[260] | 1 | /***********************************************************************
|
---|
| 2 | ** **
|
---|
| 3 | ** /----------------------------------------------\ **
|
---|
| 4 | ** | Delphes, a framework for the fast simulation | **
|
---|
| 5 | ** | of a generic collider experiment | **
|
---|
[374] | 6 | ** \------------- arXiv:0903.2225v1 ------------/ **
|
---|
[260] | 7 | ** **
|
---|
| 8 | ** **
|
---|
| 9 | ** This package uses: **
|
---|
| 10 | ** ------------------ **
|
---|
| 11 | ** FastJet algorithm: Phys. Lett. B641 (2006) [hep-ph/0512210] **
|
---|
| 12 | ** Hector: JINST 2:P09005 (2007) [physics.acc-ph:0707.1198v2] **
|
---|
| 13 | ** FROG: [hep-ex/0901.2718v1] **
|
---|
| 14 | ** **
|
---|
| 15 | ** ------------------------------------------------------------------ **
|
---|
| 16 | ** **
|
---|
| 17 | ** Main authors: **
|
---|
| 18 | ** ------------- **
|
---|
| 19 | ** **
|
---|
| 20 | ** Severine Ovyn Xavier Rouby **
|
---|
| 21 | ** severine.ovyn@uclouvain.be xavier.rouby@cern **
|
---|
| 22 | ** **
|
---|
| 23 | ** Center for Particle Physics and Phenomenology (CP3) **
|
---|
| 24 | ** Universite catholique de Louvain (UCL) **
|
---|
| 25 | ** Louvain-la-Neuve, Belgium **
|
---|
| 26 | ** **
|
---|
| 27 | ** Copyright (C) 2008-2009, **
|
---|
| 28 | ** All rights reserved. **
|
---|
| 29 | ** **
|
---|
| 30 | ***********************************************************************/
|
---|
[53] | 31 |
|
---|
[219] | 32 | #include "VeryForward.h"
|
---|
| 33 | #include "H_RomanPot.h"
|
---|
[53] | 34 | #include <iostream>
|
---|
| 35 | #include<cmath>
|
---|
| 36 |
|
---|
| 37 | using namespace std;
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | //------------------------------------------------------------------------------
|
---|
[374] | 41 | VeryForward::VeryForward() :
|
---|
| 42 | DET(new RESOLution()), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
| 43 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
| 44 | relative_energy(true), // should always be true
|
---|
| 45 | kickers_on(1) // should always be 1
|
---|
| 46 | {
|
---|
| 47 | init(); //Initialisation of Hector
|
---|
[219] | 48 | }
|
---|
| 49 |
|
---|
[374] | 50 | VeryForward::VeryForward(const string& DetDatacard) :
|
---|
| 51 | DET(new RESOLution())
|
---|
| 52 | {
|
---|
[219] | 53 | DET->ReadDataCard(DetDatacard);
|
---|
[374] | 54 | const float d_max = 1.+std::max(DET->RP_420_s,DET->RP_220_s);
|
---|
| 55 | beamline1 = new H_BeamLine(1,d_max);
|
---|
| 56 | beamline2 = new H_BeamLine(1,d_max);
|
---|
| 57 | init(); //Initialisation of Hector
|
---|
| 58 | relative_energy = true; // should always be true
|
---|
| 59 | kickers_on = 1; // should always be 1
|
---|
[219] | 60 | }
|
---|
| 61 |
|
---|
[374] | 62 | VeryForward::VeryForward(const RESOLution * DetDatacard) :
|
---|
| 63 | DET(new RESOLution(*DetDatacard)), d_max(1.+std::max(DET->RP_420_s,DET->RP_220_s)),
|
---|
| 64 | beamline1(new H_BeamLine(1,d_max)), beamline2(new H_BeamLine(1,d_max)),
|
---|
| 65 | relative_energy(true), // should always be true
|
---|
| 66 | kickers_on(1) // should always be 1
|
---|
| 67 | {
|
---|
| 68 | init(); //Initialisation of Hector
|
---|
[219] | 69 | }
|
---|
| 70 |
|
---|
[374] | 71 | VeryForward::VeryForward(const VeryForward& vf) :
|
---|
| 72 | DET(new RESOLution(*(vf.DET))), d_max(vf.d_max),
|
---|
| 73 | beamline1(new H_BeamLine(*(vf.beamline1))), beamline2(new H_BeamLine(*(vf.beamline2))),
|
---|
| 74 | relative_energy(vf.relative_energy),
|
---|
| 75 | kickers_on(vf.kickers_on) {
|
---|
[219] | 76 | }
|
---|
| 77 |
|
---|
| 78 | VeryForward& VeryForward::operator=(const VeryForward& vf){
|
---|
| 79 | if (this==&vf) return *this;
|
---|
| 80 | DET = new RESOLution(*(vf.DET));
|
---|
[374] | 81 | d_max = vf.d_max;
|
---|
[219] | 82 | beamline1 = new H_BeamLine(*(vf.beamline1));
|
---|
| 83 | beamline2 = new H_BeamLine(*(vf.beamline2));
|
---|
[374] | 84 | relative_energy =vf.relative_energy;
|
---|
| 85 | kickers_on = vf.kickers_on;
|
---|
[219] | 86 | return *this;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 |
|
---|
| 90 | void VeryForward::init() {
|
---|
[53] | 91 | //Initialisation of Hector
|
---|
| 92 | relative_energy = true; // should always be true
|
---|
| 93 | kickers_on = 1; // should always be 1
|
---|
[257] | 94 | beamline1->fill(DET->RP_beam1Card,1,DET->RP_IP_name);
|
---|
[252] | 95 | beamline1->offsetElements(DET->RP_offsetEl_s,-DET->RP_offsetEl_x);
|
---|
[254] | 96 | H_RomanPot * rp220_1 = new H_RomanPot("rp220_1",DET->RP_220_s,DET->RP_220_x*(1E6)); // RP 220m, 2mm, beam 1
|
---|
| 97 | H_RomanPot * rp420_1 = new H_RomanPot("rp420_1",DET->RP_420_s,DET->RP_420_x*(1E6)); // RP 420m, 4mm, beam 1
|
---|
[242] | 98 | beamline1->add(rp220_1);
|
---|
[53] | 99 | beamline1->add(rp420_1);
|
---|
| 100 |
|
---|
[257] | 101 | beamline2->fill(DET->RP_beam2Card,-1,DET->RP_IP_name);
|
---|
[252] | 102 | beamline2->offsetElements(DET->RP_offsetEl_s,+DET->RP_offsetEl_x);
|
---|
[254] | 103 | H_RomanPot * rp220_2 = new H_RomanPot("rp220_2",DET->RP_220_s,DET->RP_220_x*(1E6));// RP 220m, 2mm, beam 2
|
---|
| 104 | H_RomanPot * rp420_2 = new H_RomanPot("rp420_2",DET->RP_420_s,DET->RP_420_x*(1E6));// RP 420m, 4mm, beam 2
|
---|
[53] | 105 | beamline2->add(rp220_2);
|
---|
| 106 | beamline2->add(rp420_2);
|
---|
[242] | 107 | // rp220_1, rp220_2, rp420_1 and rp420_2 will be deallocated in ~H_AbstractBeamLine
|
---|
| 108 | // do not put explicit delete
|
---|
[53] | 109 | }
|
---|
| 110 |
|
---|
[242] | 111 |
|
---|
[374] | 112 | void VeryForward::ZDC(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchZDC, TRootGenParticle *particle)
|
---|
[53] | 113 | {
|
---|
| 114 | TRootZdcHits *elementZdc;
|
---|
[374] | 115 | float energy = particle->E;
|
---|
| 116 | //TLorentzVector genMomentum;
|
---|
| 117 |
|
---|
[53] | 118 | // Zero degree calorimeter, for forward neutrons and photons
|
---|
[374] | 119 | if (particle->Status ==1 && ( (particle->PID==pN && energy>DET->ZDC_n_E) ||
|
---|
| 120 | (particle->PID==pGAMMA && energy>DET->ZDC_gamma_E) )
|
---|
| 121 | && fabs(particle->Eta) > DET->VFD_min_zdc ) {
|
---|
[53] | 122 | elementZdc = (TRootZdcHits*) branchZDC->NewEntry();
|
---|
[374] | 123 |
|
---|
| 124 | // 1) energy smearing
|
---|
| 125 | float energyS = -1.;
|
---|
| 126 | if (particle->PID == pGAMMA)
|
---|
| 127 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->ELG_Nzdc,2) +
|
---|
| 128 | pow(DET->ELG_Czdc*particle->E,2) +
|
---|
| 129 | pow(DET->ELG_Szdc*sqrt(particle->E),2) ));
|
---|
| 130 | else // smearing with hadronic resolution
|
---|
| 131 | energyS = gRandom->Gaus(particle->E, sqrt( pow(DET->HAD_Nzdc,2) +
|
---|
| 132 | pow(DET->HAD_Czdc*particle->E,2) +
|
---|
| 133 | pow(DET->HAD_Szdc*sqrt(particle->E),2) ));
|
---|
| 134 | elementZdc->E = energyS;
|
---|
| 135 |
|
---|
| 136 |
|
---|
| 137 | // 2) time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 138 | float cos_theta = 1; //very good approximation, if eta_zdc >3
|
---|
| 139 | if (DET->VFD_min_zdc<3) { // if smaller eta -> make the complete calculation
|
---|
| 140 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 141 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 142 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 143 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 144 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 145 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 146 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 147 | cos_theta = cos(theta);
|
---|
| 148 | }
|
---|
| 149 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 150 | // units from Delphes : VFD_s_zdc [m] speed_of_light [m/s]
|
---|
| 151 | double flight_distance = (DET->VFD_s_zdc - particle->Z*(1E-3))/cos_theta ;
|
---|
| 152 | double flight_time = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
| 153 | double timeS = gRandom->Gaus(flight_time,DET->ZDC_T_resolution);
|
---|
| 154 | elementZdc->T = timeS;
|
---|
| 155 |
|
---|
| 156 | // 3) side: which ZDC has been hit?
|
---|
[355] | 157 | elementZdc->side = sign(particle->Eta);
|
---|
[374] | 158 |
|
---|
| 159 | // 4) object nature : e.m. (photon) or had (neutron) ?
|
---|
| 160 | elementZdc->hadronic_hit = (bool) (particle->PID==pN);
|
---|
[53] | 161 | }
|
---|
| 162 |
|
---|
| 163 | }
|
---|
| 164 | void VeryForward::RomanPots(ExRootTreeWriter *treeWriter, ExRootTreeBranch *branchRP220,ExRootTreeBranch *branchFP420,TRootGenParticle *particle)
|
---|
| 165 | {
|
---|
[355] | 166 | int pid=particle->PID;
|
---|
[53] | 167 |
|
---|
| 168 | TRootRomanPotHits* elementRP220;
|
---|
[374] | 169 | TRootForwardTaggerHits* elementFP420;
|
---|
[53] | 170 |
|
---|
| 171 | TLorentzVector genMomentum;
|
---|
| 172 | genMomentum.SetPxPyPzE(particle->Px, particle->Py, particle->Pz, particle->E);
|
---|
| 173 | // if forward proton
|
---|
[100] | 174 | if( (pid == pP) && (particle->Status == 1) && (fabs(genMomentum.Eta()) > DET->CEN_max_calo_fwd) )
|
---|
[53] | 175 | {
|
---|
| 176 | // !!!!!!!! put here particle->CHARGE and particle->MASS
|
---|
| 177 | H_BeamParticle p1; /// put here particle->CHARGE and particle->MASS
|
---|
| 178 | p1.smearAng();
|
---|
| 179 | p1.smearPos();
|
---|
[254] | 180 | p1.setPosition(p1.getX()+DET->RP_cross_x,p1.getY()+DET->RP_cross_y,p1.getTX()-1*kickers_on*DET->RP_cross_ang,p1.getTY(),0);
|
---|
[53] | 181 | p1.set4Momentum(particle->Px,particle->Py,particle->Pz,particle->E);
|
---|
| 182 |
|
---|
| 183 | H_BeamLine *beamline;
|
---|
| 184 | if(genMomentum.Eta() >0) beamline = beamline1;
|
---|
| 185 | else beamline = beamline2;
|
---|
| 186 |
|
---|
| 187 | p1.computePath(beamline,1);
|
---|
| 188 |
|
---|
| 189 | if(p1.stopped(beamline)) {
|
---|
| 190 | if (p1.getStoppingElement()->getName()=="rp220_1" || p1.getStoppingElement()->getName()=="rp220_2") {
|
---|
[100] | 191 | p1.propagate(DET->RP_220_s);
|
---|
[53] | 192 | elementRP220 = (TRootRomanPotHits*) branchRP220->NewEntry();
|
---|
| 193 | elementRP220->X = (1E-6)*p1.getX(); // [m]
|
---|
| 194 | elementRP220->Y = (1E-6)*p1.getY(); // [m]
|
---|
| 195 | elementRP220->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
| 196 | elementRP220->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
| 197 | elementRP220->S = p1.getS(); // [m]
|
---|
[374] | 198 |
|
---|
| 199 | /* time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 200 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
| 201 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
| 202 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
| 203 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
| 204 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 205 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 206 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 207 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 208 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 209 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 210 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 211 | cos_theta = cos(theta);
|
---|
| 212 | }
|
---|
| 213 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 214 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
| 215 | //double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
| 216 | //elementRP220->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
| 217 | */
|
---|
| 218 | elementRP220->E = p1.getE(); // not yet implemented
|
---|
| 219 | elementRP220->q2 = -1; // not yet implemented
|
---|
| 220 | elementRP220->side = sign(particle->Eta);
|
---|
[53] | 221 |
|
---|
| 222 | } else if (p1.getStoppingElement()->getName()=="rp420_1" || p1.getStoppingElement()->getName()=="rp420_2") {
|
---|
[100] | 223 | p1.propagate(DET->RP_420_s);
|
---|
[374] | 224 | elementFP420 = (TRootForwardTaggerHits*) branchFP420->NewEntry();
|
---|
[53] | 225 | elementFP420->X = (1E-6)*p1.getX(); // [m]
|
---|
| 226 | elementFP420->Y = (1E-6)*p1.getY(); // [m]
|
---|
| 227 | elementFP420->Tx = (1E-6)*p1.getTX(); // [rad]
|
---|
| 228 | elementFP420->Ty = (1E-6)*p1.getTY(); // [rad]
|
---|
[355] | 229 | elementFP420->S = p1.getS(); // [m]
|
---|
[374] | 230 |
|
---|
| 231 | // time of flight t is t = T + d/[ cos(theta) v ]
|
---|
| 232 | // nb: here we assume a straight path to the detector, which is not the case!
|
---|
| 233 | // this time estimate is always underestimated (while exact for the ZDC case)
|
---|
| 234 | float cos_theta = 1; //very good approximation, if CEN_max_calo_fwd >3
|
---|
| 235 | if (DET->CEN_max_calo_fwd<3) { // if smaller eta -> make the complete calculation
|
---|
| 236 | double tx = atan(particle->Px/particle->Pz);
|
---|
| 237 | double ty = atan(particle->Py/particle->Pz);
|
---|
| 238 | double theta = sqrt( pow(tx,2) + pow(ty,2) );
|
---|
| 239 | //cout << "tx = " << tx << " ty = " << ty << " theta = " << theta << " cos(theta) = " << cos(theta) << endl;
|
---|
| 240 | // NB: in practice, eta= 8 <-> theta 0.038° <-> 7x10^-4 rad <-> cos(theta) ~1
|
---|
| 241 | // eta = 2.6 <-> cos(theta) = 0.99
|
---|
| 242 | // eta = 3.0 <-> cos(theta) = 0.995
|
---|
| 243 | cos_theta = cos(theta);
|
---|
| 244 | }
|
---|
| 245 | // units from StdHEP : Z [mm] T[mm/c]
|
---|
| 246 | // units from Delphes : p1.getS [m] speed_of_light [m/s]
|
---|
| 247 | double flight_distance = (p1.getS() - particle->Z*(1E-3))/cos_theta ;
|
---|
| 248 | elementFP420->T = (flight_distance + 1E-3 * particle->T )/speed_of_light; // assumes highly relativistic particles, [s]
|
---|
[53] | 249 | elementFP420->E = p1.getE(); // not yet implemented
|
---|
| 250 | elementFP420->q2 = -1; // not yet implemented
|
---|
[355] | 251 | elementFP420->side = sign(particle->Eta);
|
---|
[53] | 252 | }
|
---|
| 253 |
|
---|
| 254 | }
|
---|
[355] | 255 | // if(p1.stopped(beamline) && (p1.getStoppingElement()->getS() > 100))
|
---|
| 256 | // cout << "Eloss =" << 7000.-p1.getE() << " ; " << p1.getStoppingElement()->getName() << endl;
|
---|
[53] | 257 | } // if forward proton
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | // Forward particles in CASTOR ?
|
---|
[355] | 261 | // if (particle->Status == 1 && (fabs(particle->Eta) > DET->MIN_CALO_VFWD)
|
---|
| 262 | // && (fabs(particle->Eta) < DET->MAX_CALO_VFWD)) {
|
---|
[53] | 263 | //
|
---|
| 264 | //
|
---|
[355] | 265 | // } // CASTOR
|
---|
| 266 | // */
|
---|
| 267 |
|
---|