[260] | 1 | /***********************************************************************
|
---|
| 2 | ** **
|
---|
| 3 | ** /----------------------------------------------\ **
|
---|
| 4 | ** | Delphes, a framework for the fast simulation | **
|
---|
| 5 | ** | of a generic collider experiment | **
|
---|
[374] | 6 | ** \------------- arXiv:0903.2225v1 ------------/ **
|
---|
[260] | 7 | ** **
|
---|
| 8 | ** **
|
---|
| 9 | ** This package uses: **
|
---|
| 10 | ** ------------------ **
|
---|
| 11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
| 12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
| 13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
| 14 | ** **
|
---|
| 15 | ** ------------------------------------------------------------------ **
|
---|
| 16 | ** **
|
---|
| 17 | ** Main authors: **
|
---|
| 18 | ** ------------- **
|
---|
| 19 | ** **
|
---|
| 20 | ** Severine Ovyn Xavier Rouby **
|
---|
| 21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
| 22 | ** **
|
---|
| 23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
| 24 | ** Universite catholique de Louvain (UCL) **
|
---|
| 25 | ** Louvain-la-Neuve, Belgium **
|
---|
| 26 | ** **
|
---|
| 27 | ** Copyright (C) 2008-2009, **
|
---|
| 28 | ** All rights reserved. **
|
---|
| 29 | ** **
|
---|
| 30 | ***********************************************************************/
|
---|
[53] | 31 |
|
---|
[219] | 32 | #include "VeryForward.h"
|
---|
| 33 | #include "H_RomanPot.h"
|
---|
[377] | 34 | #include "PdgParticle.h"
|
---|
[53] | 35 | #include <iostream>
|
---|
| 36 | #include<cmath>
|
---|
| 37 |
|
---|
| 38 | using namespace std;
|
---|
| 39 |
|
---|
| 40 |
|
---|
| 41 | //------------------------------------------------------------------------------
|
---|
[374] | 42 | VeryForward::VeryForward() :
|
---|
| 43 | DET(new RESOLution()), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
| 44 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
| 45 | relative_energy(true), // should always be true
|
---|
| 46 | kickers_on(1) // should always be 1
|
---|
| 47 | {
|
---|
| 48 | init(); //Initialisation of Hector
|
---|
[219] | 49 | }
|
---|
| 50 |
|
---|
[374] | 51 | VeryForward::VeryForward(const string& DetDatacard) :
|
---|
| 52 | DET(new RESOLution())
|
---|
| 53 | {
|
---|
[219] | 54 | DET->ReadDataCard(DetDatacard);
|
---|
[374] | 55 | const float d_max = 1.+std::max(DET->RP_420_s,DET->RP_220_s);
|
---|
| 56 | beamline1 = new H_BeamLine(1,d_max);
|
---|
| 57 | beamline2 = new H_BeamLine(1,d_max);
|
---|
| 58 | init(); //Initialisation of Hector
|
---|
| 59 | relative_energy = true; // should always be true
|
---|
| 60 | kickers_on = 1; // should always be 1
|
---|
[219] | 61 | }
|
---|
| 62 |
|
---|
[374] | 63 | VeryForward::VeryForward(const RESOLution * DetDatacard) :
|
---|
| 64 | DET(new RESOLution(*DetDatacard)), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
| 65 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
| 66 | relative_energy(true), // should always be true
|
---|
| 67 | kickers_on(1) // should always be 1
|
---|
| 68 | {
|
---|
| 69 | init(); //Initialisation of Hector
|
---|
[219] | 70 | }
|
---|
| 71 |
|
---|
[374] | 72 | VeryForward::VeryForward(const VeryForward& vf) :
|
---|
| 73 | DET(new RESOLution(*(vf.DET))), d_max(vf.d_max),
|
---|
| 74 | beamline1(new H_BeamLine(*(vf.beamline1))), beamline2(new H_BeamLine(*(vf.beamline2))),
|
---|
| 75 | relative_energy(vf.relative_energy),
|
---|
| 76 | kickers_on(vf.kickers_on) {
|
---|
[219] | 77 | }
|
---|
| 78 |
|
---|
| 79 | VeryForward& VeryForward::operator=(const VeryForward& vf){
|
---|
| 80 | if (this==&vf) return *this;
|
---|
| 81 | DET = new RESOLution(*(vf.DET));
|
---|
[374] | 82 | d_max = vf.d_max;
|
---|
[219] | 83 | beamline1 = new H_BeamLine(*(vf.beamline1));
|
---|
| 84 | beamline2 = new H_BeamLine(*(vf.beamline2));
|
---|
[374] | 85 | relative_energy =vf.relative_energy;
|
---|
| 86 | kickers_on = vf.kickers_on;
|
---|
[219] | 87 | return *this;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 |
|
---|
| 91 | void VeryForward::init() {
|
---|
[53] | 92 | //Initialisation of Hector
|
---|
[385] | 93 | static unsigned int counter;
|
---|
| 94 | counter =0;
|
---|
[53] | 95 | relative_energy = true; // should always be true
|
---|
| 96 | kickers_on = 1; // should always be 1
|
---|
[257] | 97 | beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
|
---|
[252] | 98 | beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x);
|
---|
[377] | 99 | H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*1E6); // RP 220m, 2mm, beam 1
|
---|
| 100 | H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*1E6); // RP 420m, 4mm, beam 1
|
---|
[242] | 101 | beamline1->add(rp220_1);
|
---|
[53] | 102 | beamline1->add(rp420_1);
|
---|
| 103 |
|
---|
[257] | 104 | beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
|
---|
[252] | 105 | beamline2->offsetElements(DET->RP_offsetEl_s,+DET->RP_offsetEl_x);
|
---|
[377] | 106 | H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*1E6);// RP 220m, 2mm, beam 2
|
---|
| 107 | H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*1E6);// RP 420m, 4mm, beam 2
|
---|
[53] | 108 | beamline2->add(rp220_2);
|
---|
| 109 | beamline2->add(rp420_2);
|
---|
[242] | 110 | // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine
|
---|
| 111 | // do not put explicit delete
|
---|
[53] | 112 | }
|
---|
| 113 |
|
---|
[242] | 114 |
|
---|
[377] | 115 |
|
---|
[374] | 116 | void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC, TRootGenParticle *particle)
|
---|
[53] | 117 | {
|
---|
| 118 | TRootZdcHits *elementZdc;
|
---|
[374] | 119 | float energy = particle->E;
|
---|
| 120 |
|
---|
[53] | 121 | // Zero degree calorimeter, for forward neutrons and photons
|
---|
[374] | 122 | if (particle->Status ==1 && ( (particle->PID==pN && energy>DET->ZDC_n_E) ||
|
---|
| 123 | (particle->PID==pGAMMA && energy>DET->ZDC_gamma_E) )
|
---|
| 124 | && fabs(particle->Eta) > DET->VFD_min_zdc ) {
|
---|
[53] | 125 | elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
|
---|
[377] | 126 |
|
---|
[385] | 127 |
|
---|
| 128 | elementZdc->pid = particle->PID;
|
---|
| 129 |
|
---|
[377] | 130 |
|
---|
| 131 | // for compatibility with 'old' version
|
---|
| 132 | TLorentzVector genMomentum;
|
---|
| 133 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
| 134 | elementZdc->Set(genMomentum);
|
---|
| 135 | // ******************
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 | //particle->print();
|
---|
| 139 |
|
---|
[374] | 140 | // 1) energy smearing
|
---|
| 141 | float energyS = -1.;
|
---|
| 142 | if (particle->PID == pGAMMA)
|
---|
| 143 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->ELG_Nzdc,2) +
|
---|
| 144 | pow(DET->ELG_Czdc*particle->E,2) +
|
---|
| 145 | pow(DET->ELG_Szdc*sqrt(particle->E),2) ));
|
---|
| 146 | else // smearing with hadronic resolution
|
---|
| 147 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->HAD_Nzdc,2) +
|
---|
| 148 | pow(DET->HAD_Czdc*particle->E,2) +
|
---|
| 149 | pow(DET->HAD_Szdc*sqrt(particle->E),2) ));
|
---|
| 150 | elementZdc->E = energyS;
|
---|
| 151 |
|
---|
| 152 |
|
---|
| 153 | // 2) time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 154 | float cos_theta = 1; //very good approximation, if eta_zdc >3
|
---|
| 155 | if (DET->VFD_min_zdc<3) { // if smaller eta -> make the complete calculation
|
---|
| 156 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 157 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 158 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 159 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 160 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 161 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 162 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 163 | cos_theta = cos(theta);
|
---|
| 164 | }
|
---|
| 165 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 166 | // units from Delphes : VFD_s_zdc [m] speed_of_light [m/s]
|
---|
| 167 | double flight_distance = (DET->VFD_s_zdc - particle->Z*(1E-3))/cos_theta ;
|
---|
| 168 | double flight_time = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
| 169 | double timeS = gRandom->Gaus(flight_time,DET->ZDC_T_resolution);
|
---|
| 170 | elementZdc->T = timeS;
|
---|
| 171 |
|
---|
| 172 | // 3) side: which ZDC has been hit?
|
---|
[355] | 173 | elementZdc->side = sign(particle->Eta);
|
---|
[374] | 174 |
|
---|
| 175 | // 4) object nature : e.m. (photon) or had (neutron) ?
|
---|
[377] | 176 | //elementZdc->hadronic_hit = (bool) (particle->PID==pN);
|
---|
[53] | 177 | }
|
---|
| 178 | }
|
---|
[377] | 179 |
|
---|
| 180 |
|
---|
[53] | 181 | void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle)
|
---|
| 182 | {
|
---|
[377] | 183 | float charge = particle->Charge, mass = particle->M;
|
---|
| 184 | if (mass<-999) { // unitialised!
|
---|
| 185 | PdgParticle pdg_part = DET->PDGtable[particle->PID];
|
---|
| 186 | charge = pdg_part.charge();
|
---|
| 187 | mass = pdg_part.mass();
|
---|
| 188 | }
|
---|
| 189 | //if(particle->Charge!=1) return; // only particles with Q=+1 can hope to reach RP200/FP420
|
---|
| 190 |
|
---|
[53] | 191 | TRootRomanPotHits* elementRP220;
|
---|
[377] | 192 | //TRootForwardTaggerHits* elementFP420;
|
---|
| 193 | TRootRomanPotHits* elementFP420;
|
---|
[53] | 194 |
|
---|
| 195 | TLorentzVector genMomentum;
|
---|
| 196 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
[377] | 197 |
|
---|
| 198 | // to go faster, why not rejecting particles already going into the ZDC?
|
---|
[385] | 199 | if( particle->PID == pP)
|
---|
[377] | 200 | if( (particle->Status == 1) && (fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd) )
|
---|
[53] | 201 | {
|
---|
[377] | 202 | //cout << "VeryForward :: M = " << mass << "\t Q = " << charge << "\t\t " << particle->PID << endl;
|
---|
[385] | 203 | H_BeamParticle p1(mass,charge);
|
---|
[377] | 204 | p1.smearAng(); p1.smearPos(); // vertex smearing
|
---|
[385] | 205 | cout << "x = " << p1.getX() + DET->RP_cross_x
|
---|
| 206 | << " y= " << p1.getY() + DET->RP_cross_y
|
---|
| 207 | << " tx= " << p1.getTX() - kickers_on*DET->RP_cross_ang
|
---|
| 208 | << " ty=" << p1.getTY() << endl;
|
---|
| 209 | p1.setPosition(p1.getX()+DET->RP_cross_x,p1.getY()+DET->RP_cross_y,p1.getTX()-kickers_on*DET->RP_cross_ang,p1.getTY(),0);
|
---|
| 210 | //p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E);
|
---|
| 211 | p1.setE(particle->E);
|
---|
| 212 |
|
---|
[53] | 213 | H_BeamLine *beamline;
|
---|
| 214 | if(genMomentum.Eta() >0) beamline = beamline1;
|
---|
| 215 | else beamline = beamline2;
|
---|
| 216 |
|
---|
| 217 | p1.computePath(beamline,1);
|
---|
| 218 |
|
---|
| 219 | if(p1.stopped(beamline)) {
|
---|
| 220 | if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
|
---|
[385] | 221 | static unsigned int counter;
|
---|
| 222 | counter++;
|
---|
| 223 | if (counter==1) {
|
---|
| 224 | p1.getPath(0,"p1path.txt");
|
---|
| 225 | cout << "RP : " << particle->PID << "\t" << charge << "=" << particle->Charge
|
---|
| 226 | << "\t" << mass << "=" << particle->M
|
---|
| 227 | << "\t E=" << particle->E
|
---|
| 228 | << endl;
|
---|
| 229 | }
|
---|
[100] | 230 | p1.propagate(DET->RP_220_s);
|
---|
[53] | 231 | elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
|
---|
| 232 | elementRP220->X = (1E-6)*p1.getX(); // [m]
|
---|
| 233 | elementRP220->Y = (1E-6)*p1.getY(); // [m]
|
---|
| 234 | elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
| 235 | elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
| 236 | elementRP220->S = p1.getS(); // [m]
|
---|
[374] | 237 |
|
---|
| 238 | /* time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 239 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
| 240 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
| 241 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
| 242 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
| 243 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 244 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 245 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 246 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 247 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 248 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 249 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 250 | cos_theta = cos(theta);
|
---|
| 251 | }
|
---|
| 252 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 253 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
| 254 | //double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
| 255 | //elementRP220->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
| 256 | */
|
---|
| 257 | elementRP220->E = p1.getE(); // not yet implemented
|
---|
| 258 | elementRP220->q2 = -1; // not yet implemented
|
---|
| 259 | elementRP220->side = sign(particle->Eta);
|
---|
[385] | 260 |
|
---|
| 261 |
|
---|
| 262 | elementRP220->pid = particle->PID;
|
---|
[53] | 263 |
|
---|
| 264 | } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
|
---|
[100] | 265 | p1.propagate(DET->RP_420_s);
|
---|
[377] | 266 | //elementFP420 = (TRootForwardTaggerHits*) branchFP420->NewEntry();
|
---|
| 267 | elementFP420 = (TRootRomanPotHits*) branchFP420->NewEntry();
|
---|
[53] | 268 | elementFP420->X = (1E-6)*p1.getX(); // [m]
|
---|
| 269 | elementFP420->Y = (1E-6)*p1.getY(); // [m]
|
---|
| 270 | elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
| 271 | elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
[355] | 272 | elementFP420->S = p1.getS(); // [m]
|
---|
[374] | 273 |
|
---|
| 274 | // time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 275 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
| 276 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
| 277 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
| 278 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
| 279 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 280 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 281 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 282 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 283 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 284 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 285 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 286 | cos_theta = cos(theta);
|
---|
| 287 | }
|
---|
| 288 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 289 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
| 290 | double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
| 291 | elementFP420->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
[53] | 292 | elementFP420->E = p1.getE(); // not yet implemented
|
---|
| 293 | elementFP420->q2 = -1; // not yet implemented
|
---|
[355] | 294 | elementFP420->side = sign(particle->Eta);
|
---|
[385] | 295 |
|
---|
| 296 |
|
---|
| 297 | elementFP420->pid = particle->PID;
|
---|
[53] | 298 | }
|
---|
| 299 |
|
---|
| 300 | }
|
---|
[355] | 301 | // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100))
|
---|
| 302 | // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl;
|
---|
[53] | 303 | } // if forward proton
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | // Forward particles in CASTOR ?
|
---|
[355] | 307 | // if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD)
|
---|
| 308 | // && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) {
|
---|
[53] | 309 | //
|
---|
| 310 | //
|
---|
[355] | 311 | // } // CASTOR
|
---|
| 312 | // */
|
---|
| 313 |
|
---|