1 | /***********************************************************************
|
---|
2 | ** **
|
---|
3 | ** /----------------------------------------------\ **
|
---|
4 | ** | Delphes, a framework for the fast simulation | **
|
---|
5 | ** | of a generic collider experiment | **
|
---|
6 | ** \------------- arXiv:0903.2225v1 ------------/ **
|
---|
7 | ** **
|
---|
8 | ** **
|
---|
9 | ** This package uses: **
|
---|
10 | ** ------------------ **
|
---|
11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
14 | ** **
|
---|
15 | ** ------------------------------------------------------------------ **
|
---|
16 | ** **
|
---|
17 | ** Main authors: **
|
---|
18 | ** ------------- **
|
---|
19 | ** **
|
---|
20 | ** Severine Ovyn Xavier Rouby **
|
---|
21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
22 | ** **
|
---|
23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
24 | ** Universite catholique de Louvain (UCL) **
|
---|
25 | ** Louvain-la-Neuve, Belgium **
|
---|
26 | ** **
|
---|
27 | ** Copyright (C) 2008-2009, **
|
---|
28 | ** All rights reserved. **
|
---|
29 | ** **
|
---|
30 | ***********************************************************************/
|
---|
31 |
|
---|
32 | #include "VeryForward.h"
|
---|
33 | #include "H_RomanPot.h"
|
---|
34 | #include <iostream>
|
---|
35 | #include<cmath>
|
---|
36 |
|
---|
37 | using namespace std;
|
---|
38 |
|
---|
39 |
|
---|
40 | //------------------------------------------------------------------------------
|
---|
41 | VeryForward::VeryForward() :
|
---|
42 | DET(new RESOLution()), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
43 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
44 | relative_energy(true), // should always be true
|
---|
45 | kickers_on(1) // should always be 1
|
---|
46 | {
|
---|
47 | init(); //Initialisation of Hector
|
---|
48 | }
|
---|
49 |
|
---|
50 | VeryForward::VeryForward(const string& DetDatacard) :
|
---|
51 | DET(new RESOLution())
|
---|
52 | {
|
---|
53 | DET->ReadDataCard(DetDatacard);
|
---|
54 | const float d_max = 1.+std::max(DET->RP_420_s,DET->RP_220_s);
|
---|
55 | beamline1 = new H_BeamLine(1,d_max);
|
---|
56 | beamline2 = new H_BeamLine(1,d_max);
|
---|
57 | init(); //Initialisation of Hector
|
---|
58 | relative_energy = true; // should always be true
|
---|
59 | kickers_on = 1; // should always be 1
|
---|
60 | }
|
---|
61 |
|
---|
62 | VeryForward::VeryForward(const RESOLution * DetDatacard) :
|
---|
63 | DET(new RESOLution(*DetDatacard)), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
64 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
65 | relative_energy(true), // should always be true
|
---|
66 | kickers_on(1) // should always be 1
|
---|
67 | {
|
---|
68 | init(); //Initialisation of Hector
|
---|
69 | }
|
---|
70 |
|
---|
71 | VeryForward::VeryForward(const VeryForward& vf) :
|
---|
72 | DET(new RESOLution(*(vf.DET))), d_max(vf.d_max),
|
---|
73 | beamline1(new H_BeamLine(*(vf.beamline1))), beamline2(new H_BeamLine(*(vf.beamline2))),
|
---|
74 | relative_energy(vf.relative_energy),
|
---|
75 | kickers_on(vf.kickers_on) {
|
---|
76 | }
|
---|
77 |
|
---|
78 | VeryForward& VeryForward::operator=(const VeryForward& vf){
|
---|
79 | if (this==&vf) return *this;
|
---|
80 | DET = new RESOLution(*(vf.DET));
|
---|
81 | d_max = vf.d_max;
|
---|
82 | beamline1 = new H_BeamLine(*(vf.beamline1));
|
---|
83 | beamline2 = new H_BeamLine(*(vf.beamline2));
|
---|
84 | relative_energy =vf.relative_energy;
|
---|
85 | kickers_on = vf.kickers_on;
|
---|
86 | return *this;
|
---|
87 | }
|
---|
88 |
|
---|
89 |
|
---|
90 | void VeryForward::init() {
|
---|
91 | //Initialisation of Hector
|
---|
92 | relative_energy = true; // should always be true
|
---|
93 | kickers_on = 1; // should always be 1
|
---|
94 | beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
|
---|
95 | beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x);
|
---|
96 | H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*(1E6)); // RP 220m, 2mm, beam 1
|
---|
97 | H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*(1E6)); // RP 420m, 4mm, beam 1
|
---|
98 | beamline1->add(rp220_1);
|
---|
99 | beamline1->add(rp420_1);
|
---|
100 |
|
---|
101 | beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
|
---|
102 | beamline2->offsetElements(DET->RP_offsetEl_s,+DET->RP_offsetEl_x);
|
---|
103 | H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*(1E6));// RP 220m, 2mm, beam 2
|
---|
104 | H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*(1E6));// RP 420m, 4mm, beam 2
|
---|
105 | beamline2->add(rp220_2);
|
---|
106 | beamline2->add(rp420_2);
|
---|
107 | // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine
|
---|
108 | // do not put explicit delete
|
---|
109 | }
|
---|
110 |
|
---|
111 |
|
---|
112 | void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC, TRootGenParticle *particle)
|
---|
113 | {
|
---|
114 | TRootZdcHits *elementZdc;
|
---|
115 | float energy = particle->E;
|
---|
116 | //TLorentzVector genMomentum;
|
---|
117 |
|
---|
118 | // Zero degree calorimeter, for forward neutrons and photons
|
---|
119 | if (particle->Status ==1 && ( (particle->PID==pN && energy>DET->ZDC_n_E) ||
|
---|
120 | (particle->PID==pGAMMA && energy>DET->ZDC_gamma_E) )
|
---|
121 | && fabs(particle->Eta) > DET->VFD_min_zdc ) {
|
---|
122 | elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
|
---|
123 |
|
---|
124 | // 1) energy smearing
|
---|
125 | float energyS = -1.;
|
---|
126 | if (particle->PID == pGAMMA)
|
---|
127 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->ELG_Nzdc,2) +
|
---|
128 | pow(DET->ELG_Czdc*particle->E,2) +
|
---|
129 | pow(DET->ELG_Szdc*sqrt(particle->E),2) ));
|
---|
130 | else // smearing with hadronic resolution
|
---|
131 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->HAD_Nzdc,2) +
|
---|
132 | pow(DET->HAD_Czdc*particle->E,2) +
|
---|
133 | pow(DET->HAD_Szdc*sqrt(particle->E),2) ));
|
---|
134 | elementZdc->E = energyS;
|
---|
135 |
|
---|
136 |
|
---|
137 | // 2) time of flight t is t = T + d/[ cos(theta) v ]
|
---|
138 | float cos_theta = 1; //very good approximation, if eta_zdc >3
|
---|
139 | if (DET->VFD_min_zdc<3) { // if smaller eta -> make the complete calculation
|
---|
140 | double tx = atan(particle->Px/particle->Pz);
|
---|
141 | double ty = atan(particle->Py/particle->Pz);
|
---|
142 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
143 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
144 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
145 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
146 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
147 | cos_theta = cos(theta);
|
---|
148 | }
|
---|
149 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
150 | // units from Delphes : VFD_s_zdc [m] speed_of_light [m/s]
|
---|
151 | double flight_distance = (DET->VFD_s_zdc - particle->Z*(1E-3))/cos_theta ;
|
---|
152 | double flight_time = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
153 | double timeS = gRandom->Gaus(flight_time,DET->ZDC_T_resolution);
|
---|
154 | elementZdc->T = timeS;
|
---|
155 |
|
---|
156 | // 3) side: which ZDC has been hit?
|
---|
157 | elementZdc->side = sign(particle->Eta);
|
---|
158 |
|
---|
159 | // 4) object nature : e.m. (photon) or had (neutron) ?
|
---|
160 | elementZdc->hadronic_hit = (bool) (particle->PID==pN);
|
---|
161 | }
|
---|
162 |
|
---|
163 | }
|
---|
164 | void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle)
|
---|
165 | {
|
---|
166 | int pid=particle->PID;
|
---|
167 |
|
---|
168 | TRootRomanPotHits* elementRP220;
|
---|
169 | TRootForwardTaggerHits* elementFP420;
|
---|
170 |
|
---|
171 | TLorentzVector genMomentum;
|
---|
172 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
173 | // if forward proton
|
---|
174 | if( (pid == pP) && (particle->Status == 1) && (fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd) )
|
---|
175 | {
|
---|
176 | // !!!!!!!! put here particle->CHARGE and particle->MASS
|
---|
177 | H_BeamParticle p1; /// put here particle->CHARGE and particle->MASS
|
---|
178 | p1.smearAng();
|
---|
179 | p1.smearPos();
|
---|
180 | p1.setPosition(p1.getX()+DET->RP_cross_x,p1.getY()+DET->RP_cross_y,p1.getTX()-1*kickers_on*DET->RP_cross_ang,p1.getTY(),0);
|
---|
181 | p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E);
|
---|
182 |
|
---|
183 | H_BeamLine *beamline;
|
---|
184 | if(genMomentum.Eta() >0) beamline = beamline1;
|
---|
185 | else beamline = beamline2;
|
---|
186 |
|
---|
187 | p1.computePath(beamline,1);
|
---|
188 |
|
---|
189 | if(p1.stopped(beamline)) {
|
---|
190 | if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
|
---|
191 | p1.propagate(DET->RP_220_s);
|
---|
192 | elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
|
---|
193 | elementRP220->X = (1E-6)*p1.getX(); // [m]
|
---|
194 | elementRP220->Y = (1E-6)*p1.getY(); // [m]
|
---|
195 | elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
196 | elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
197 | elementRP220->S = p1.getS(); // [m]
|
---|
198 |
|
---|
199 | /* time of flight t is t = T + d/[ cos(theta) v ]
|
---|
200 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
201 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
202 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
203 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
204 | double tx = atan(particle->Px/particle->Pz);
|
---|
205 | double ty = atan(particle->Py/particle->Pz);
|
---|
206 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
207 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
208 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
209 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
210 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
211 | cos_theta = cos(theta);
|
---|
212 | }
|
---|
213 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
214 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
215 | //double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
216 | //elementRP220->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
217 | */
|
---|
218 | elementRP220->E = p1.getE(); // not yet implemented
|
---|
219 | elementRP220->q2 = -1; // not yet implemented
|
---|
220 | elementRP220->side = sign(particle->Eta);
|
---|
221 |
|
---|
222 | } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
|
---|
223 | p1.propagate(DET->RP_420_s);
|
---|
224 | elementFP420 = (TRootForwardTaggerHits*) branchFP420->NewEntry();
|
---|
225 | elementFP420->X = (1E-6)*p1.getX(); // [m]
|
---|
226 | elementFP420->Y = (1E-6)*p1.getY(); // [m]
|
---|
227 | elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
228 | elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
229 | elementFP420->S = p1.getS(); // [m]
|
---|
230 |
|
---|
231 | // time of flight t is t = T + d/[ cos(theta) v ]
|
---|
232 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
233 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
234 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
235 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
236 | double tx = atan(particle->Px/particle->Pz);
|
---|
237 | double ty = atan(particle->Py/particle->Pz);
|
---|
238 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
239 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
240 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
241 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
242 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
243 | cos_theta = cos(theta);
|
---|
244 | }
|
---|
245 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
246 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
247 | double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
248 | elementFP420->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
249 | elementFP420->E = p1.getE(); // not yet implemented
|
---|
250 | elementFP420->q2 = -1; // not yet implemented
|
---|
251 | elementFP420->side = sign(particle->Eta);
|
---|
252 | }
|
---|
253 |
|
---|
254 | }
|
---|
255 | // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100))
|
---|
256 | // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl;
|
---|
257 | } // if forward proton
|
---|
258 | }
|
---|
259 |
|
---|
260 | // Forward particles in CASTOR ?
|
---|
261 | // if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD)
|
---|
262 | // && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) {
|
---|
263 | //
|
---|
264 | //
|
---|
265 | // } // CASTOR
|
---|
266 | // */
|
---|
267 |
|
---|