementFP420->S = p1.getS(); // [m]
|
---|
315 | elementFP420->T = time_of_flight(particle, DET->RP_420_s, DET->CEN_max_calo_fwd, DET->RP420_T_resolution);
|
---|
316 | elementFP420->side = sign(particle->Eta);
|
---|
317 |
|
---|
318 | // reconstructed data
|
---|
319 | elementFP420->E = p1.getE(); // not yet implemented
|
---|
320 | elementFP420->q2 = UNDEFINED; // not yet implemented
|
---|
321 |
|
---|
322 | // generator level data
|
---|
323 | elementFP420->pid = particle->PID;
|
---|
324 | elementFP420->Set(genMomentum);
|
---|
325 | } // if FP420
|
---|
326 |
|
---|
327 | } // if stopped
|
---|
328 | } // if forward proton
|
---|
329 |
|
---|
330 | }
|
---|